Active Tremor Compensation via Robotic Handheld Instrument and Wearable Orthosis

Wei Tech ANG
Assistant Professor
School of Mechanical and Aerospace Engineering
Nanyang Technological University, Singapore
wtang@ntu.edu.sg

Active Noise/Disturbance Compensation

- Low signal-to-noise ratio applications
 - Physiological tremor – micromanipulation
 - Pathological tremor – activities of daily living

Active Pathological Tremor Compensation in Wearable Orthosis

Wing Lok AU
National Neuroscience Institute

Philippe POIGNET
LIRMM, U of Montpellier II

Markus RANK (Exch Student)
Technische Universitaet Muenchen

Cheng Yap SHEE
Nanyang Technological University

Louis TAN
National Neuroscience Institute

Adela TOW
Tan Tock Seng Hospital

Kalyana VELUVOLU
Nanyang Technological University

Ferdinan WIDJAJA
Nanyang Technological University

Dingguo ZHANG
Nanyang Technological University

Active Pathological Tremor Compensation in Wearable Orthosis

Pathological Tremor

Muscle Actuation

Functional Electrical Stimulation

Intended motion

Tremor

Pathological Tremor Model

Zero-phase Filtering and Learning Algorithm

Sensor Fusion

Accelrometer

Task

Muscle Activity
Active Physiological Tremor Compensation in Handheld Microsurgical Instrument

- David CHOI
- Mingli HAN
- Thiam Chye LIM
- Yee Siang ONG
- Cameron RIVIERE
- Cheng Yap SHEE
- U-Xuan TAN
- Kalyana VELUVOLU
- Tun Latt WIN
- National University Hospital
- Carnegie Mellon University
- Singapore General Hospital
- Carnegie Mellon University

Microsurgery with Active Handheld Instrument

- Visual Feedback
- Engineering Solutions
- Motion Sensing
- Micron
- Technical Details
- Visuomotor Control System
- Noisy, Tremulous Motion

Active Physiological Tremor Compensation in Handheld Microsurgical Instrument

Involuntary Hand Movement for Healthy People

- Physiological Tremor
 - Roughly sinusoidal, \(\leq 50\, \mu\text{m rms, 8-12 Hz}\)
- Others: Myoclonic jerk, drift
Physiological Tremor and Microsurgery

- Complicates microsurgical procedures and makes certain delicate interventions impossible

Vitreoretinal Microsurgery

- Removal of membranes \(\leq 20 \, \mu m \) thick from front or back of retina

Vitreoretinal Microsurgery

- Injection of anticoagulant using intraocular cannulation to treat retinal vein (~\(\phi 100 \, \mu m \)) occlusion
Physiological Tremor and Microsurgery

- Impact on microsurgeons
 - 2 of 10 surgeons become microsurgeons

- Factors affecting tremor
 - Fatigue – strenuous exercise etc.
 - Caffeine/alcohol consumption (withdrawal syndrome)
 - Lack of practice – long vacation etc.
 - Age – experience vs hand stability

- Microsurgeons’ consensus:
 - 10 μm positioning accuracy

Microsurgery with Active Handheld Instrument

- Visual Feedback
- Motion Sensing
- Micron
- Estimation of erroneous motion
- Noisy, Tremulous Motion
- Manipulation of tip for active error compensation

Comparison of Robotic Solutions

- Telerobotics
- ‘Steady Hand’ robot
- Active Handheld Instrument
 - Cheap
 - Unobtrusive
 - Dexterity
 - Limited workspace
 - No motion scaling
 - No ‘third hand’

- Telerobotics
 - > US$1M
 - > US$150K

- ‘Steady Hand’ robot
 - < US$15K
 - Unobtrusive

- Active Handheld Instrument
 - Disposable surgical needle
 - Manipulator System
 - Sensing System

- Length: 150 mm long
- Diameter: Ø20(16) mm
- Weight <100 g
- 6 DOF inertial at the back end
- 3 DOF piezoelectric driven parallel manipulator at front end with disposable surgical needle
- Signal processing and control performed by PC via ADC & DAC
Microsurgery with Active Handheld Instrument

- Visual Feedback
- Motion Sensing
- Resolution
- Accuracy

On-board Sensing System

- All-accelerometer inertial measurement unit (IMU):
 - 3 dual-axis miniature MEMS accelerometers
 - Analog Devices ADXL-203: 5mm x 5mm x 2mm, < 1g
- Housed in 2 locations

Differential Sensing Kinematics

- Body acceleration sensed by accelerometer at location \(\{i\} \):
 \[A_i = A_i^{CG} + g + \Omega \times \Omega \times P_{Bi} + \alpha \times P_{Bi} \]
- Differential Sensing
 \[A_{ij} = A_j - A_i = ([\Omega \times \Omega] + [\alpha \alpha]) P_{ij}, i, j = 1, 2, 3 \]
- Solve system of nonlinear equations for \(\Omega = [\omega_x, \omega_y, \omega_z]^T \) by Gauss-Newton or Levenberg-Marquart method

Sensing Kinematics

- Updating quaternions:
 \[\dot{q}(t) = \Omega(t)q(t), \quad \Omega = \frac{1}{2} \begin{bmatrix} \Omega_{13} \Omega_{23} \Omega_{32} \end{bmatrix} \]
- Directional Cosines matrix
 \[\hat{w} C_B^w = \hat{w} C_B^w \hat{A} - \hat{w} \hat{g} \]
- Tip Displacement:
 \[\hat{w} P_{tip}(t) = \hat{w} P_{tip}(t-T) + \int_{t-T}^{t} \hat{w} \dot{A}_E(r)dr + \int_{t-T}^{t} \hat{w} C_B^w(\Omega \times)^B P_{tip} \]
Sensing Resolution (Error Variance) Analysis

- Sensing resolution dependent on sensor noise floor
- Angular Sensing
 - Sensing equation: \(A_{ij} = f(\Omega) = ([\Omega \times] [\Omega \times] + [\alpha \times]) P_{ij} \)
 - Covariance: \(C(A_{ij}) = C(\Omega) P_{ij} \)
 - \(P_{ij} \uparrow, C(\Omega) \downarrow \)

Proposed All-Accelerometer vs Conventional Inertial Measurement Unit

- All-accelerometer IMU
 - Maximzed \(P_{ij} \) with physical constraint of a slender handheld instrument
- Conventional IMU (3A-3G)
 - Tokin CG-L43D rate gyros x 3

<table>
<thead>
<tr>
<th></th>
<th>3G-3A Error std. dev. (deg/s)</th>
<th>6A Error std. dev. (deg/s)</th>
<th>Noise reduction / resolution improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega_x) & (\omega_y)</td>
<td>1.41</td>
<td>1.08 (\times 10^{-2})</td>
<td>99.3% / 130x</td>
</tr>
<tr>
<td>(\omega_z)</td>
<td>1.41</td>
<td>4.42 (\times 10^{-2})</td>
<td>96.9% / 32x</td>
</tr>
</tbody>
</table>

Angular Sensing Resolution Comparison

- Small angular velocity & sensor noise floor
 - All-accelerometer IMU
 - Better orientation estimation → more complete removal of gravity → better translation estimation

Sensing Resolution (Error Variance) Analysis

- Translational Sensing
 - \(2 \) accelerometers in each sensing direction:
 \[
 \frac{1}{\sigma_A^2} = \frac{1}{\sigma_{d_x}^2} + \frac{1}{\sigma_{d_y}^2} \rightarrow \sigma_A = \frac{\sigma_{d_i}}{\frac{1}{\sigma_{d_i}} + \frac{1}{\sigma_{d_y}}} \]
 - Sensing resolution improves by a factor of \(\sqrt{2} \)
- Better orientation estimation → more complete removal of gravity → better translation estimation
Integration Drift of Inertial Sensors

- Integration drift
 - Erroneous DC Offset
 - Ramp
 - Quadratic
 - Error accumulates and grows unbounded over time
- Poor sensing accuracy

Measurement Model

- Measurement model allows error analysis and compensation
- Measurement Model = Physical (Deterministic) Model + Stochastic Model

Experimental Observations

- $\alpha = 90^\circ$, $\beta = -180^\circ$ to 180°
- $\alpha = 30^\circ$ & 150°, $\beta = -180^\circ$ to 180°

Phenomenological Modeling

- Bias, $B_i(V_y, V_z) = B_x + g_x(V_y) + h_x(V_z)$
- Scale Factor,
 $SF_x(V_z) = r_{x2}V_z^2 + r_{x1}V_z + r_{x0}$
- Model
 $A_x = (V_x - B_x(V_y, V_z)) / SF_x(V_z)$
Sensing Results - Translation

<table>
<thead>
<tr>
<th></th>
<th>Linear Model</th>
<th>Proposed Physical Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rmse (mm/s²)</td>
<td>300</td>
<td>31*</td>
</tr>
<tr>
<td>Bias (mm/s²)</td>
<td>272</td>
<td><5</td>
</tr>
<tr>
<td>Scale Factor (mm/s²)</td>
<td>6</td>
<td><1</td>
</tr>
<tr>
<td>Error Reduction (%)</td>
<td>89.7</td>
<td>-</td>
</tr>
</tbody>
</table>

* ADXL-203 rated rms noise = 22.1 mm/s²

Residual Zero Offset - Integration Drift

Analytical Integration

Real-time modeling of Tremor

Acceleration: \[y_2 = \sum_{i=0}^{L-1} \left(a_i \sin(2\pi(f_o + \frac{r}{G})k) + b_i \cos(2\pi(f_o + \frac{r}{G})k) \right) \]

Velocity: \[\int y_1 = \sum_{i=0}^{L-1} \left(\frac{a_i}{2\pi(f_o + \frac{r}{G})} \cos(2\pi(f_o + \frac{r}{G})k) - \frac{b_i}{2\pi(f_o + \frac{r}{G})} \sin(2\pi(f_o + \frac{r}{G})k) \right) \]

Position: \[\int \int y_1 = \sum_{i=0}^{L-1} \left(\frac{a_i}{2\pi(f_o + \frac{r}{G})^2} \sin(2\pi(f_o + \frac{r}{G})k) + \frac{b_i}{2\pi(f_o + \frac{r}{G})^2} \cos(2\pi(f_o + \frac{r}{G})k) \right) \]
Vision Aided Inertial Sensing

Sensor Fusion

Microscopy with Camera

Microsurgery with Active Handheld Instrument
Zero Phase Filtering

- Phase lag = time delay
- Separation of tremor from the intended motion without introducing phase lag
 - Prediction/projection capability
 - Adaptive
 - Non-linear phase response of IIR filter, i.e. phase characteristic changes with frequency

Fourier Linear Combiner (FLC)

- Truncated Fourier series to adaptively estimate amplitude and phase of periodic signal with known frequency (ω_0)

Weighted-frequency Fourier Linear Combiner (WFLC)

- Extends FLC to also adaptively estimate the frequency using another LMS algorithm
- Band-pass filter to select the band of interest
 - Assumption: rate of change of the dominant input signal frequency is slow
- Zero-phase notch (band-stop) filter effect
Weighted-frequency Fourier Linear Combiner (WFLC) Experiment

- 1 DOF motion canceling experiment
- Ave. rms tremor amplitude reduced 69%

Frequency adaptation in WFLC

The frequency adaptation becomes unstable due to the presence of two frequencies 8 & 8.6 Hz

Tremor Recordings

Bandlimited Multiple FLC

- To estimate the tremor signal within a band of frequencies or comprising of multiple frequency components (modulated signals)
- Corresponding weight will adapt to the corresponding frequency of the input signal
- Can deal with input signals of multiple frequency components unlike WFLC
Comparative Performance: Estimation Errors

Presence of two frequencies 8 and 8.6 degrades the performance of WFLC.

Performance of BMFLC with Real-Tremor

Analytical Integration via BMFLC

- Frequency components remain constant in BMFLC
- Once the weights adapt, the weights can also be assumed to be constant

By Performing analytical integration:

\[y_i = \sum_{r=0}^{L} \left(\frac{a_r}{2\pi(f_0 + \frac{r}{G})} \right) \sin(2\pi(f_0 + \frac{r}{G})k) + \frac{b_r}{2\pi(f_0 + \frac{r}{G})} \times \cos(2\pi(f_0 + \frac{r}{G})k) \]

\[\int y_i = \sum_{r=0}^{L} \left(\frac{a_r}{(2\pi(f_0 + \frac{r}{G}))^2} \right) \sin(2\pi(f_0 + \frac{r}{G})k) + \frac{b_r}{(2\pi(f_0 + \frac{r}{G}))^2} \times \cos(2\pi(f_0 + \frac{r}{G})k) \]

\[\int \int y_i = \sum_{r=0}^{L} \left(\frac{a_r}{(2\pi(f_0 + \frac{r}{G}))^3} \right) \sin(2\pi(f_0 + \frac{r}{G})k) + \frac{b_r}{(2\pi(f_0 + \frac{r}{G}))^3} \times \cos(2\pi(f_0 + \frac{r}{G})k) \]
Microsurgery with Active Handheld Instrument

- Visual Feedback
- Motion Sensing
- MICRON
- Visuomotor Control System
- Noisy, Tremulous Motion
- Manipulation of tip for active error compensation
- Estimation of erroneous motion
- High precision tracking control
- Mechanism design

Vitreoretinal Micronics

Manipulator Design

- 3 DOF piezoelectric-driven parallel manipulator
 - 1 actuator per axis, max effective stroke = 12.5 µm
 - Motion amplification = 9.4x, total stroke > 100 µm
- Tool tip approximated as a point, hence only 3 DOF manipulation
- Parallel manipulator design because
 - Rigidity, compactness, and design simplicity

Design of Parallel Mechanism

- Flexure Based Mechanism
- Monolith design using Stereolithography (SLA)
 - Ø22 x 58 mm
- IEEE EMBS 2005 (Shanghai) Best Student Design Competition winner
 - David Choi (CMU) et al.

Piezoelectric Actuator Hysteresis

- Pros:
 - High bandwidth
 - Fast response
 - High output force
- Cons:
 - Hysteresis
- ~15% of max. displacement
- Hysteresis is rate-dependent

Pros: 25 Hz
Cons: 5 Hz
Commercial Piezo-System with Feedback Controller

- Piezo-driven 3 axis micro-positioner
 - Polytec-PI, Germany, NanoCube™ P-611
 - >$10,000
 - Feedback sensors: strain gages
 - Tracking a 10 Hz, 100 µm p-p sinusoid
- Hysteresis still present
- Low-pass filtered behavior

Feedforward Controller with Inverse Hysteresis Model

- Develop an invertible mathematical model that closely describes the hysteretic behavior of a piezoelectric actuator
- Prandtl-Ishlinskii Model

Prandtl-Ishlinskii (PI) Operator

- Rate independent backlash operator:
 \[H_r = \max \{ x(t) - r, \min \{ x(t) + r, y_0 \} \} \]
- Linearly weighted superposition of backlash operators:
 \[y(t) = \tilde{w}_{\Phi}^T \tilde{H}_r [x, \tilde{y}_0](t) \]

Inverse PI Hysteresis Model

- Reflection about Y = X (45° line)
Tremor Tracking Results

- Tracking recordings of real tremor using 1 piezoelectric stack
 - \(\text{Rmse} = 0.64\% \) of max ampl.; \(\text{Max error} = 2.4\% \) of max ampl.

Experimental Results

Adaptive Feedforward Controller

- Eliminate parameter identification
- Weight adapting mechanism: Recursive Least Square

\[
\dot{w}^T \hat{S}_w [\dot{w}^T (z) H (z, \hat{y}_d)](t)
\]

\[
\dot{z}(t) = w_b (z(t)) \approx u_t + b z(t)
\]

Real-time Active Compensation – 1 DOF Disturbance, 1 DOF Compensation

<table>
<thead>
<tr>
<th>rmse ± σ (µm)</th>
<th>0.0943 ± 0.0159</th>
</tr>
</thead>
<tbody>
<tr>
<td>rmse / actuator’s stroke length (%)</td>
<td>0.31</td>
</tr>
<tr>
<td>max error ± σ (µm)</td>
<td>0.3899 ± 0.0291</td>
</tr>
<tr>
<td>max error / actuator’s stroke length (%)</td>
<td>1.30</td>
</tr>
</tbody>
</table>
Real-time Active Compensation – 1 DOF Disturbance, 3 DOF Compensation

Real-time Active Compensation – Handheld
- 5 DOF sensing by 2 orthogonal position sensitive detectors
- No inertial sensing
- Non-surgical scenario

Active Pathological Tremor Compensation in Wearable Orthosis

Pathological Tremor
Pathological Tremor: Causes & Symptoms

- 3-12 Hz
- From < 10 mm (fingers) to > 100 mm (arm)
- Common medical conditions
 - Essential tremor (postural tremor)
 - Parkinson’s disease (resting tremor)
 - Cerebellar dysfunction (intention tremor)
 - e.g. stroke, multiple sclerosis, Wilson’s disease

Impact of Pathological Tremor

- Affects 5-9% of the population age > 40
- Activities of daily living become challenging or impossible
- Social embarrassment and isolation
- Lifetime cost per patient > US$1M

Treatment Options

- Drug therapy
 - > 50% are not responsive to drug
- Stereotactic surgery
 - Cost, psychological barrier, chances of complication
- Assistive technology
 - Active tremor compensation via wearable orthosis
 - A 20-100 ms electromechanical time delay between Electromyograph (EMG) signals and muscle actuations

Active Tremor Compensation in Wearable Orthosis
System Overview

Filtering
- Tremor Filter
- EMG Filter

Sensing
- Camera system
- Parameters Identification
- Sensor Fusion
- Signal Processing
- Tremor model

Musculo-skeletal system
- Intended EMG
- FES-Controller
- Intended motion / position info
- Model information

Compensation
- Inv. Arm Model
- Model information

Musculo-skeletal system
- Tremor EMG
- Intended EMG
- Tremor motion

Feedback Control System

Controller
- Stimulators
- Sensors e.g. EMG

Musculoskeletal System

Robot Arm vs Human Arm
- Actuation system
 \[T_m = K_i i \]
 \[e = K_f \omega_m \]
 \[V_a = iR + L \frac{di}{dt} + e \]

Electrical Motor
Muscle (Hill-Type)

Robot Arm vs Human Arm
- Links
 VS.
 Kinematics & Dynamics are solved in similar ways

Manipulator
Skeleton
Musculoskeletal Model of Upper Limb

- Well studied and established

Key Challenges

- Sensing
 - How can we know what upper limb movement (tremulous + voluntary) will occur from the sensed SEMG of the muscles?

Key Challenges

- Filtering
 - How can we differentiate between tremulous & voluntary SEMG of the muscles?

Key Challenges

- Functional Electrical Stimulation
 - How can we use FES to generate (anti-)tremulous movement in the upper limbs?
Musculoskeletal Modeling of Tremor in Upper Limbs

- To understand the roles and characteristics of the skeletal muscles responsible for each type of tremor
- To study SEMG-movement relationship

Pathological Tremor Study

- 18 control subjects, 5 Parkinson’s Disease patients, 6 Essential Tremor patients, 1 Psychogenic tremor patient, and 1 Holmes’ tremor patient

Tremor Study

- 120 patients with movement disorder
 - Parkinson Diseases – resting tremor (>30)
 - Essential Tremor – postural tremor (>30)
 - Multiple Sclerosis, Stoke, etc. – intention tremor (>30)
 - Others (~10)
- 30 healthy people
 - Age 16-85
 - No personal & family medical history of tremor
- National Neuroscience Institute, Singapore

Data Collection

- Record sensor data of patients performing
 - Standard diagnostics: finger to noise, finger to finger, stretched out, drawing spirals, etc.
- Sensors
 - SEMG: 16 channels (8 muscle groups, mostly agonist & antagonist pairs) per limb
 - Accelerometers: 3 x tri-axial per limb
 - Goniometers: 1 per limb
 - Position and Orientation sensor: Vicon optical sensing system (4 cameras)
Sensing

- SEMG
- Accelerometers
- Goniometer
- Optical Sensors

Model

Sensor Fusion

Muscle Activity & Physical Movement

Muscle Contraction Property

Muscle mechanical model (Hill-type)

CE: Contractile Element
SE: Series Elastic Element
PE: Passive Element (Parallel Elastic Element)

Phenomenological Modeling of Upper Limb Tremor from EMG

The spring damper system is tuned to the actual tremor frequency

Sensor Fusion – Kalman Filtering

- EMG-derived joint angle as predictor
- ACC-derived joint angle as corrector

\[
\theta_{EMG}(k) = c_{EMG}(1)EMG(k) + c_{EMG}(2)
\]

\[
\theta_{ACC}(k) = c_{ACC}(1)ACC(k) + c_{ACC}(2)
\]

- Estimate of joint angle

\[
\hat{\theta}(k) = \theta_{EMG}(k) + \frac{\sigma_{EMG}^2}{\sigma_{EMG}^2 + \sigma_{ACC}^2}(\theta_{ACC}(k) - \theta_{EMG}(k))
\]
Results

Kalman filter for elbow flexion-extension of PD patient (sitting, arm resting on thigh)

\[\sigma^2_{\text{true}} = 0.1045 \]
\[\sigma^2_{\text{error}} = 0.022 \] (78.76% reduction)

Frequency content of original tremor

Frequency content of the compensated tremor

Power of original tremor = 7.315
Power of compensated tremor = 0.902

The power of the tremor is reduced by 87.67%

Tremor Filtering via ANN

- Cascade Correlation Neural Networks with extended Kalman Filtering
- Experiments with 11 multiple sclerosis patients (intention tremor)
- Smoother trajectory
- Reach and dwell in target circle 31.8% faster
 - Mean over 29 tests

Functional Electrical Stimulations

- Controlling electrical pulses to stimulate the intact peripheral nerve to actuate muscles
 - Usually used to restore the motor functions for the paralyzed patients
- Prochazka et al. (1992) demonstrated the effectiveness of FES for tremor attenuation
 - Offline trial & error tuning of intensity and phase

Functional Electrical Stimulations

- Prochazka et al. (1992) demonstrated the effectiveness of FES for tremor attenuation
 - Offline trial & error tuning of intensity and phase

Functional Electrical Stimulations

- Prochazka et al. (1992) demonstrated the effectiveness of FES for tremor attenuation
 - Offline trial & error tuning of intensity and phase

Functional Electrical Stimulations

- Prochazka et al. (1992) demonstrated the effectiveness of FES for tremor attenuation
 - Offline trial & error tuning of intensity and phase
Muscle Activation

- Fatigue
- Muscle Activation
- Stimulation Artifact
- FES Controller Design
- Simulation Result of Tremor Suppression

Muscle Activation

- Electrical stimulus
- Latent period
- Twitch
- Contraction
- Relaxation
- Summation
- Tetanic contraction
- Fatigue

Stimulation Artifact

- Blocking window
 - Turn off EMG channels when stimulation is on

FES Controller Design

Simulation Result of Tremor Suppression

- No ethical clearance on patient trial yet
Wearable Orthosis

- Wearable bands thin enough to be worn under sleeves
- Battery powered
- Microcontroller based
- Beyond the first step
 - False alarm
 - EEG

Questions & Comments

Wei Tech ANG
School of Mechanical & Aerospace Engineering
Nanyang Technological University
Singapore
wtang@ntu.edu.sg
http://www.ntu.edu.sg/mae/centres/rrc/biorobotics/biorobotics.htm