Cycles, Paths, Connectivity, and Diameter in Distance Graphs

Lucia Draque Penso (TU Ilmenau) Dieter Rautenbach (TU Ilmenau) Jayme Luiz Szwarcfiter (UFRJ)

For $n \in \mathbb{N}$ and $D \subseteq \mathbb{N}$, the circulant graph C_n^D has vertex set

$$V(C_n^D) = [0, n-1] = \{0, 1, \dots, n-1\}$$

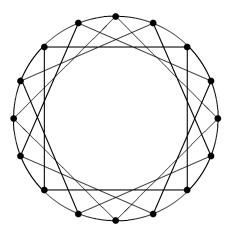
and edge set

$$E\left(C_n^D\right) = \{ij \mid i,j \in [0,n-1], \exists d \in D : j = (i \pm d) \mod n\}.$$

We may always assume that $\max(D) \leq \frac{n}{2}$.

Circulant Graph

$$n = 16, D = \{1, 4\}$$



Because of their simplicity, extendability, regularity, reliability,... the circulant graphs are interesting for many applications :

- Interconnection networks,
- local area computer networks,
- large area communication networks,
- parallel processing architectures,
- distributed computing,
- VLSI design,
- ...

Some surveys:

- Bermond et al., Distributed Loop Computer Networks
- Hwang, A survey on multi-loop networks
- Liu, Distributed Loop Computer Networks

The mathematical properties of circulant graphs are interesting and (very) well-studied.

- Cayley graphs of cyclic groups
- Cycles and paths
- Connectivity and diameter
- Isomorphism testing and recognition

• ...

For $n \in \mathbb{N}$ and $D \subseteq \mathbb{N}$, the distance graph P_n^D has vertex set

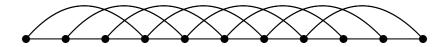
$$V\left(P_n^D\right) = [0, n-1]$$

and edge set

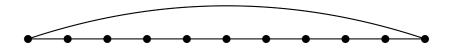
$$E\left(P_n^D\right) = \left\{ ij \mid i, j \in [0, n-1], j-i \in D \right\}.$$

We may always assume that $\max(D) \leq n-1$.

$n = 11, D = \{1, 3\}$



$n = 11, D = \{1, 10\}$



Distance Graph

$$P_n^D \subset C_{n+\max(D)}^D$$

$$P_n^D \subset C_{n+\max(D)}^D$$

The circulant graphs are exactly the regular distance graphs.

$$P_n^D \subset C_{n+\max(D)}^D$$

The circulant graphs are exactly the regular distance graphs.

▶ (Skip proof?)

$$P_n^D \subset C_{n+\max(D)}^D$$

The circulant graphs are exactly the regular distance graphs.

▶ (Skip proof?)

$$C_n^D \cong P_n^{D \cup \{n-d \mid d \in D\}}.$$

$$P_n^D \subset C_{n+\max(D)}^D$$

The circulant graphs are exactly the regular distance graphs.

(Skip proof?)

Proof: "
$$\Rightarrow$$
"
$$C_n^D \cong P_n^{D \cup \{n-d \mid d \in D\}}$$

" \Leftarrow " Let P_n^D be a regular distance graph. Let $D = \{d_1, d_2, \dots, d_k\}$ be such that

$$1 \leq d_1 < d_2 < \ldots < d_k \leq n-1.$$

 $\Rightarrow P_n^D$ is k-regular.

Distance Graph

Let $i \in [1, k]$. $\begin{array}{c} & k+1-i \\ & \ddots & \\ d_i-1 & d_i \\ \end{array} \begin{array}{c} & k+1-i \\ & n-1 \end{array}$ • 1 \Rightarrow $(d_i - 1) + d_{k+1-i} \leq n - 1$ $\Rightarrow d_i + d_{k+1-i} > n-1$ \Rightarrow $d_i + d_{k+1-i} = n \forall i \in [1, k]$ \Rightarrow $P_n^D \cong C_n^{\left\{d \in D \mid d \leq \frac{n}{2}\right\}}.$

Distance Graph

Let $i \in [1, k]$. i k - i• • • n-1 $d_i - 1 \quad d_i$ -... • \Rightarrow $(d_i - 1) + d_{k+1-i} \leq n - 1$ \Rightarrow $d_i + d_{k+1-i} > n-1$ \Rightarrow $d_i + d_{k+1-i} = n \forall i \in [1, k]$ \Rightarrow $P_n^D \cong C_n^{\left\{d \in D \mid d \le \frac{n}{2}\right\}}.$

We want to extend fundamental results concerning circulant graphs to distance graphs.

Until now mainly coloring problems were considered starting with Eggleton, Erdős, and Skilton who studied colorings of (infinite) distance graphs.

We will present results concerning:

- Long cycles and paths
- Connectivity and diameter
- Recognition

Combining results due to Boesch and Tindell, Burkard and Sandholzer, and Garfinkel, we obtain the following.

Theorem (BT, BS, G)

For $n \in \mathbb{N}$ and a finite set $D \subseteq \mathbb{N}$, the following statements are equivalent.

- (i) C_n^D is connected. (ii) $gcd(\{n\} \cup D) = 1$.
- (iii) C_n^D has a Hamiltonian cycle.

For a finite set $D \subseteq \mathbb{N}$, the following statements are equivalent.

- (i) There is a constant $c_1(D)$ such that for every $n \in \mathbb{N}$, the distance graph P_n^D has a component of order at least $n c_1(D)$.
- (ii) gcd(D) = 1.
- (iii) There is a constant $c_2(D)$ such that for every $n \in \mathbb{N}$, the distance graph P_n^D has a cycle of order at least $n c_2(D)$.

For a finite set $D \subseteq \mathbb{N}$, the following statements are equivalent.

- (i) There is a constant c₁(D) such that for every n ∈ N, the distance graph P^D_n has a component of order at least n − c₁(D).
- (ii) gcd(D) = 1.
- (iii) There is a constant $c_2(D)$ such that for every $n \in \mathbb{N}$, the distance graph P_n^D has a cycle of order at least $n c_2(D)$.

Proof Sketch:

For a finite set $D \subseteq \mathbb{N}$, the following statements are equivalent.

- (i) There is a constant $c_1(D)$ such that for every $n \in \mathbb{N}$, the distance graph P_n^D has a component of order at least $n c_1(D)$.
- (ii) gcd(D) = 1.
- (iii) There is a constant $c_2(D)$ such that for every $n \in \mathbb{N}$, the distance graph P_n^D has a cycle of order at least $n c_2(D)$.

```
Proof Sketch:
(i) \Rightarrow (ii): \exists i: i \text{ and } i+1 \text{ are in one component.}
```

For a finite set $D \subseteq \mathbb{N}$, the following statements are equivalent.

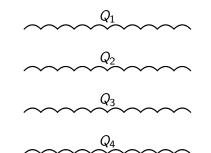
(i) There is a constant $c_1(D)$ such that for every $n \in \mathbb{N}$, the distance graph P_n^D has a component of order at least $n - c_1(D)$.

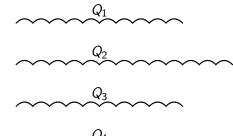
(ii)
$$gcd(D) = 1$$
.

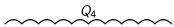
(iii) There is a constant $c_2(D)$ such that for every $n \in \mathbb{N}$, the distance graph P_n^D has a cycle of order at least $n - c_2(D)$.

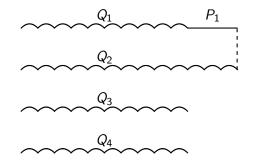
```
Proof Sketch:
(i) \Rightarrow (ii): \exists i: i \text{ and } i+1 \text{ are in one component.}
(iii) \Rightarrow (i): trivial.
```

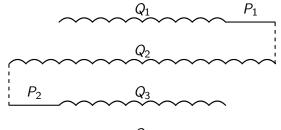
$$(ii) \Rightarrow (iii)$$

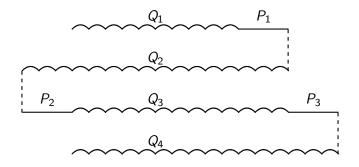


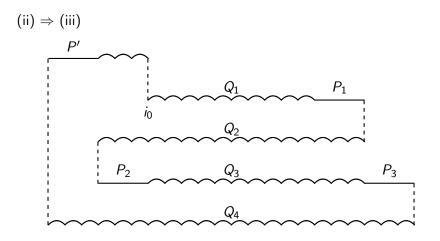




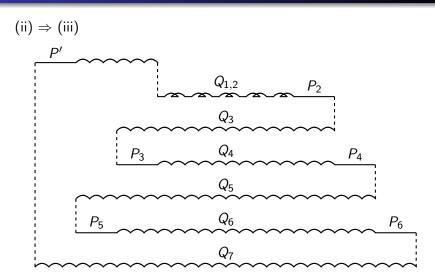








 \square



If all elements in $\{n\} \cup D$ are odd, then P_n^D is bipartite and every cycle misses at least one vertex.

If all elements in $\{n\} \cup D$ are odd, then P_n^D is bipartite and every cycle misses at least one vertex.

Conjecture

For a finite set $D \subseteq \mathbb{N}$, the following statements are equivalent. (i) gcd(D) = 1. (ii) There are two constants $c_3(D)$ and $c_4(D)$ such that for every

 ${\it n}\in\mathbb{N}$, the distance graph ${\it P}^{D}_{\it n}$ has a path

 $u_0 u_1 \ldots u_l$

of order at least $n - c_3(D)$ such that

 $u_j > u_i$ for all $0 \le i, j \le l$ with $j - i \ge c_4(D)$.

• For every $\epsilon > 0$, there is such a path of order at least

$$(1-\epsilon)n-c_5(D,\epsilon).$$

• If $d_1, d_2 \in \mathbb{N}$ are such that $\gcd(\{d_1, d_2\}) = 1$, then

 $P_{d_1+d_2+1}^{\{d_1,d_2\}}$

has a Hamiltonian path which begins at 0 and ends at $d_1 + d_2$. • If $D = \{6, 10, 15\} = \{2 \cdot 3, 2 \cdot 5, 3 \cdot 5\}$, then

0, 6, 12, 2, 8, 14, 4, 10, 16, 1, 7, 13, 3, 9, 15, 5, 11, 17

is a Hamiltonian path in P_{18}^D which begins at 0 and ends at 17.

Proposition (G)

 C_n^D is connected if and only if $gcd(\{n\} \cup D) = 1$.

Proposition (G)

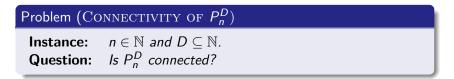
 C_n^D is connected if and only if $gcd(\{n\} \cup D) = 1$.

Proof: Since C_n^D is vertex-transitive, it is connected if and only if it contains a path from 0 to 1. This happens if and only if there are integers I and I_d for $d \in D$ such that $1 = In + \sum_{d \in D} I_d d$. \Box

Proposition (G)

 C_n^D is connected if and only if $gcd(\{n\} \cup D) = 1$.

Proof: Since C_n^D is vertex-transitive, it is connected if and only if it contains a path from 0 to 1. This happens if and only if there are integers I and I_d for $d \in D$ such that $1 = In + \sum_{d \in D} I_d d$. \Box



Proposition (G)

 C_n^D is connected if and only if $gcd(\{n\} \cup D) = 1$.

Proof: Since C_n^D is vertex-transitive, it is connected if and only if it contains a path from 0 to 1. This happens if and only if there are integers I and I_d for $d \in D$ such that $1 = In + \sum_{d \in D} I_d d$. \Box

Problem (CONNECTIVITY OF P_n^D)Instance: $n \in \mathbb{N}$ and $D \subseteq \mathbb{N}$.Question:Is P_n^D connected?

Conjecture

CONNECTIVITY OF P_n^D is NP-hard.

Clearly, P_n^D is connected if and only if for every $i \in [0, n-2]$, there are integers x_1, x_2, \ldots, x_l such that

$$|x_i| \in D \text{ for all } i \in [1, l], \qquad (1)$$

$$1 = \sum_{j=1}^{l} x_j, \text{ and} \qquad (2)$$

$$k$$

$$i + \sum_{j=1} x_j \in [0, n-1] \text{ for all } k \in [0, l].$$
 (3)

(1) and (2) are easy. What about (3)?

Problem (BOUNDED PARTIAL SUMS)

Instance: $x_0, x_1, x_2, ..., x_l \in \mathbb{Z}$ and $n \in \mathbb{N}$. **Question:** Is there a permutation $\pi \in S_l$ such that

$$x_0 + \sum_{j=1}^k x_{\pi(j)} \in [0, n-1]$$

for all $k \in [0, I]$?

Problem (BOUNDED PARTIAL SUMS)

Instance: $x_0, x_1, x_2, ..., x_l \in \mathbb{Z}$ and $n \in \mathbb{N}$. **Question:** Is there a permutation $\pi \in S_l$ such that

$$x_0 + \sum_{j=1}^k x_{\pi(j)} \in [0, n-1]$$

for all $k \in [0, I]$?

Proposition

BOUNDED PARTIAL SUMS is NP-complete.

Connectivity and Diameter

Theorem

Let
$$n, d_1, d_2 \in \mathbb{N}$$
 be such that $d_1 < d_2$. For $i \in [0, d_1 - 1]$, let

$$r_i = (id_2) \mod d_1$$
 and $s_i = (n-1-r_i) \mod d_1$.

Furthermore, for $i^* \in [1, d_1 - 1]$, let

$$egin{array}{rl} d_{i^*}^+ &=& \max\left\{r_i \mid i \in [0, i^* - 1]
ight\} \ \textit{and} \ d_{i^*}^- &=& \max\left\{s_{-i \ \textit{mod} \ d_1} \mid i \in [0, d_1 - i^* - 1]
ight\}. \end{array}$$

Finally, let

$$d^* = \max_{i^* \in [1, d_1 - 1]} \min\{d_{i^*}^+, d_{i^*}^-\}.$$

 ${\sf P}_n^{\{d_1,d_2\}}$ is connected if and only if $\gcd(\{d_1,d_2\})=1$ and

$$d^*+d_2\leq n-1.$$

Theorem

Let $n \in \mathbb{N}$ and $D \subseteq \mathbb{N}$ be such $\max(D) \leq n-1$. If $\max(D) \leq \frac{n-1}{2}$, then P_n^D is connected, if and only if gcd(D) = 1.

Theorem

Let $n \in \mathbb{N}$ and $D \subseteq \mathbb{N}$ be such $\max(D) \leq n-1$. If $\max(D) \leq \frac{n-1}{2}$, then P_n^D is connected, if and only if gcd(D) = 1.

▶ (Skip Proof?)

Theorem

Let
$$n \in \mathbb{N}$$
 and $D \subseteq \mathbb{N}$ be such $\max(D) \leq n-1$.
If $\max(D) \leq \frac{n-1}{2}$, then P_n^D is connected, if and only if $gcd(D) = 1$.

► (Skip Proof?)

Proof: Let $i \in [0, n-2]$. Let $n_d \in \mathbb{Z}$ for $d \in D$ be such that

$$1=\sum_{d\in D}n_d d.$$

We assume that $I = \sum_{d \in D} |n_d|$ is smallest possible.

Connectivity and Diameter

The following algorithm yields a path in P_n^D from *i* to i + 1.

$$\begin{array}{l} j \leftarrow 0;\\ \text{while } j < l \text{ do}\\ \text{if } \left(\left(i \leq \frac{n-1}{2} \right) \land \left(\exists d \in D : n_d > 0 \right) \right) \lor \left(\not\exists d \in D : n_d < 0 \right) \text{ then}\\ \text{Choose } d \in D \text{ with } n_d > 0;\\ i \leftarrow i + d;\\ n_d \leftarrow n_d - 1;\\ \text{else}\\ \text{Choose } d \in D \text{ with } n_d < 0;\\ i \leftarrow i - d;\\ n_d \leftarrow n_d + 1;\\ \text{end}\\ j \leftarrow j + 1;\\ \text{end} \end{array}$$

The exact calculation/minimization of the diameter of C_n^D is a difficult and well-studied problem even for |D| = 2.

Using Wong and Coppersmith's arguments (J. ACM, 1974), we obtain

$$\operatorname{diam}\left(P_n^D\right) \geq \frac{1}{2}\left(|D|!n\right)^{\frac{1}{|D|}} - |D| \text{ and}$$
$$\operatorname{diam}\left(P_{d^k}^{\{1,d,\dots,d^{k-1}\}}\right) \leq k(d-1).$$

Problem (SHORT PATH IN P_n^D)

Instance:	$n \in \mathbb{N}$, $D \subseteq \mathbb{N}$ and $l \in \mathbb{N}$.
Question:	Is there some $u \in [0, n-2]$ such that P_n^D contains
	a path of length at most l between u and $u + 1$?

Problem (SHORT PATH IN P_n^D)

Instance:	$n \in \mathbb{N}$, $D \subseteq \mathbb{N}$ and $l \in \mathbb{N}$.
Question:	Is there some $u \in [0, n-2]$ such that P_n^D contains
	a path of length at most l between u and $u + 1$?

Theorem

SHORT PATH IN P_n^D is NP-hard.

Problem (SHORT PATH IN P_n^D)

Instance:	$n \in \mathbb{N}$, $D \subseteq \mathbb{N}$ and $l \in \mathbb{N}$.
Question:	Is there some $u \in [0, n-2]$ such that P_n^D contains
	a path of length at most l between u and $u + 1$?

Theorem

SHORT PATH IN P_n^D is NP-hard.

► (Skip Proof?)

Proof: Let $x_1, x_2, \ldots, x_k \in \mathbb{Z}$ be an instance of PARTITION. Let

$$I = 2(k+1)$$

$$d = 2(k+1)\max(\{|x_1|, |x_2|, \dots, |x_k|\}) + 1$$

$$n = 2d^{3k+4} + 1$$

$$D = \{x_{i,j} \mid \dots\}$$

(n, D, l) is a "yes"-instance of SHORT PATH IN P_n^D if and only if x_1, x_2, \ldots, x_k is a "yes"-instance of PARTITION.

Connectivity and Diameter

	d^0	d^1	d^2	d^3	d^4	d^5	d^6	d^7	d^8	 d^{3k+2}	d^{3k+3}
<i>x</i> _{1,1}		<i>x</i> ₁	1	1							
<i>x</i> _{1,2}				1		1					
<i>x</i> _{1,3}			1		1						
<i>x</i> _{1,4}		x_1			1	1					
<i>x</i> _{2,1}		<i>x</i> ₂				1	1				
<i>x</i> _{2,2}							1		1		
<i>x</i> _{2,3}						1		1			
<i>x</i> _{2,4}		<i>x</i> ₂						1	1		
$x_{k+1,1}$	1									 1	1
$egin{array}{c} x_{k+1,1} \ x_{k+1,2} \end{array}$			1								1

LDP-DR-JLS Distance Graphs

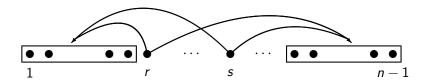
We only consider $D = \{d_1, d_2, \ldots, d_k\}$ with

$$1 = d_1 < d_2 < \ldots < d_k \leq \frac{n-1}{2}.$$

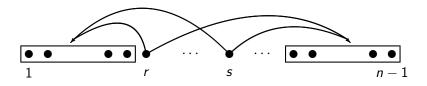
Proposition

If D is as above, then P_n^D has $2(d_{i+1} - d_i)$ vertices of degree k + i for $0 \le i \le k - 1$. Hence D is uniquely determined by the degree sequence of P_n^D .

An index of ambiguity of P_n^D .



An index of ambiguity of P_n^D .



Theorem

Let D be as above. If P_n^D has l indices of ambiguity, then D and the ordering of its vertices can be obtained from P_n^D given up to isomorphism in time $O(4^l n^2)$.

Thank you for your attention!