Computer Assisted Abdominal Surgery and NOTES

Prof. Luc Soler, Prof. Jacques Marescaux

University of Strasbourg, France

eate

In the past ...

IRCAD Strasbourg + Taiwain

More than 3.000 surgeons trained per year, 300 for robotics

From OP-Room to WebSurg

WebSurg: FREE → www.websurg.com

Future based onto known success

Computer Assisted Surgery

IRCAD R&D team

2009/2010 : 2 post-doctoral position (1500€/month)

Step 0: Medical Image

Medical Imaging system

DICOM Image → « Normalized » Numerical Format

Definition

Step 1: 3D Direct Visualisation

VR-Render: Direct visualisation

www.ircad.org

➤ 18.000 downloads
Since october 2008
Mac OS / Windows/ Linux

2D view of patient Axial/Frontal/Sagittal

+ 3D volume rendering FREE !!!

VR-Render: Direct visualisation

Sample of Direct Volume Rendering

VR-Render (IRCAD 2008)

Step 2: 3D Patient Modelling

3D Modeling of Patients

IRCAD R&D Modelling service

3D Modeling of Patients

IRCAD R&D Modelling service

More than 600 patients from 7 hospitals since 2005

LIMITS

- Interactive = Time processing
- Automatic : Not enough robust
- Not yet all organs

But

- Allreally efficient in routine
- Existing services such as Mevis Service

Step 3: Surgical Planning

Surgical Planning

- Virtual navigation
- Virtual surgical tool positioning
- Virtual organ resection
- Volume computations

Step 4: Surgical Simulation

Existing Surgical Simulators

©Surgical Science

©SimSurgery

- Good but not realistic enough rendering
- Good variety of possible Surgical gestures
- Automatic evaluation
- → BUT : Not Patient specific

HORUS: Ultrasonography simulator

Ultrasonographic guided procedure from patient CT-Scan

eats ircad eite

ULIS: Laparoscopic Simulator

IRCAD's Spin-off: Digital Trainers

eate ircad eite

Educative Surgical Simulators

Patient-specific laparoscopic simulator

SOFA: www.sofa-framework.org

Patient Specific Simulators

LIMITS

- Patient specific only in Morphology
- Do not include interstitial tissue or nerves
- Not mechacially patient specific

But

- Allready interresting for basic training
- Elastography: next step of patient specific

eate

Step 5: Augmented Reality

Augmented Reality

Real Views
Out In

Virtual
Views
Out In

Augmented Reality

Augmented Reality Views

Out

Data Fusion

Adrenal Surgery : JAMA November 2004

Liver Surgery, IRCAD 2008

Cirrhotic Liver Surgery, IRCAD 2009

Pancreas Surgery, IRCAD 2008

LIMITS

User dependent system
No reproductibility
No secured accuracy
Rigid registration for deformable organs

But

Really efficient with expert user A first answer to surgeons request

eats

Automated Augmented Reality

2 axes → Calibration & Registration

eats ircad

eats ircad eite

Rat number	1	2	3	4	5
System error (mm)	0.76 ± 0.06	0.85 ± 0.05	0.63 ± 0.04	0.82 ± 0.04	0.68 ± 0.05

Average system error of 0.75 mm

Breath movement simulation

Patient-specific organ motion simulation

Predictive simulation

eate

Breath simulation

Accuracy = 2 mm for liver (1.3 for kidneys)

eate

Automated Augmented rreality

LIMITS

- Not yet sufficient for abdominal organs
- Time process too long for tracking and analysis of organs mouvements

But

- Current system efficient for Radiotherapy and interventional radiology
- Next step: add better mechanical modelling and intraoperative image analysis

eats

Future Works

Real-time tracking of organ deformation Use of U.S. / MRI / Structured light / ...

Use new flexible tracking systems

Patient-specific deformation Automated Accuracy control

VR, AR & Robotics applied to NOTES

ANUBIS Project : 2005-2008

Natural Orifice Transluminale Endoscopic Surgery

No scare Surgery

First Human Transluminal Surgery

April 2007: Transvaginal Cholecystectomy

Why is it difficult to control endoscope?

Before ...

Now ...

Before ...

Now ...

Before ...

Now ...

METRIS

8 x 5 DOF Electromagnetic sensor coils in a flexible tube of max 2.5 mm Ø

The system provides:

- -Distance between 2 selected positions
- 3D Shape of the flexible tube in real-time

VR & AR: Simplest instrument control

3D View of the flexible endoscope

METRIS → 1mm of precision

In vivo evaluation of measure precision

en mm	METRIS 1	REGLE 1	METRIS 2	REGLE 2
MARQUE 1	7.1	8	5.2	6
MARQUE 2	15.2	16	13.4	14.3

VR & AR : Simplest instrument control

VR & AR : Simplest instrument control

Robotics: Simplest instrument control

Easy interactive flexible endoscope control

Robotics: Automatic instrument control

Easy Automated flexible endoscope control

Robotics: Automatic instrument control

WITHOUT Automatic Flexible endoscope control

Robotics: Automatic instrument control

WITH Automatic Flexible endoscope control

External Motors: Endoscope Robot

Single user Master Slaves NOTES Robot

LSIIT Robotic team of Michel de Mathelin, IRCAD/ Strasbourg university

External Motors: Endoscope Robot

Single user Master Slaves NOTES Robot

LSIIT Robotic team of Michel de Mathelin, IRCAD/ Strasbourg university

Conclusion

"Have Fun"

Russel Taylor
Winter School MRCIIS 2009

Thanks for your attention

Don't worry, I have experience. I'm not a surgeon but I work for one since 10 years