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Overview of the talk

• Classes of sparse graphs

tree-width, tree-depth, graphs with bounded expansion

• Structural properties of graphs with bounded expansion

orientations, coloring resuls, short-path queries

• Local parameters

locally bounded tree-width, locally bounded expansion

• Deciding graph properties

deciding MSOL and FOL properties for classes of sparse graphs

• Extensions to relational structures
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Tree-width

• a k-tree is obtained from Kk+1 by gluing along cliques of order k

• a partial k-tree is a subgraph of k-tree

• the tree-width tw(G) of a graph G is the smallest k such that

G is a partial k-tree

observe that ω(G) ≤ tw(G) + 1

• every forest has tree-width one

every outer-planar graph has tree-width two

+ →
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Tree-decomposition

• decomposition tree with nodes, each has a bag of vertices

• bags containing a single vertex form a subtree

• for each edge, there is a bag containing its both end-vertices

a

b c
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b ce

ab c
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• the width of a decomposition is its maximum bag size minus one

• the tree-width of a graph is the smallest width of its decomposition

• computable in linear time [Bodlaender, 1996]
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Tree-depth

• transitive closure T of a tree T

• the tree-depth td(G) of G is the smallest depth of a tree T

such that G is a subgraph of T

• observe that tw(G) ≤ td(G) − 1

• the ranking number of a graph

the minimal number of colors such that every path joining

two vertices of color i contains a vertex of color bigger than i
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Tree-width vs. tree-depth

• tree-depth is not bounded by a function of tree-width

td(Pn) = ⌈log2(n + 1)⌉

• bounded by a function of the tree-width and the order

td(G) ≤ (tw(G) + 1) log2 n

• related to the length of the longest path

td(G) ≤ ℓ(G) ≤ 2td(G)

• other characterizations of tree-depth by separations
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Graph minors, shallow minors

• a minor of a graph is obtained by contracting edges and

removing vertices and/or edges

• alternatively, remove some vertices and edges and then

contract connected subgraph to vertices

• d-shallow minor if the radii of contracted subgraphs are at most d
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Minor-closed classes of graphs

• a graph class is minor-closed if it contains minors of all its members

classes of graphs embeddable on a fixed surface

classes of graphs with bounded tree-width/tree-depth

• graph minor series by Robertson and Seymour

• every minor-closed class G has a finite list of obstructions,

i.e., a graph G ∈ G iff none of H1, . . . , Hk is a minor of G

• testing the existence of a minor is polynomial time solvable

• structural characterization of minor-closed classes of graphs

through clique-sums of graphs almost embedded on surfaces
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Classes of graphs with bounded expansion

• introduced by Nešetřil and Ossona de Mendéz in 2006

• maximum average degree

mad(G) = max
H⊆G

||H||

|H|

• let G∇d be the set of all d-shallow minors of G ∈ G

∇d(G) = max
G∈G∇d

mad(G)

grad (greatest reduced average density) with rank d of G

• a class G has bounded expansion if ∇d(G) is finite for every d
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Examples

• proper minor-closed classes of graphs

every minor-closed class of graphs is degenerate e.g., graphs on

surfaces, graphs with bounded tree-width

• classes of graphs with bounded maximum degree

the maximum degree of a d-shallow minor is at most ∆d

• proper topologically closed classes of graphs

graph classes excluding certain graphs as subdivisions
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Fraternal orientations

• consider a class G of graphs with bounded expansion

• every graph G ∈ G has an orientation with bounded in-degrees

• fraternal augmentation

transitive closure: ab ∧ bc ⇒ ac

fraternal closure: xz ∧ yz ⇒ xy

a b c x y

z

• the class of augmented graphs has again bounded expansion

• the process can be iterated
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Short path queries

• based on previous ideas, cf. Kowalik and Kurowski (2004)

• linear time precomputation, constant time query
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Dynamic short path queries

• the algorithm of Brodal and Fagerberg (1999) as black-box

orientations with maximum in-degree at most D(d)

for graphs G with mad(G) ≤ d can be mainted in time

O(log n) for edge insertions and O(1) for edge deletions

• dynamic ℓ-path query data structure for classes of graphs

with bounded expansion

O(n) build time, O(1) query time

O(logℓ n) insertion time and O(1) deletion time
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Bounded tree-depth coloring

• since ∇0(G) = mad(G) for G ∈ G is bounded,

the chromatic number of all graphs in G is bounded

• the chromatic number remains bounded for augmentations!

• bounded tree-depth coloring [Nešetřil and Ossona de Mendéz, 2006]

For every class G of graphs with bounded expansion and every k ,

there exists K such that every G ∈ G has a vertex coloring

with K colors such that every union of i ≤ k color classes

induces a subgraph of tree-depth at most i.

• generalization of tree-width coloring for minor-closed classes of

graphs of DeVos, Ding, Oporowski, Sanders, Reed, Seymour and

Vertigan (2004)
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Local parameters

• a class G of graphs has locally bounded tree-width,

if there exists f such that the d-neighborhood of

every vertex of G ∈ G has tree-width at most f(d)

In other words: the classes Gd formed by d-neighbor-

hoods of vertices of graphs in G have bounded tree-width

• G locally excludes a minor, if each Gd has a forbidden minor

• G has locally bounded expansion, if each G has bounded expansion

• introduced by Eppstein (2000), Dawar, Grohe and Kreutzer (2007),

Nešetřil and Ossona de Mendéz (2008), respectively
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Trichotomy of graph classes

• Trichotomy theorem [Nešetřil, Ossona de Mendéz, 2008]

lim
r→∞

lim sup
G∈G∇d

log ||G||

log |G|
∈ {0, 1, 2}

for every infinite class G of graphs.

• for graph classes with bounded expansion, the limit is always one

• if the limit is zero, then graphs in G have bounded number of edges

• if the limit is two, then G∇D contains all graphs for some D

• classes G with the limit equal to one are said to be nowhere dense
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Nowhere dense graph classes

lim
r→∞

lim sup
G∈G∇d

log ||G||

log |G|
= 1

• a lot properties similar to graph classes with bounded expansion

• their grads are bounded by O(nε)for every ε > 0

• they have augmentations with maximum in-degrees O(nε)

• they have low tree-depth colorings with O(nε) colors

• classes of locally nowhere dense graphs are again nowhere dense

20



Overview of the talk

• Classes of sparse graphs

• Structural properties of graphs with bounded expansion

• Local parameters

• Deciding graph properties

• Extensions to relational structures

21



MSOL properties

• monadic second order logic (MSOL) formula

quantification over elements and their sets

3-coloring:

∃V1, V2, V3, V1 ∪ V2 ∪ V3 = V such that ∀uv ∈ E ∧3
i=1 {u, v} 6⊆ Vi

• Theorem of Courcelle (1990)

For every class of graphs with bounded tree-width,

every MSOL property can be decided in linear time.

• extensions to counting, etc.
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FOL properties

• first order logic (FOL) formula

quantification only over elements ⇒ polynomial time decidable

example: a dominating set of at most 7 vertices, subgraph testing

• almost-linear time algorithm for classes of graphs

with locally bounded tree-width [Frick and Grohe, 2001]

for every ε > 0, there exists an algorithm running in time O(n1+ε)

• fixed parameter algorithms for minor-closed classes of graphs and

graphs locally excluding a minor [Dawar, Grohe, Kreutzer, 2007]
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Our algorithms

• For every FOL formula ϕ and every class G of graphs with bounded

expansion, there is a linear time algorithm deciding ϕ.

• For every FOL formula ϕ and every nowhere dense class G of

graphs, there is an almost-linear time algorithm deciding ϕ.

joint work with Zdeněk Dvořák and Robin Thomas
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Main tools for the algorithm

• Gaifman’s theorem [1982]

Every FOL formula is equivalent to a boolean combination of

formulas of the following type:

∃x1, . . . , xk (∧i,jd(xi, xj) > 2r ∧ ∧iϕi[Nr(xi)] )

locally decidable formulas

• evaluating formulas with free variables

dynamic programming based on low tree-depth colorings

with predicates relating the mutual position of free variables and

their colors
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Extension to relational structures

• for a relational structure (X,R), the Gaifman graph is a graph

with vertex set X where x, y ∈ X are adjacent if there are

in a common relation in R

• class of relational structure has bounded expansion / is nowhere

dense if the class of their Gaifman graphs has bounded

expansion / is nowhere dense

• structural results presented in the talk extend to this setting

our FOL algorithms work for classes of relational structures

with bounded expansion as well as those nowhere dense
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Thank you for your attention!
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