

# A Robotic Indenter for Minimally Invasive Characterization of Soft Tissues

*Evren Samur September, 2005* 

# Outline

Problem Our Approach Literature Review Design of the Robotic Indenter Controller Design & GUI Animal Experiments Experimental Results

## Problem

The lack of data in current literature on *in-vivo* material properties of soft tissues has been a significant impediment in the development of virtual reality based laparoscopic simulators that can provide the user with realistic visual and haptic feedback for training medical personnel.

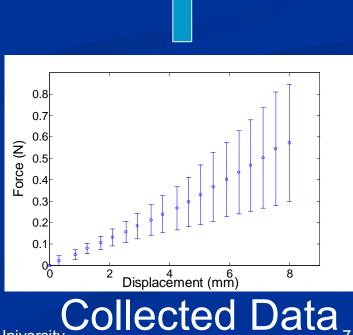
Goal

*In-vivo* characterization of soft tissue properties for integration into tissue models to be used in VR based surgical simulators.

# Challenge

Soft organ tissues exhibit nonlinear <u>anisotropic</u>, nonhomogeneous, time, and rate dependent behavior, which are extremely challenging to measure, especially in vivo.

# **Our Approach**


 Development of a robotic indenter
 Design of measurement experiments
 Extraction of tissue properties from measured data

### Our Approach



# Robotic Indenter

#### **Tissue Properties**



#### Experiments

College of Engineering, Koc University

Literature Review Measurement site ■ in a living body (*in-vivo*) within a body (*in-situ*) • outside the living body (*in-vitro*, ex-vivo) Measurement methods *invasive*: a part of the body is entered, as by puncture or incision non-invasive: the body is not cut open, e.g. ultrasound *minimally invasive*: e.g. laparoscopy

College of Engineering, Koc University

### Literature Review

#### Hand-held

Invasive
 Carter et al.

*Minimally Invasive*Kauer et al.

Robotic
 *Invasive* Tay et al.

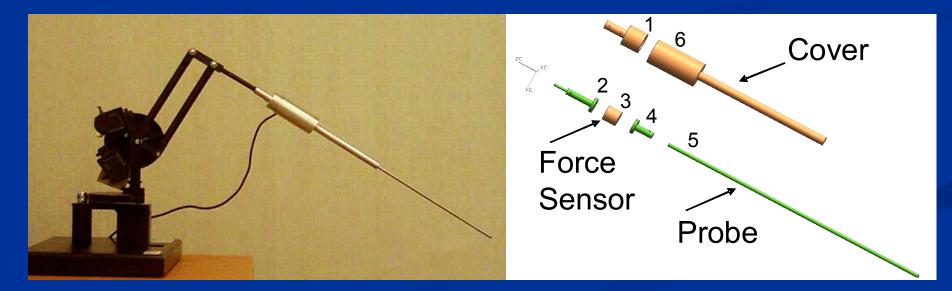
Minimally Invasive
Ottensmeyer
Brown et al.

 Ref: Brown, J.D. et al., (2003). "In-vivo and In-Situ Compressive

 Properties of Porcine Abdominal

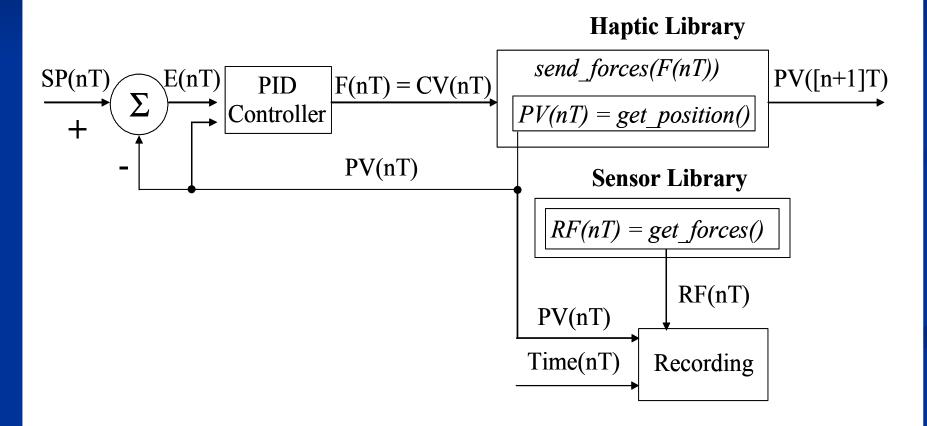
 Soft Tissues", MMVR, Vol. 94, pp.

 26-32, Newport Beach, CA


*Ref:* Ottensmeyer, M. P., (2001), "Minimally Invasive Instrument for In vivo Measurement of Solid Organ Mechanical Impedance", Ph.D. Thesis, MIT

# **Our Contribution**

<u>Robotic Probes</u> vs Hand-Held Probes
 <u>Minimally Invasive</u> vs Invasive
 <u>Large indentations</u> vs small indentations
 <u>Static</u> vs <u>Dynamic</u> indentations

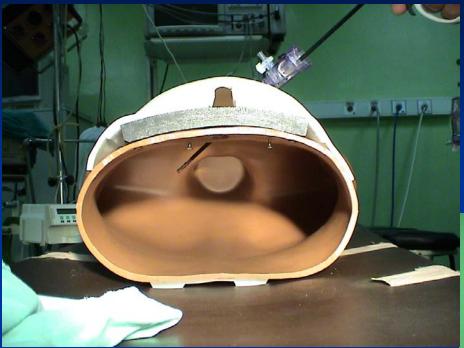

#### **Components of the Robotic Indenter**

- Phantom haptic device (encoders for 3D position sensing)
- Laparoscopic Probe
- Nano 17 force sensor (3D force/torque sensing)
- Cover



## **Controller Design**

#### PID control and tunning




## **Graphical User Interface**

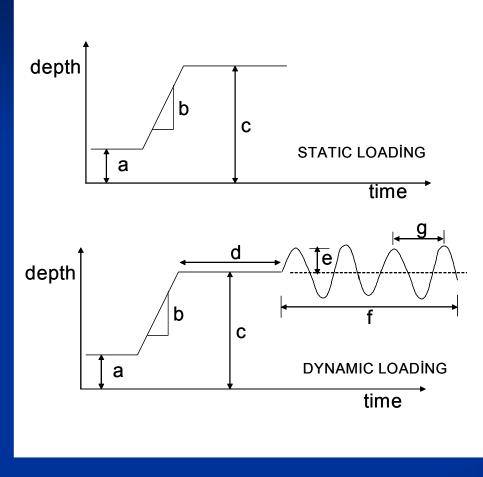
#### Automates the generation and execution of indentation profiles and data collection.

| Koç University Robotics and Mechatronics Laboratory |                              |                                                                                                                                                                                                                                                      |                          |                       |  |
|-----------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|--|
| e Tools Help                                        |                              |                                                                                                                                                                                                                                                      |                          |                       |  |
| Sensor Related                                      |                              |                                                                                                                                                                                                                                                      |                          |                       |  |
| GO 0.0451                                           | Bias Display<br>• Voltages   |                                                                                                                                                                                                                                                      | and the second           |                       |  |
| G1 0.0056                                           | Unbias O F/T U               | nits                                                                                                                                                                                                                                                 |                          | A CARLES AND A CARLES |  |
| G2 -0.5052                                          |                              |                                                                                                                                                                                                                                                      |                          |                       |  |
| G3 -4.4206                                          | Thermistor: -1.5454 ∨        |                                                                                                                                                                                                                                                      |                          | and the               |  |
| G4 12.6308                                          |                              |                                                                                                                                                                                                                                                      | 101                      |                       |  |
| G5 0.0332                                           |                              |                                                                                                                                                                                                                                                      |                          | A COM                 |  |
| Phantom Related<br>_ Indentation Configuration      |                              | Control Board                                                                                                                                                                                                                                        |                          | ]                     |  |
| Indentation Profile:                                | Ramp & Hold Indentation 🔻    |                                                                                                                                                                                                                                                      |                          | 1                     |  |
| Preindentation Depth (mm):                          | 0                            | Start Phantom                                                                                                                                                                                                                                        | Start Indentation        | Kill Phantom          |  |
| Preindentation Velocity (mm/s):                     | 0                            |                                                                                                                                                                                                                                                      |                          |                       |  |
| Rest Duration (s):                                  | 0                            | Phantom Information Screen                                                                                                                                                                                                                           |                          | 1                     |  |
| Ramp Depth (mm):                                    | 6                            | Hit 'Start Phantom' button. Place robot on tissue surface. Load a calibration file. Choose F/T units and hit 'Bias' button Hit 'Start Indentation' button to start indentation. Hit 'Kill Phantom' button anytime during indentation to stop servos. |                          |                       |  |
| Ramp Velocity (mm/s):                               | 6 Clear<br>Configuration     |                                                                                                                                                                                                                                                      |                          |                       |  |
| Hold Duration (s):                                  | 30                           | Hit 'Emergency Exit' button                                                                                                                                                                                                                          | n case of an emergency.  |                       |  |
| Amplitude (mm):                                     | 0                            | Servos started successfully.<br>Indentation started success                                                                                                                                                                                          |                          |                       |  |
| Frequency (Hz):                                     | 0                            | I am writing output files                                                                                                                                                                                                                            |                          |                       |  |
| Sinusoidal Indentation Duration (s):                | 0                            | <u></u>                                                                                                                                                                                                                                              |                          |                       |  |
| Load Configurat                                     | Load Configuration From File |                                                                                                                                                                                                                                                      | Clear Information Screen |                       |  |

# **Preliminary Experiments**



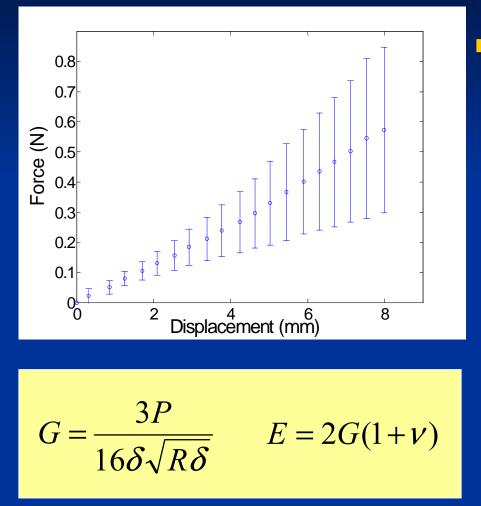
#### Observation in Operating Room




## **Animal Experiments**

In collaboration with Department of Surgery and Faculty of Veterinary Medicine of Istanbul University.

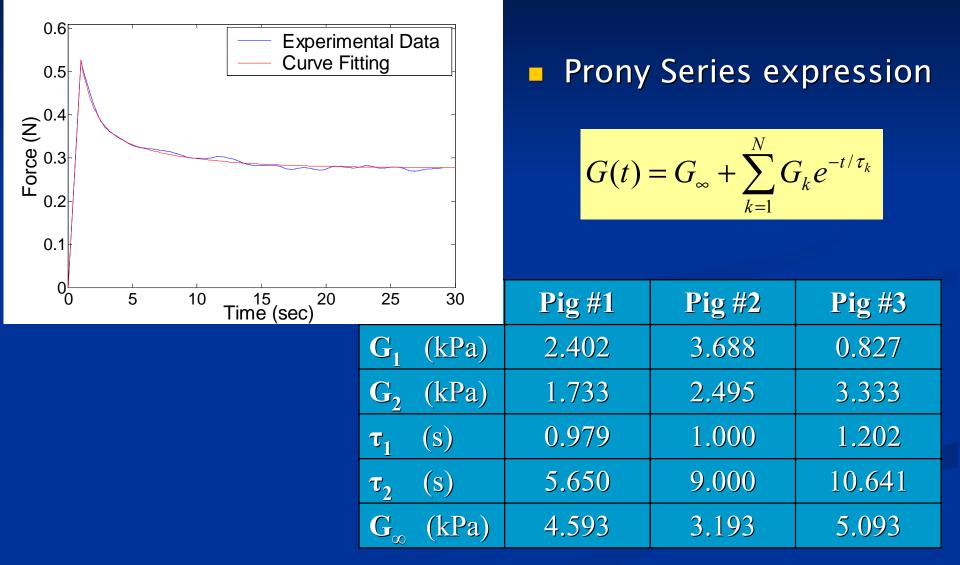



# **Animal Experiments**



Indentation types
Static indentation
Stress relaxation
Dynamic indentation




#### **Experimental Results**



Effective elastic modulus for small indentation of an elastic half-space by a rigid hemispherical indenter

| Indentation   | Effective Young's |
|---------------|-------------------|
| Depth         | Modulus           |
| <b>δ</b> (mm) | E (kPa)           |
| 2             | $16.9 \pm 4.9$    |
| 4             | $12.4 \pm 4.1$    |
| б             | $10.8 \pm 4.7$    |
| 8             | $10.0 \pm 4.7$    |

## **Experimental Results**



#### Acknowledgement

Special thanks to

Prof. Dr. Cagatay Basdogan (Koc University), Mert Sedef

(Koc University), Prof. Dr. Levent Avtan

(Istanbul Faculty of Medicine, Department of Surgery), Prof. Dr. Oktay Duzgun (Istanbul Faculty of Veterinary Medicine)



*Proceedings of Computer Assisted Radiology and Surgery (CARS 2005) Conference, June 22–25, 2005, Vol 1281C pp. 713–718.*