Graph Partitioning and Traffic Grooming with Bounded Degree Request Graph

Zhentao Li

School of Computer Science - McGill University (Montreal, Canada)

Ignasi Sau

Mascotte Project - CNRS/INRIA/UNSA (Sophia-Antipolis, France) Applied Mathematics IV Department - UPC (Barcelona, Catalonia)

35th International Workshop on Graph-Theoretic Concepts in Computer Science (WG) Montpellier - June 25th, 2009

イロン イボン イモン イモン 三日

Outline of the talk

- Motivation: traffic grooming
- 2 Statement of the problem
- 3) The parameter $M(C, \Delta)$
- Previous work (Muñoz and S., WG 2008)

Our results

- Case Δ = 3, C = 4
- Case $\Delta \ge 4$ even
- Case $\Delta \ge 5$ odd
- Improved lower bound when $\Delta \equiv C \pmod{2C}$

Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Next section is...

1 Motivation: traffic grooming

- 2 Statement of the problem
- 3 The parameter $M(C, \Delta)$
- Previous work (Muñoz and S., WG 2008)
- 5 Our results
- 6 Conclusions

WDM (Wavelength Division Multiplexing) networks

- 1 wavelength (or frequency) = up to 40 Gb/s
- 1 fiber = hundreds of wavelengths = Tb/s

• Idea:

Traffic grooming consists in packing low-speed traffic flows into higher speed streams

 \longrightarrow we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

• Objectives:

- Better use of bandwidth
- Reduce the equipment cost (mostly given by electronics)

- WDM (Wavelength Division Multiplexing) networks
 - 1 wavelength (or frequency) = up to 40 Gb/s
 - 1 fiber = hundreds of wavelengths = Tb/s

• Idea:

Traffic grooming consists in packing low-speed traffic flows into higher speed streams

 \longrightarrow we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

• Objectives:

- Better use of bandwidth
- Reduce the equipment cost (mostly given by electronics)

- WDM (Wavelength Division Multiplexing) networks
 - 1 wavelength (or frequency) = up to 40 Gb/s
 - 1 fiber = hundreds of wavelengths = Tb/s

• Idea:

Traffic grooming consists in packing low-speed traffic flows into higher speed streams

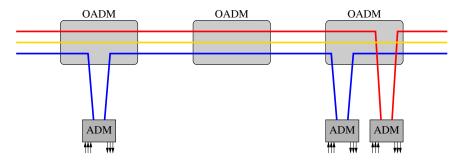
 \longrightarrow we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

• Objectives:

- Better use of bandwidth
- Reduce the equipment cost (mostly given by electronics)

ADM and OADM

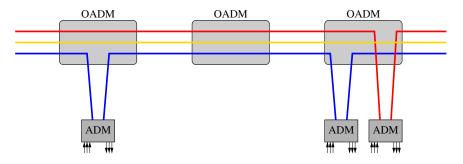
- OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- **ADM** (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength



 \rightarrow we want to minimize the number of ADMs

ADM and OADM

- OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- **ADM** (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength



 \rightarrow we want to minimize the number of ADMs

(a) < (a) < (b) < (b)

- **Request** (*i*, *j*): two vertices (*i*, *j*) that want to exchange (low-speed) traffic
- Grooming factor C:

 $C = \frac{Capacity of a wavelength}{Capacity used by a request}$

Example:

Capacity of one wavelength = 2400 Mb/sCapacity used by a request = 600 Mb/s \Rightarrow C = 4

- **Request** (*i*, *j*): two vertices (*i*, *j*) that want to exchange (low-speed) traffic
- Grooming factor C:

 $\textit{C} = \frac{\text{Capacity of a wavelength}}{\text{Capacity used by a request}}$

Example:

Capacity of one wavelength = 2400 Mb/sCapacity used by a request = 600 Mb/s \Rightarrow C = 4

- **Request** (*i*, *j*): two vertices (*i*, *j*) that want to exchange (low-speed) traffic
- Grooming factor C:

 $\textit{C} = \frac{\text{Capacity of a wavelength}}{\text{Capacity used by a request}}$

Example:

Capacity of one wavelength = 2400 Mb/sCapacity used by a request = 600 Mb/s \Rightarrow C = 4

- **Request** (*i*, *j*): two vertices (*i*, *j*) that want to exchange (low-speed) traffic
- Grooming factor C:

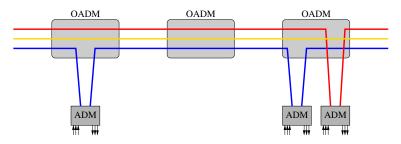
 $\textit{C} = \frac{\text{Capacity of a wavelength}}{\text{Capacity used by a request}}$

Example:

Capacity of one wavelength = 2400 Mb/sCapacity used by a request = 600 Mb/s \Rightarrow C = 4

ADM and OADM

- OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength



• Idea: Use an ADM only at the endpoints of a request (lightpaths) in order to save as many ADMs as possible

Model:

Topology	\rightarrow	graph G
Request set	\rightarrow	graph <i>R</i>
Grooming factor	\rightarrow	integer C
Requests in a wavelength	\rightarrow	edges in a subgraph of R
ADM in a wavelength	\rightarrow	vertex in a subgraph of <i>R</i>

• We study the case when $G = \overrightarrow{C}_n$ (unidirectional ring)

We assume that the requests are symmetric

Model:

Topology	\rightarrow	graph G
Request set	\rightarrow	graph <i>R</i>
Grooming factor	\rightarrow	integer C
Requests in a wavelength	\rightarrow	edges in a subgraph of R
ADM in a wavelength	\rightarrow	vertex in a subgraph of R

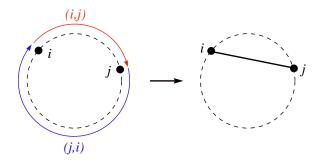
• We study the case when $G = \overrightarrow{C}_n$ (unidirectional ring)

We assume that the requests are symmetric

Model:

- Topology \rightarrow graph GRequest set \rightarrow graph RGrooming factor \rightarrow integer CRequests in a wavelength \rightarrow edges in a subgraph of RADM in a wavelength \rightarrow vertex in a subgraph of R
- We study the case when $G = \overrightarrow{C}_n$ (unidirectional ring)
- We assume that the requests are symmetric

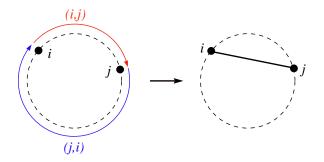
• **Symmetric requests**: whenever there is the request (*i*, *j*), there is also the request (*j*, *i*).



- W.I.o.g. requests (*i*, *j*) and (*j*, *i*) are in the same subgraph
 → each pair of symmetric requests induces load 1
 - ightarrow grooming factor $C \Leftrightarrow$ each subgraph has $\leq C$ edges.

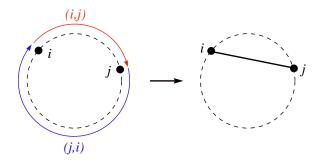
(日) (四) (三) (三)

• **Symmetric requests**: whenever there is the request (*i*, *j*), there is also the request (*j*, *i*).



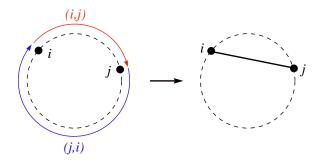
W.I.o.g. requests (*i*, *j*) and (*j*, *i*) are in the same subgraph
 → each pair of symmetric requests induces load 1
 → grooming factor C ⇔ each subgraph has ≤ C edges.

• Symmetric requests: whenever there is the request (*i*, *j*), there is also the request (*j*, *i*).



- W.I.o.g. requests (i, j) and (j, i) are in the same subgraph \rightarrow each pair of symmetric requests induces load 1
 - ightarrow grooming factor $C \Leftrightarrow$ each subgraph has $\leq C$ edges.

• Symmetric requests: whenever there is the request (*i*, *j*), there is also the request (*j*, *i*).



- W.I.o.g. requests (i, j) and (j, i) are in the same subgraph
 - \rightarrow each pair of symmetric requests induces load 1
 - \rightarrow grooming factor $C \Leftrightarrow$ each subgraph has $\leq C$ edges.

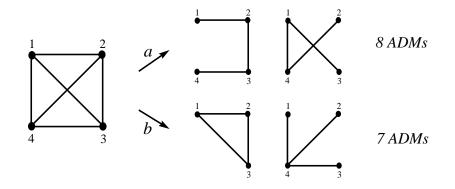
Traffic Grooming in Unidirectional Rings

- Input A cycle *C_n* on *n* nodes (network); An *undirected* graph *R* on *n* nodes (request set); A grooming factor *C*.
- **Output** A partition of E(R) into subgraphs R_1, \ldots, R_W with $|E(R_i)| \le C$, i=1...,W.

Objective Minimize $\sum_{\omega=1}^{W} |V(R_{\omega})|$.

<ロ> <四> <四> <三> <三> <三> <三> <三

Example: n = 4, $R = K_4$, and C = 3



Motivation: traffic grooming

- 2 Statement of the problem
 - 3 The parameter $M(C, \Delta)$
 - Previous work (Muñoz and S., WG 2008)
 - 5 Our results
- 6 Conclusions

- Non-exhaustive previous work (a lot!):
 - Bermond, Coudert, and Muñoz ONDM 2003.
 - Bermond and Coudert ICC 2003.
 - Bermond, Braud, and Coudert SIROCCO 2005.
 - Bermond et al. SIAM J. on Disc. Maths 2005.
 - Flammini, Moscardelli, Shalom and Zaks ISAAC 2005.
 - Flammini, Monaco, Moscardelli, Shalom and Zaks WG 2006.
 - Amini, Pérennes and S. ISAAC 2007, TCS 2009.
 - Bermond, Muñoz, and S. Manusc. 2009.
 - Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- Manusc. 2009.
- In all of them: place ADMs at nodes for a fixed request graph.
 → placement of ADMs a posteriori.
- New model [Muñoz and S., WG 2008]: place the ADMs at nodes such that the network can support any request graph with maximum degree at most Δ.

→ placement of ADMs a priori.

- Non-exhaustive previous work (a lot!):
 - Bermond, Coudert, and Muñoz ONDM 2003.
 - Bermond and Coudert ICC 2003.
 - Bermond, Braud, and Coudert SIROCCO 2005.
 - Bermond et al. SIAM J. on Disc. Maths 2005.
 - Flammini, Moscardelli, Shalom and Zaks ISAAC 2005.
 - Flammini, Monaco, Moscardelli, Shalom and Zaks WG 2006.
 - Amini, Pérennes and S. ISAAC 2007, TCS 2009.
 - Bermond, Muñoz, and S. Manusc. 2009.
 - Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- Manusc. 2009.
- In all of them: place ADMs at nodes for a fixed request graph.

 → placement of ADMs a posteriori.
- New model [Muñoz and S., WG 2008]: place the ADMs at nodes such that the network can support any request graph with maximum degree at most Δ.

 \rightarrow placement of ADMs **a priori**.

- Non-exhaustive previous work (a lot!):
 - Bermond, Coudert, and Muñoz ONDM 2003.
 - Bermond and Coudert ICC 2003.
 - Bermond, Braud, and Coudert SIROCCO 2005.
 - Bermond et al. SIAM J. on Disc. Maths 2005.
 - Flammini, Moscardelli, Shalom and Zaks ISAAC 2005.
 - Flammini, Monaco, Moscardelli, Shalom and Zaks WG 2006.
 - Amini, Pérennes and S. ISAAC 2007, TCS 2009.
 - Bermond, Muñoz, and S. Manusc. 2009.
 - Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- Manusc. 2009.
- In all of them: place ADMs at nodes for a fixed request graph.
 → placement of ADMs a posteriori.
- New model [Muñoz and S., WG 2008]: place the ADMs at nodes such that the network can support any request graph with maximum degree at most Δ.

 \rightarrow placement of ADMs **a priori**.

13

- Non-exhaustive previous work (a lot!):
 - Bermond, Coudert, and Muñoz ONDM 2003.
 - Bermond and Coudert ICC 2003.
 - Bermond, Braud, and Coudert SIROCCO 2005.
 - Bermond et al. SIAM J. on Disc. Maths 2005.
 - Flammini, Moscardelli, Shalom and Zaks ISAAC 2005.
 - Flammini, Monaco, Moscardelli, Shalom and Zaks WG 2006.
 - Amini, Pérennes and S. ISAAC 2007, TCS 2009.
 - Bermond, Muñoz, and S. Manusc. 2009.
 - Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- Manusc. 2009.
- In all of them: place ADMs at nodes for a fixed request graph.
 → placement of ADMs a posteriori.
- New model [Muñoz and S., WG 2008]: place the ADMs at nodes such that the network can support any request graph with maximum degree at most Δ.

→ placement of ADMs a priori.

・ロン ・四 と ・ ヨン ・ ヨ

- Non-exhaustive previous work (a lot!):
 - Bermond, Coudert, and Muñoz ONDM 2003.
 - Bermond and Coudert ICC 2003.
 - Bermond, Braud, and Coudert SIROCCO 2005.
 - Bermond et al. SIAM J. on Disc. Maths 2005.
 - Flammini, Moscardelli, Shalom and Zaks ISAAC 2005.
 - Flammini, Monaco, Moscardelli, Shalom and Zaks WG 2006.
 - Amini, Pérennes and S. ISAAC 2007, TCS 2009.
 - Bermond, Muñoz, and S. Manusc. 2009.
 - Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- Manusc. 2009.
- In all of them: place ADMs at nodes for a fixed request graph.
 → placement of ADMs a posteriori.
- New model [Muñoz and S., WG 2008]: place the ADMs at nodes such that the network can support any request graph with maximum degree at most Δ.

 \rightarrow placement of ADMs **a priori**.

13

Statement of the "new" problem

Traffic Grooming in Unidirectional Rings with Bounded-Degree Request Graph

Input An integer n (size of the ring); An integer C (grooming factor); An integer Δ (maximum degree).

Output An assignment of A(v) ADMs to each $v \in V(C_n)$, in such a way that for any graph R on n nodes with **maximum degree at most** Δ , there exists a partition of E(R) into subgraphs R_1, \ldots, R_W s.t.:

> (i) $|E(B_i)| \le C$ for all i = 1, ..., W; and (ii) each $v \in V(C_n)$ is in $\le A(v)$ subgraphs.

Objective Minimize $\sum_{v \in V(C_n)} A(v)$, and the optimum is denoted $A(n, C, \Delta)$.

Next section is...

- Motivation: traffic grooming
- 2 Statement of the problem
- 3 The parameter $M(C, \Delta)$
 - Previous work (Muñoz and S., WG 2008)
- 5 Our results
- 6 Conclusions

Let $M(C, \Delta)$ be the smallest positive number M such that, for all $n \ge 1$, the inequality $A(n, C, \Delta) \le Mn$ holds.

- Due to symmetry, it can be seen that A(v) is the same for all nodes v, except for a subset whose size is independent of n.
- $M(C, \Delta)$ is always an integer.
- Equivalently:

 $M(C, \Delta)$ is the smallest integer M such that the edges of **any** graph with maximum degree at most Δ can be partitioned into subgraphs with at most C edges, in such a way that each vertex appears in at most M subgraphs.

• In the sequel we focus on determining $M(C, \Delta)$.

Let $M(C, \Delta)$ be the smallest positive number M such that, for all $n \ge 1$, the inequality $A(n, C, \Delta) \le Mn$ holds.

- Due to symmetry, it can be seen that A(v) is the same for all nodes v, except for a subset whose size is independent of n.
- $M(C, \Delta)$ is always an integer.
- Equivalently:

 $M(C, \Delta)$ is the smallest integer M such that the edges of **any** graph with maximum degree at most Δ can be partitioned into subgraphs with at most C edges, in such a way that each vertex appears in at most M subgraphs.

• In the sequel we focus on determining $M(C, \Delta)$.

< ∃⇒

Let $M(C, \Delta)$ be the smallest positive number M such that, for all $n \ge 1$, the inequality $A(n, C, \Delta) \le Mn$ holds.

- Due to symmetry, it can be seen that A(v) is the same for all nodes v, except for a subset whose size is independent of n.
- $M(C, \Delta)$ is always an integer.
- Equivalently:

 $M(C, \Delta)$ is the smallest integer *M* such that the edges of **any** graph with maximum degree at most Δ can be partitioned into subgraphs with at most *C* edges, in such a way that each vertex appears in at most *M* subgraphs.

• In the sequel we focus on determining $M(C, \Delta)$.

◆夏→

Let $M(C, \Delta)$ be the smallest positive number M such that, for all $n \ge 1$, the inequality $A(n, C, \Delta) \le Mn$ holds.

- Due to symmetry, it can be seen that A(v) is the same for all nodes v, except for a subset whose size is independent of n.
- $M(C, \Delta)$ is always an integer.
- Equivalently:

 $M(C, \Delta)$ is the smallest integer *M* such that the edges of **any** graph with maximum degree at most Δ can be partitioned into subgraphs with at most *C* edges, in such a way that each vertex appears in at most *M* subgraphs.

• In the sequel we focus on determining $M(C, \Delta)$.

Let $M(C, \Delta)$ be the smallest positive number M such that, for all $n \ge 1$, the inequality $A(n, C, \Delta) \le Mn$ holds.

- Due to symmetry, it can be seen that A(v) is the same for all nodes v, except for a subset whose size is independent of n.
- $M(C, \Delta)$ is always an integer.
- Equivalently:

 $M(C, \Delta)$ is the smallest integer *M* such that the edges of **any** graph with maximum degree at most Δ can be partitioned into subgraphs with at most *C* edges, in such a way that each vertex appears in at most *M* subgraphs.

• In the sequel we focus on determining $M(C, \Delta)$.

- Let G_△ be the class of (simple undirected) graphs with maximum degree at most △.
- For G ∈ G_Δ, let P_C(G) be the set of partitions of E(G) into subgraphs with at most C edges.
- For $P \in \mathcal{P}_{\mathcal{C}}(G)$, let

 $occ(P) = \max_{v \in V(G)} |\{B \in P : v \in B\}|$

• And then,

$$M(C, \Delta) = \max_{G \in \mathcal{G}_{\Delta}} \left(\min_{P \in \mathcal{P}_{C}(G)} occ(P) \right)$$

If the request graph is restricted to belong to a subclass of graphs
 C ⊆ G_Δ, then the corresponding positive integer is denoted by
 M(C, Δ, C).

- Let G_Δ be the class of (simple undirected) graphs with maximum degree at most Δ.
- For G ∈ G_Δ, let P_C(G) be the set of partitions of E(G) into subgraphs with at most C edges.

```
• For P \in \mathcal{P}_{\mathcal{C}}(G), let
```

 $occ(P) = \max_{v \in V(G)} |\{B \in P : v \in B\}|$

• And then,

$$M(C, \Delta) = \max_{G \in \mathcal{G}_{\Delta}} \left(\min_{P \in \mathcal{P}_{C}(G)} occ(P) \right)$$

- Let G_Δ be the class of (simple undirected) graphs with maximum degree at most Δ.
- For G ∈ G_Δ, let P_C(G) be the set of partitions of E(G) into subgraphs with at most C edges.
- For $P \in \mathcal{P}_{\mathcal{C}}(G)$, let

 $occ(P) = \max_{v \in V(G)} |\{B \in P : v \in B\}|$

• And then,

$$M(C,\Delta) = \max_{G \in \mathcal{G}_{\Delta}} \left(\min_{P \in \mathcal{P}_{C}(G)} occ(P) \right)$$

- Let G_Δ be the class of (simple undirected) graphs with maximum degree at most Δ.
- For G ∈ G_Δ, let P_C(G) be the set of partitions of E(G) into subgraphs with at most C edges.
- For $P \in \mathcal{P}_{\mathcal{C}}(G)$, let

 $occ(P) = \max_{v \in V(G)} |\{B \in P : v \in B\}|$

• And then,

$$M(C, \Delta) = \max_{G \in \mathcal{G}_{\Delta}} \left(\min_{P \in \mathcal{P}_{C}(G)} occ(P) \right)$$

- Let G_Δ be the class of (simple undirected) graphs with maximum degree at most Δ.
- For G ∈ G_Δ, let P_C(G) be the set of partitions of E(G) into subgraphs with at most C edges.
- For $P \in \mathcal{P}_{\mathcal{C}}(G)$, let

 $occ(P) = \max_{v \in V(G)} |\{B \in P : v \in B\}|$

• And then,

$$M(C,\Delta) = \max_{G \in \mathcal{G}_{\Delta}} \left(\min_{P \in \mathcal{P}_{C}(G)} occ(P) \right)$$

Next section is...

- Motivation: traffic grooming
- 2 Statement of the problem
- 3 The parameter $M(C, \Delta)$
- Previous work (Muñoz and S., WG 2008)
- 5 Our results
- 6 Conclusions

W.I.o.g. we can assume that *R* has regular degree △.

- $C \ge C' \Rightarrow M(C, \Delta) \le M(C', \Delta)$ for all $\Delta \ge 1$.
- $\Delta \ge \Delta' \Rightarrow M(C, \Delta) \ge M(C, \Delta')$ for all $C \ge 1$.
- Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.

Proposition (Lower Bound) $M(C, \Delta) \ge \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$ for all $C, \Delta \ge 1$.

- W.I.o.g. we can assume that *R* has regular degree △.
- $C \ge C' \Rightarrow M(C, \Delta) \le M(C', \Delta)$ for all $\Delta \ge 1$.
- $\Delta \ge \Delta' \Rightarrow M(C, \Delta) \ge M(C, \Delta')$ for all $C \ge 1$.
- Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.

Proposition (Lower Bound) $M(C, \Delta) \ge \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$ for all $C, \Delta \ge 1$.

W.I.o.g. we can assume that *R* has regular degree △.

- $C \ge C' \Rightarrow M(C, \Delta) \le M(C', \Delta)$ for all $\Delta \ge 1$.
- $\Delta \geq \Delta' \Rightarrow M(C, \Delta) \geq M(C, \Delta')$ for all $C \geq 1$.

• Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.

Proposition (Lower Bound) $M(C, \Delta) \ge \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$ for all $C, \Delta \ge 1$.

- W.I.o.g. we can assume that *R* has regular degree △.
- $C \ge C' \Rightarrow M(C, \Delta) \le M(C', \Delta)$ for all $\Delta \ge 1$.
- $\Delta \geq \Delta' \Rightarrow M(C, \Delta) \geq M(C, \Delta')$ for all $C \geq 1$.
- Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.

Proposition (Lower Bound) $M(C, \Delta) \ge \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil \text{ for all } C, \Delta \ge 1.$

イロン イロン イヨン イヨン 三日

- W.I.o.g. we can assume that *R* has regular degree △.
- $C \ge C' \Rightarrow M(C, \Delta) \le M(C', \Delta)$ for all $\Delta \ge 1$.
- $\Delta \geq \Delta' \Rightarrow M(C, \Delta) \geq M(C, \Delta')$ for all $C \geq 1$.
- Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.

Proposition (Lower Bound)

 $M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$ for all $C, \Delta \geq 1$.

<ロ> <同> <同> < 同> < 同> < 三> < 三>

•
$$\Delta = 1$$
: $M(C, 1) = 1$ for all C (trivial).

- $\Delta = 2$: M(C, 2) = 2 for all C (not difficult).
- $\Delta = 3$: Cubic graphs. First "interesting" case:
 - If C ≤ 3, then M(C, 3) = 3.
 - If C ≥ 5, then M(C, 3) = 2.
 - Question left open in [Muñoz and S., WG 2008]:
 M(3, 4) = 2 or 3 ???

•
$$\Delta = 1$$
: $M(C, 1) = 1$ for all C (trivial).

- $\Delta = 2$: M(C, 2) = 2 for all C (not difficult).
- $\Delta = 3$: Cubic graphs. First "interesting" case:
 - If $C \le 3$, then M(C, 3) = 3.
 - If C ≥ 5, then M(C, 3) = 2.
 - Question left open in [Muñoz and S., WG 2008]:
 M(3,4) = 2 or 3 ???

•
$$\Delta = 1$$
: $M(C, 1) = 1$ for all C (trivial).

- $\Delta = 2$: M(C, 2) = 2 for all C (not difficult).
- $\Delta = 3$: Cubic graphs. First "interesting" case:
 - If $C \leq 3$, then M(C, 3) = 3.
 - If $C \ge 5$, then M(C, 3) = 2.
 - Question left open in [Muñoz and S., WG 2008]
 M(3,4) = 2 or 3 ???

(ロ) (四) (E) (E) (E) (E)

•
$$\Delta = 1$$
: $M(C, 1) = 1$ for all C (trivial).

- $\Delta = 2$: M(C, 2) = 2 for all C (not difficult).
- $\Delta = 3$: Cubic graphs. First "interesting" case:
 - If $C \leq 3$, then M(C,3) = 3.
 - If $C \ge 5$, then M(C, 3) = 2.
 - Question left open in [Muñoz and S., WG 2008]:
 M(3,4) = 2 or 3 ???

(ロ) (四) (E) (E) (E) (E)

- $\Delta = 1$: M(C, 1) = 1 for all C (trivial).
- $\Delta = 2$: M(C, 2) = 2 for all C (not difficult).
- $\Delta = 3$: Cubic graphs. First "interesting" case:
 - If $C \leq 3$, then M(C,3) = 3.
 - If $C \ge 5$, then M(C, 3) = 2.
 - Question left open in [Muñoz and S., WG 2008]:
 M(3,4) = 2 or 3 ???

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の

Next section is...

- Motivation: traffic grooming
- 2 Statement of the problem
- 3 The parameter $M(C, \Delta)$
 - Previous work (Muñoz and S., WG 2008)

5

Our results

- Case $\Delta = 3$, C = 4
- Case $\Delta \ge 4$ even
- Case $\Delta \ge 5$ odd
- Improved lower bound when $\Delta \equiv C \pmod{2C}$

6 Conclusions

Next subsection is...

- Motivation: traffic grooming
- 2 Statement of the problem
- 3 The parameter $M(C, \Delta)$
 - Previous work (Muñoz and S., WG 2008)
- 5 Our results
 - Case $\Delta = 3$, C = 4
 - Case $\Delta \ge 4$ even
 - Case $\Delta \ge 5$ odd
 - Improved lower bound when $\Delta \equiv C \pmod{2C}$

6 Conclusions

Case $\Delta = 3$, C = 4

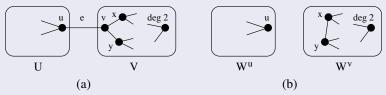
Proposition

M(4,3) = 2.

Idea of the proof.

(in fact, we prove a slightly stronger result)

- Let G be a minimal counterexample (|V(G)| is minimal).
- If *G* has no bridges, then it can be "easily" proved.
- If G has a bridge e, then the property is true for U and V.



• Finally, we merge "carefully" the partitions of *U* and *V* to obtain a partition of $G \Rightarrow$ contradiction.

Next subsection is...

- Motivation: traffic grooming
- 2 Statement of the problem
- 3 The parameter $M(C, \Delta)$
 - Previous work (Muñoz and S., WG 2008)
- 5 Our results
 - Case $\Delta = 3$, C = 4
 - Case $\Delta \ge 4$ even
 - Case $\Delta \ge 5$ odd
 - Improved lower bound when $\Delta \equiv C \pmod{2C}$

6 Conclusions

Theorem

Let
$$\Delta \geq 4$$
 be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

- The lower bound follows from [Muñoz and S., WG 2008].
- Construction:
 - Orient the edges of G = (V, E) in an Eulerian tour.
 - Assign to each vertex v ∈ V its ∆/2 out-edges, and partition them into [^Δ/_{2C}] stars with (at most) C edges centered at v.
 - Each vertex v appears as a leaf in stars centered at other vertices exactly $\Delta \Delta/2 = \Delta/2$ times.
 - The number of occurrences of each vertex in this partition is

$$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C} \right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.$$

Theorem

Let
$$\Delta \geq 4$$
 be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

- The lower bound follows from [Muñoz and S., WG 2008].
- Construction:
 - Orient the edges of G = (V, E) in an Eulerian tour.
 - Assign to each vertex v ∈ V its Δ/2 out-edges, and partition them into ^Δ/_{2C} stars with (at most) C edges centered at v.
 - Each vertex v appears as a leaf in stars centered at other vertices exactly Δ – Δ/2 = Δ/2 times.
 - The number of occurrences of each vertex in this partition is

$$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C} \right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$$

Theorem

Let
$$\Delta \geq 4$$
 be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

- The lower bound follows from [Muñoz and S., WG 2008].
- Construction:
 - Orient the edges of G = (V, E) in an Eulerian tour.
 - Assign to each vertex v ∈ V its Δ/2 out-edges, and partition them into ^Δ/_{2C} stars with (at most) C edges centered at v.
 - Each vertex v appears as a leaf in stars centered at other vertices exactly $\Delta \Delta/2 = \Delta/2$ times.
 - The number of occurrences of each vertex in this partition is

$$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C} \right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.$$

Theorem

Let
$$\Delta \geq 4$$
 be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

- The lower bound follows from [Muñoz and S., WG 2008].
- Construction:
 - Orient the edges of G = (V, E) in an Eulerian tour.
 - Assign to each vertex v ∈ V its Δ/2 out-edges, and partition them into ^Δ/_{2C} stars with (at most) C edges centered at v.
 - Each vertex ν appears as a leaf in stars centered at other vertices exactly Δ − Δ/2 = Δ/2 times.
 - The number of occurrences of each vertex in this partition is

$$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C} \right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$$

Theorem

Let
$$\Delta \geq 4$$
 be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

- The lower bound follows from [Muñoz and S., WG 2008].
- Construction:
 - Orient the edges of G = (V, E) in an Eulerian tour.
 - Assign to each vertex v ∈ V its Δ/2 out-edges, and partition them into ^Δ/_{2C} stars with (at most) C edges centered at v.
 - Each vertex *ν* appears as a leaf in stars centered at other vertices exactly Δ − Δ/2 = Δ/2 times.
 - The number of occurrences of each vertex in this partition is

$$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C} \right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.$$

Theorem

Let
$$\Delta \geq 4$$
 be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

- The lower bound follows from [Muñoz and S., WG 2008].
- Construction:
 - Orient the edges of G = (V, E) in an Eulerian tour.
 - Assign to each vertex v ∈ V its Δ/2 out-edges, and partition them into ^Δ/_{2C} stars with (at most) C edges centered at v.
 - Each vertex *ν* appears as a leaf in stars centered at other vertices exactly Δ − Δ/2 = Δ/2 times.
 - The number of occurrences of each vertex in this partition is

$$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C} \right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.$$

Theorem

Let
$$\Delta \geq 4$$
 be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

- The lower bound follows from [Muñoz and S., WG 2008].
- Construction:
 - Orient the edges of G = (V, E) in an Eulerian tour.
 - Assign to each vertex v ∈ V its Δ/2 out-edges, and partition them into ^Δ/_{2C} stars with (at most) C edges centered at v.
 - Each vertex *ν* appears as a leaf in stars centered at other vertices exactly Δ − Δ/2 = Δ/2 times.
 - The number of occurrences of each vertex in this partition is

$$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C} \right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$$

Next subsection is...

- Motivation: traffic grooming
- 2 Statement of the problem
- 3 The parameter $M(C, \Delta)$
 - Previous work (Muñoz and S., WG 2008)
- 5

Our results

- Case $\Delta = 3$, C = 4
- Case $\Delta \ge 4$ even
- Case $\Delta \ge 5$ odd
- Improved lower bound when $\Delta \equiv C \pmod{2C}$

6 Conclusions

26

$\mathsf{Case}\;\Delta\geq 5\;\mathsf{odd}$

Proposition

Let
$$\Delta \ge 5$$
 be odd. Then for any $C \ge 1$, $M(C, \Delta) \le \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.

- Since Δ is odd, |V(G)| is even. Add a perfect matching *M* to *G* to obtain a $(\Delta + 1)$ -regular multigraph *G'*. Orient the edges of *G'* in an Eulerian tour, and assign to each vertex $v \in V(G')$ its $(\Delta + 1)/2$ out-edges E_v^+ .
- Remove *M* and partition E_v^+ into stars with *C* edges.
- Number of occurrences of each vertex $v \in V(G)$:
 - If an edge of *M* is in E_v^+ , then: $\left\lceil \frac{\Delta-1}{2C} \right\rceil + \Delta \frac{\Delta-1}{2} = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.
 - Otherwise, if no edge of *M* is in E_v^+ , then: $\left\lceil \frac{\Delta+1}{2C} \right\rceil + \Delta - \frac{\Delta+1}{2} = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{1-C}{2C} \right\rceil \le \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.

Let
$$\Delta \ge 5$$
 be odd. Then for any $C \ge 1$, $M(C, \Delta) \le \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.

Sketch of proof.

- Since Δ is odd, |V(G)| is even. Add a perfect matching *M* to *G* to obtain a $(\Delta + 1)$ -regular multigraph *G'*. Orient the edges of *G'* in an Eulerian tour, and assign to each vertex $v \in V(G')$ its $(\Delta + 1)/2$ out-edges E_v^+ .
- Remove *M* and partition *E*⁺_v into stars with *C* edges.
- Number of occurrences of each vertex v ∈ V(G):
 - If an edge of *M* is in E_v^+ , then: $\left\lceil \frac{\Delta-1}{2C} \right\rceil + \Delta \frac{\Delta-1}{2} = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$
 - Otherwise, if no edge of M is in E_v^+ , then: $\left\lceil \frac{\Delta+1}{2C} \right\rceil + \Delta - \frac{\Delta+1}{2} = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{1-C}{2C} \right\rceil \le \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.

27

Let
$$\Delta \ge 5$$
 be odd. Then for any $C \ge 1$, $M(C, \Delta) \le \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.

- Since Δ is odd, |V(G)| is even. Add a perfect matching *M* to *G* to obtain a $(\Delta + 1)$ -regular multigraph *G'*. Orient the edges of *G'* in an Eulerian tour, and assign to each vertex $v \in V(G')$ its $(\Delta + 1)/2$ out-edges E_v^+ .
- Remove *M* and partition E_v^+ into stars with *C* edges.
- Number of occurrences of each vertex $v \in V(G)$:
 - If an edge of *M* is in E_v^+ , then: $\left\lceil \frac{\Delta-1}{2C} \right\rceil + \Delta \frac{\Delta-1}{2} = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.
 - Otherwise, if no edge of *M* is in E_v^+ , then: $\begin{bmatrix} \Delta+1\\ 2C \end{bmatrix} + \Delta - \frac{\Delta+1}{2} = \begin{bmatrix} \frac{C+1}{C} \frac{\Delta}{2} + \frac{1-C}{2C} \end{bmatrix} \le \begin{bmatrix} \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \end{bmatrix}$.

Let
$$\Delta \ge 5$$
 be odd. Then for any $C \ge 1$, $M(C, \Delta) \le \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.

- Since Δ is odd, |V(G)| is even. Add a perfect matching *M* to *G* to obtain a $(\Delta + 1)$ -regular multigraph *G'*. Orient the edges of *G'* in an Eulerian tour, and assign to each vertex $v \in V(G')$ its $(\Delta + 1)/2$ out-edges E_v^+ .
- Remove *M* and partition E_v^+ into stars with *C* edges.
- Number of occurrences of each vertex $v \in V(G)$:
 - If an edge of *M* is in E_v^+ , then: $\left\lceil \frac{\Delta-1}{2C} \right\rceil + \Delta \frac{\Delta-1}{2} = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.
 - Otherwise, if no edge of M is in E_v^+ , then: $\left\lceil \frac{\Delta+1}{2C} \right\rceil + \Delta - \frac{\Delta+1}{2} = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{1-C}{2C} \right\rceil \le \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.

Let
$$\Delta \ge 5$$
 be odd. Then for any $C \ge 1$, $M(C, \Delta) \le \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.

- Since Δ is odd, |V(G)| is even. Add a perfect matching *M* to *G* to obtain a $(\Delta + 1)$ -regular multigraph *G'*. Orient the edges of *G'* in an Eulerian tour, and assign to each vertex $v \in V(G')$ its $(\Delta + 1)/2$ out-edges E_v^+ .
- Remove *M* and partition E_v^+ into stars with *C* edges.
- Number of occurrences of each vertex $v \in V(G)$:
 - If an edge of *M* is in E_v^+ , then: $\left\lceil \frac{\Delta-1}{2C} \right\rceil + \Delta \frac{\Delta-1}{2} = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.
 - Otherwise, if no edge of *M* is in E_v^+ , then: $\left\lceil \frac{\Delta+1}{2C} \right\rceil + \Delta - \frac{\Delta+1}{2} = \left\lceil \frac{C+1}{2} \frac{\Delta}{2} + \frac{1-C}{2C} \right\rceil \le \left\lceil \frac{C+1}{2} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.

Case $\Delta \ge 5$ odd (II)

Corollary

Let $\Delta \ge 5$ be odd. If $\Delta \pmod{2C} = 1$ or $\Delta \pmod{2C} \ge C + 1$, then $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

Corollary (Case C = 2)

For any $\Delta \geq 5$ odd, $M(2, \Delta) = \left\lceil \frac{3\Delta}{4} \right\rceil$.

Proposition

Let $\Delta \geq 5$ be odd and let C be the class of Δ -regular graphs than contain a perfect matching. Then $M(C, \Delta, C) = \begin{bmatrix} C+1 & \Delta \\ C & 2 \end{bmatrix}$.

Case $\Delta \ge 5$ odd (II)

Corollary

Let $\Delta \ge 5$ be odd. If $\Delta \pmod{2C} = 1$ or $\Delta \pmod{2C} \ge C + 1$, then $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

Corollary (Case C = 2)

For any $\Delta \geq 5$ odd, $M(2, \Delta) = \left\lceil \frac{3\Delta}{4} \right\rceil$.

Proposition

Let $\Delta \geq 5$ be odd and let C be the class of Δ -regular graphs than contain a perfect matching. Then $M(C, \Delta, C) = \begin{bmatrix} C+1 & \Delta \\ C & 2 \end{bmatrix}$.

Case $\Delta \ge 5$ odd (II)

Corollary

Let $\Delta \ge 5$ be odd. If $\Delta \pmod{2C} = 1$ or $\Delta \pmod{2C} \ge C + 1$, then $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

Corollary (Case C = 2)

For any $\Delta \geq 5$ odd, $M(2, \Delta) = \left\lceil \frac{3\Delta}{4} \right\rceil$.

Proposition

Let $\Delta \ge 5$ be odd and let C be the class of Δ -regular graphs than contain a perfect matching. Then $M(C, \Delta, C) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

28

Next subsection is...

- Motivation: traffic grooming
- 2 Statement of the problem
- 3 The parameter $M(C, \Delta)$
 - Previous work (Muñoz and S., WG 2008)
- 5

Our results

- Case $\Delta = 3$, C = 4
- Case $\Delta \ge 4$ even
- Case $\Delta \ge 5$ odd
- Improved lower bound when $\Delta \equiv C \pmod{2C}$

6 Conclusions

Theorem

Let $\Delta \geq 5$ be odd. If $\Delta \equiv C \pmod{2C}$, then $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.

Corollary (Case
$$C = 3$$
)
For any $\Delta \ge 5$ odd, $M(3, \Delta) = \left\lceil \frac{2\Delta+1}{3} \right\rceil$.

ldea of the proof of the Theorem.

- We prove that if $\Delta = kC$ with k odd, then $M(C, \Delta) \ge \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.
- Since both Δ and k are odd, so is C, and therefore $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil = k \cdot \frac{C+1}{2}$.
- We proceed to build a Δ -regular graph *G* with no *C*-edge-partition where each vertex is incident to at most $k \cdot \frac{C+1}{2} =: LB(C, \Delta)$ subgraphs.

First, we construct a graph H where all vertices have degree Δ except one which
has degree Δ − 1. Furthermore, we build H so that it has girth strictly greater
than C. Such a graph H exists by [Chandran, SIAM J. Dicr. Math., 2003].

Theorem

Let $\Delta \geq 5$ be odd. If $\Delta \equiv C \pmod{2C}$, then $M(C, \Delta) = \left\lfloor \frac{C+1}{C} \frac{\Delta}{2} \right\rfloor + 1$.

Corollary (Case
$$C = 3$$
)

For any $\Delta \geq 5$ odd, $M(3, \Delta) = \left\lceil \frac{2\Delta+1}{3} \right\rceil$.

Idea of the proof of the Theorem.

- We prove that if $\Delta = kC$ with k odd, then $M(C, \Delta) \ge \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.
- Since both Δ and k are odd, so is C, and therefore $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil = k \cdot \frac{C+1}{2}$.
- We proceed to build a Δ -regular graph *G* with no *C*-edge-partition where each vertex is incident to at most $k \cdot \frac{C+1}{2} =: LB(C, \Delta)$ subgraphs.

First, we construct a graph H where all vertices have degree Δ except one which
has degree Δ − 1. Furthermore, we build H so that it has girth strictly greater
than C. Such a graph H exists by [Chandran, SIAM J. Dicr. Math., 2003].

Theorem

Let $\Delta \geq 5$ be odd. If $\Delta \equiv C \pmod{2C}$, then $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.

Corollary (Case
$$C = 3$$
)

For any $\Delta \geq 5$ odd, $M(3, \Delta) = \left\lceil \frac{2\Delta+1}{3} \right\rceil$.

- We prove that if $\Delta = kC$ with k odd, then $M(C, \Delta) \ge \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.
- Since both Δ and k are odd, so is C, and therefore $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil = k \cdot \frac{C+1}{2}$.
- We proceed to build a Δ -regular graph *G* with no *C*-edge-partition where each vertex is incident to at most $k \cdot \frac{C+1}{2} =: LB(C, \Delta)$ subgraphs.
- First, we construct a graph H where all vertices have degree Δ except one which has degree Δ − 1. Furthermore, we build H so that it has girth strictly greater than C. Such a graph H exists by [Chandran, SIAM J. Dicr. Math., 2003].

Theorem

Let $\Delta \geq 5$ be odd. If $\Delta \equiv C \pmod{2C}$, then $M(C, \Delta) = \left| \frac{C+1}{C} \frac{\Delta}{2} \right| + 1$.

Corollary (Case
$$C = 3$$
)

For any $\Delta \geq 5$ odd, $M(3, \Delta) = \left\lceil \frac{2\Delta+1}{3} \right\rceil$.

Idea of the proof of the Theorem.

• We prove that if $\Delta = kC$ with k odd, then $M(C, \Delta) \ge \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.

• Since both Δ and k are odd, so is C, and therefore $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil = k \cdot \frac{C+1}{2}$.

- We proceed to build a Δ -regular graph *G* with no *C*-edge-partition where each vertex is incident to at most $k \cdot \frac{C+1}{2} =: LB(C, \Delta)$ subgraphs.
- First, we construct a graph *H* where all vertices have degree △ except one which has degree △ − 1. Furthermore, we build *H* so that it has girth strictly greater than *C*. Such a graph *H* exists by [Chandran, SIAM J. Dicr. Math., 2003].

Theorem

Let $\Delta \geq 5$ be odd. If $\Delta \equiv C \pmod{2C}$, then $M(C, \Delta) = \left\lfloor \frac{C+1}{C} \frac{\Delta}{2} \right\rfloor + 1$.

Corollary (Case
$$C = 3$$
)

For any $\Delta \geq 5$ odd, $M(3, \Delta) = \left\lceil \frac{2\Delta+1}{3} \right\rceil$.

- We prove that if $\Delta = kC$ with k odd, then $M(C, \Delta) \ge \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.
- Since both Δ and k are odd, so is C, and therefore $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil = k \cdot \frac{C+1}{2}$.
- We proceed to build a Δ-regular graph G with no C-edge-partition where each vertex is incident to at most k · C+1/2 =: LB(C, Δ) subgraphs.
- First, we construct a graph H where all vertices have degree Δ except one which has degree Δ 1. Furthermore, we build H so that it has girth strictly greater than C. Such a graph H exists by [Chandran, SIAM J. Dicr. Math., 2003].

Theorem

Let $\Delta \geq 5$ be odd. If $\Delta \equiv C \pmod{2C}$, then $M(C, \Delta) = \left\lfloor \frac{C+1}{C} \frac{\Delta}{2} \right\rfloor + 1$.

Corollary (Case
$$C = 3$$
)

For any $\Delta \geq 5$ odd, $M(3, \Delta) = \left\lceil \frac{2\Delta+1}{3} \right\rceil$.

- We prove that if $\Delta = kC$ with k odd, then $M(C, \Delta) \ge \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.
- Since both Δ and k are odd, so is C, and therefore $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil = k \cdot \frac{C+1}{2}$.
- We proceed to build a Δ-regular graph G with no C-edge-partition where each vertex is incident to at most k · C+1/2 =: LB(C, Δ) subgraphs.
- First, we construct a graph *H* where all vertices have degree Δ except one which has degree Δ 1. Furthermore, we build *H* so that it has girth strictly greater than *C*. Such a graph *H* exists by [Chandran, SIAM J. Dicr. Math., 2003].

Theorem

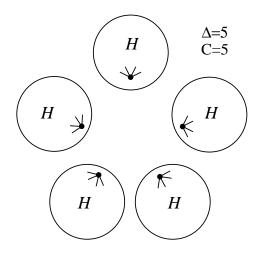
Let $\Delta \geq 5$ be odd. If $\Delta \equiv C \pmod{2C}$, then $M(C, \Delta) = \left\lfloor \frac{C+1}{C} \frac{\Delta}{2} \right\rfloor + 1$.

Corollary (Case
$$C = 3$$
)

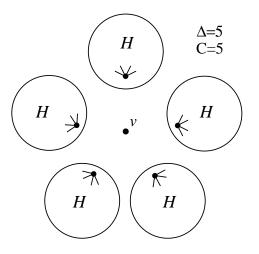
For any $\Delta \geq 5$ odd, $M(3, \Delta) = \left\lceil \frac{2\Delta+1}{3} \right\rceil$.

- We prove that if $\Delta = kC$ with k odd, then $M(C, \Delta) \ge \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.
- Since both Δ and k are odd, so is C, and therefore $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil = k \cdot \frac{C+1}{2}$.
- We proceed to build a Δ-regular graph G with no C-edge-partition where each vertex is incident to at most k · C+1/2 =: LB(C, Δ) subgraphs.
- First, we construct a graph *H* where all vertices have degree Δ except one which has degree Δ 1. Furthermore, we build *H* so that it has girth strictly greater than *C*. Such a graph *H* exists by [Chandran, SIAM J. Dicr. Math., 2003].

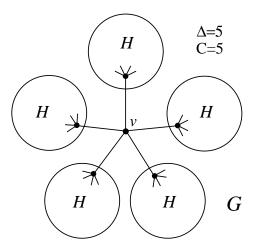
• Make Δ copies of H



 Make Δ copies of H and add a cut-vertex v joined to all vertices of degree Δ – 1 to make our Δ-regular graph G.



 Make Δ copies of H and add a cut-vertex v joined to all vertices of degree Δ – 1 to make our Δ-regular graph G.



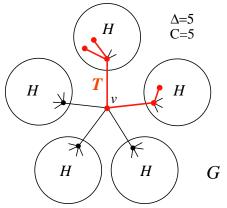
- Make Δ copies of H and add a cut-vertex v joined to all vertices of degree $\Delta 1$ to make our Δ -regular graph G. $\Delta = 5$ Η C=5Η Η v HΗ G
- Now suppose for the sake of contradiction that there is a C-edge-partition B of G where each vertex is incident to at most LB(C, Δ) subgraphs.
- Since the girth of *G* is greater than *C*, all the subgraphs in *B* are trees.

- Make Δ copies of H and add a cut-vertex v joined to all vertices of degree $\Delta 1$ to make our Δ -regular graph G. $\Delta = 5$ Η C=5Η Η v Η Η G
- Now suppose for the sake of contradiction that there is a C-edge-partition B of G where each vertex is incident to at most LB(C, Δ) subgraphs.

• Since the girth of G is greater than C, all the subgraphs in B are trees.

- Make Δ copies of H and add a cut-vertex v joined to all vertices of degree $\Delta 1$ to make our Δ -regular graph G. $\Delta = 5$ Η C=5Η Η v Η Η G
- Now suppose for the sake of contradiction that there is a C-edge-partition B of G where each vertex is incident to at most LB(C, Δ) subgraphs.
- Since the girth of G is greater than C, all the subgraphs in \mathcal{B} are trees.

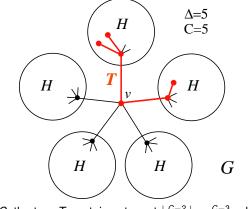
• Since $LB(C, \Delta) < \Delta$, v must have degree at least 2 in some subgraph $T \in \mathcal{B}$.



Since |E(T)| ≤ C, the tree T contains at most [C-2/2] = C-3/2 edges of a copy of H intersecting T.

• Now we only work in this copy *H*. Let $\alpha = |E(T \cap H)| \le \frac{C-3}{2}$ ($\alpha = \frac{5-3}{2} = 1$ in the example).

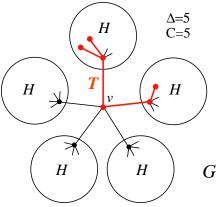
• Since $LB(C, \Delta) < \Delta$, v must have degree at least 2 in some subgraph $T \in \mathcal{B}$.



Since |E(T)| ≤ C, the tree T contains at most [^{C-2}/₂] = ^{C-3}/₂ edges of a copy of H intersecting T.

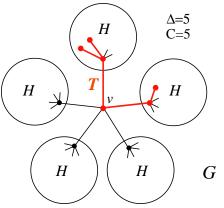
• Now we only work in this copy *H*. Let $\alpha = |E(T \cap H)| \le \frac{C-3}{2}$ ($\alpha = \frac{5-3}{2} = 1$ in the example).

• Since $LB(C, \Delta) < \Delta$, v must have degree at least 2 in some subgraph $T \in \mathcal{B}$.



- Since |E(T)| ≤ C, the tree T contains at most [^{C-2}/₂] = ^{C-3}/₂ edges of a copy of H intersecting T.
- Now we only work in this copy *H*. Let $\alpha = |E(T \cap H)| \le \frac{C-3}{2}$ $(\alpha = \frac{5-3}{2} = 1$ in the example).

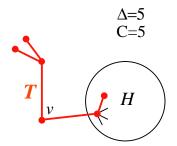
• Since $LB(C, \Delta) < \Delta$, v must have degree at least 2 in some subgraph $T \in \mathcal{B}$.



Since |E(T)| ≤ C, the tree T contains at most [^{C-2}/₂] = ^{C-3}/₂ edges of a copy of H intersecting T.

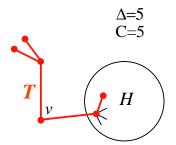
• Now we only work in this copy *H*. Let $\alpha = |E(T \cap H)| \le \frac{C-3}{2}$ $(\alpha = \frac{5-3}{2} = 1$ in the example).

Let B' = {B ∩ H}_{B∈(B−{T})}, with the empty subgraphs removed. That is, B' contains the subgraphs in B that partition the edges in H that are not in T.



Let *n* = |V(H)|, which is odd as in H there is one vertex of degree Δ − 1 and all the others have degree Δ.

Let B' = {B ∩ H}_{B∈(B-{T})}, with the empty subgraphs removed. That is, B' contains the subgraphs in B that partition the edges in H that are not in T.



 Let n = |V(H)|, which is odd as in H there is one vertex of degree Δ − 1 and all the others have degree Δ.

• Therefore, the total number of edges of the trees in \mathcal{B}' is

$$\sum_{T\in\mathcal{B}'}|E(T)| = |E(H)| - \alpha = \frac{n\Delta-1}{2} - \alpha = \frac{nkC-1}{2} - \alpha.$$
(1)

• As $\alpha \leq \frac{C-3}{2}$, from (1) we get

$$\sum_{T \in \mathcal{B}'} |E(T)| \geq \frac{nkC - 1}{2} - \frac{C - 3}{2} = \left(\frac{nk - 1}{2}\right) \cdot C + 1.$$
 (2)

• As each tree in \mathcal{B}' has at most *C* edges, from (2) we get that

$$|\mathcal{B}'| \geq \left\lceil \frac{nk-1}{2} + \frac{1}{C} \right\rceil = \frac{nk-1}{2} + \left\lceil \frac{1}{C} \right\rceil = \frac{nk-1}{2} + 1.$$
(3)

• Therefore, the total number of edges of the trees in \mathcal{B}' is

$$\sum_{T\in\mathcal{B}'}|E(T)| = |E(H)| - \alpha = \frac{n\Delta-1}{2} - \alpha = \frac{nkC-1}{2} - \alpha.$$
(1)

• As $\alpha \leq \frac{C-3}{2}$, from (1) we get

$$\sum_{T \in \mathcal{B}'} |E(T)| \geq \frac{nkC - 1}{2} - \frac{C - 3}{2} = \left(\frac{nk - 1}{2}\right) \cdot C + 1.$$
 (2)

• As each tree in \mathcal{B}' has at most C edges, from (2) we get that

$$|\mathcal{B}'| \geq \left\lceil \frac{nk-1}{2} + \frac{1}{C} \right\rceil = \frac{nk-1}{2} + \left\lceil \frac{1}{C} \right\rceil = \frac{nk-1}{2} + 1. \quad (3)$$

• Therefore, the total number of edges of the trees in \mathcal{B}' is

$$\sum_{T\in\mathcal{B}'}|E(T)| = |E(H)| - \alpha = \frac{n\Delta-1}{2} - \alpha = \frac{nkC-1}{2} - \alpha.$$
(1)

• As $\alpha \leq \frac{C-3}{2}$, from (1) we get

$$\sum_{T \in \mathcal{B}'} |E(T)| \geq \frac{nkC - 1}{2} - \frac{C - 3}{2} = \left(\frac{nk - 1}{2}\right) \cdot C + 1.$$
 (2)

As each tree in B' has at most C edges, from (2) we get that

$$|\mathcal{B}'| \geq \left\lceil \frac{nk-1}{2} + \frac{1}{C} \right\rceil = \frac{nk-1}{2} + \left\lceil \frac{1}{C} \right\rceil = \frac{nk-1}{2} + 1.$$
(3)

• Therefore, the total number of edges of the trees in \mathcal{B}' is

$$\sum_{T\in\mathcal{B}'}|E(T)| = |E(H)| - \alpha = \frac{n\Delta-1}{2} - \alpha = \frac{nkC-1}{2} - \alpha.$$
(1)

• As $\alpha \leq \frac{C-3}{2}$, from (1) we get

$$\sum_{T \in \mathcal{B}'} |E(T)| \geq \frac{nkC - 1}{2} - \frac{C - 3}{2} = \left(\frac{nk - 1}{2}\right) \cdot C + 1.$$
 (2)

• As each tree in \mathcal{B}' has at most *C* edges, from (2) we get that

$$|\mathcal{B}'| \geq \left\lceil \frac{nk-1}{2} + \frac{1}{C} \right\rceil = \frac{nk-1}{2} + \left\lceil \frac{1}{C} \right\rceil = \frac{nk-1}{2} + 1.$$
(3)

 Therefore, using (1) and (3), we get that the total number of occurrences of the vertices of H in some tree of B is

$$\sum_{v \in V(H)} |\{T \in \mathcal{B} : v \in T\}| = \sum_{T \in \mathcal{B}'} |V(T)| + |V(T \cap H)| = \sum_{T \in \mathcal{B}'} |E(T)| + |\mathcal{B}'| + \alpha + 1$$
$$= \frac{nkC - 1}{2} - \alpha + |\mathcal{B}'| + \alpha + 1 \ge \frac{nkC - 1}{2} + \frac{nk - 1}{2} + 2$$
$$= nk \cdot \frac{C + 1}{2} + 1 = n \cdot \text{LB}(C, \Delta) + 1,$$

• which implies that at least one vertex of *H* appears in at least $LB(C, \Delta) + 1$ subgraphs, which is a contradiction to *B* being a *C*-edge-partition of *G* in which each vertex appears in at most $LB(C, \Delta)$ subgraphs.

 Therefore, using (1) and (3), we get that the total number of occurrences of the vertices of H in some tree of B is

$$\sum_{v \in V(H)} |\{T \in \mathcal{B} : v \in T\}| = \sum_{T \in \mathcal{B}'} |V(T)| + |V(T \cap H)| = \sum_{T \in \mathcal{B}'} |E(T)| + |\mathcal{B}'| + \alpha + 1$$
$$= \frac{nkC - 1}{2} - \alpha + |\mathcal{B}'| + \alpha + 1 \ge \frac{nkC - 1}{2} + \frac{nk - 1}{2} + 2$$
$$= nk \cdot \frac{C + 1}{2} + 1 = n \cdot \mathsf{LB}(C, \Delta) + 1,$$

 which implies that at least one vertex of *H* appears in at least LB(C, Δ) + 1 subgraphs, which is a contradiction to *B* being a C-edge-partition of *G* in which each vertex appears in at most LB(C, Δ) subgraphs.

Next section is...

- Motivation: traffic grooming
- 2 Statement of the problem
- 3 The parameter $M(C, \Delta)$
- 4 Previous work (Muñoz and S., WG 2008)
- 5 Our results

Summary of results: values of $M(C, \Delta)$

$C \Delta $	1	2	3	4	5	6	7	 Δ even	Δ odd
1	1	2	3	4	5	6	7	 Δ	Δ
2	1	2	3	3	4	5	6	 $\frac{3\Delta}{4}$	$\frac{3\Delta}{4}$
3	1	2	3 (2)	3	4	5 <mark>(4)</mark>	5	 $\frac{2\Delta}{3}$	$\frac{2\Delta+1}{3}\left(\frac{2\Delta}{3}\right)$
4	1	2	2	3	4	4	5	 $\frac{5\Delta}{8}$	$\geq \frac{5\Delta}{8}$ (=)
5	1	2	2	3	4 (3)	4	5	 <u>3A</u> 5	$\geq \frac{3\Delta}{5}$ (=)
6	1	2	2	3	≥ 3 (=)	4	5	 $\frac{7\Delta}{12}$	$\geq \frac{7\Delta}{12}$ (=)
7	1	2	2	3	≥ 3 (=)	4	5 <mark>(4)</mark>	 $\frac{4\overline{\Delta}}{7}$	$\geq \frac{4\Delta}{7}$ (=)
8	1	2	2	3	≥ 3 (=)	4	≥ 4 (=)	 $\frac{9\Delta}{16}$	$\geq \frac{9\Delta}{16}$ (=)
9	1	2	2	3	≥ 3 (=)	4	≥ 4 (=)	 <u>5Å</u> 9	$\geq \frac{5\Delta}{9}$ (=)
С	1	2	2	3	≥ 3 (=)	4	≥ 4 (=)	 $\frac{C+1}{C}\frac{\Delta}{2}$	$\geq \frac{C+1}{C} \frac{\Delta}{2}$ (=)

Table: Known values of $M(C, \Delta)$. The red cases remain open. The (blue) cases in brackets only hold if the graph has a perfect matching. The symbol "(=)" means that the corresponding lower bound is attained.

- We have studied a new model of **traffic grooming** that allows the network to support **dynamic** traffic without reconfiguring the electronic equipment at the nodes.
- We established the value of *M*(*C*, Δ) for "almost all" values of *C* and Δ, leaving **open** only the case where:
 - $\Delta \ge 5$ is odd;
 - *C* ≥ 4;
 - $3 \le \Delta \pmod{2C} \le C 1$; and
 - the request graph does not contain a perfect matching.
- For these open cases, we provided upper bounds that differ from the optimal value by at most one.

• Further Research:

• Determine $M(C, \Delta)$ for the remaining cases:

$$\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$$
 or $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$??

 Other classes of request graphs that make sense from the telecommunications point of view?

- We have studied a new model of **traffic grooming** that allows the network to support **dynamic** traffic without reconfiguring the electronic equipment at the nodes.
- We established the value of *M*(*C*, Δ) for "almost all" values of *C* and Δ, leaving open only the case where:
 - $\Delta \ge 5$ is odd;
 - C ≥ 4;
 - $3 \le \Delta \pmod{2C} \le C 1$; and
 - the request graph does not contain a perfect matching.
- For these open cases, we provided upper bounds that differ from the optimal value by at most one.

• Further Research:

• Determine $M(C, \Delta)$ for the remaining cases:

$$\left[\frac{C+1}{C}\frac{\Delta}{2}\right]$$
 or $\left[\frac{C+1}{C}\frac{\Delta}{2}\right] + 1$??

 Other classes of request graphs that make sense from the telecommunications point of view?

- We have studied a new model of traffic grooming that allows the network to support dynamic traffic without reconfiguring the electronic equipment at the nodes.
- We established the value of *M*(*C*, Δ) for "almost all" values of *C* and Δ, leaving open only the case where:
 - $\Delta \ge 5$ is odd;
 - C ≥ 4;
 - $3 \le \Delta \pmod{2C} \le C 1$; and
 - the request graph does not contain a perfect matching.
- For these open cases, we provided upper bounds that differ from the optimal value by at most one.

• Further Research:

• Determine $M(C, \Delta)$ for the remaining cases:

$$\frac{C+1}{C}\frac{\Delta}{2}$$
 or $\left[\frac{C+1}{C}\frac{\Delta}{2}\right] + 1$?

 Other classes of request graphs that make sense from the telecommunications point of view?

- We have studied a new model of **traffic grooming** that allows the network to support **dynamic** traffic without reconfiguring the electronic equipment at the nodes.
- We established the value of *M*(*C*, Δ) for "almost all" values of *C* and Δ, leaving open only the case where:
 - $\Delta \ge 5$ is odd;
 - C ≥ 4;
 - $3 \le \Delta \pmod{2C} \le C 1$; and
 - the request graph does not contain a perfect matching.
- For these open cases, we provided upper bounds that differ from the optimal value by at most one.

• Further Research:

• Determine $M(C, \Delta)$ for the remaining cases:

$\left[\frac{C+1}{C}\frac{\Delta}{2}\right]$ or $\left[\frac{C+1}{C}\frac{\Delta}{2}\right] + 1$??

• Other classes of request graphs that **make sense** from the telecommunications point of view?

Gràcies!