
Low-Port Tree Low-Port Tree
RepresentationsRepresentations

Presented by:Presented by: Shiri ChechikShiri Chechik
Joint with: David PelegJoint with: David Peleg

BackgroundBackground

Many distributed applications
make use of predefined network
representations:
◦ Compact routing schemes
◦ Informative labeling schemes
for a variety of applications

BackgroundBackground

An important special case of a
predefined network representation
is that of a spanning tree.

Applications:
◦ Broadcast
◦ Convergecast
◦ Graph exploration

BackgroundBackground

Desired property:
compact storage
 (in terms of number of bits).

Studied extensively for a variety
of types of spanning trees.

Port-Based Port-Based
RepresentationsRepresentations

n-node graph G(V,E)
Each node u has

 a pre-assigned
distinct port number
Port(u,v)
(from the range {0,
…,deg(u)-1}) for
each edge (u,v)

1

2

1

2

0

0

0

0

1

1

x

zw

y

Port-Based Port-Based
RepresentationsRepresentations

Note:
The port numbers
are not necessarily
symmetric;

it could be that
Port(u,v) ≠ Port(v,u).

1

2

1

2

0

0

0

0

1

1

x

zw

y

Port-Based Port-Based
RepresentationsRepresentations
The nodes are required to maintain

a directed spanning tree T of G
Each node is required to remember

the port number leading to its
parent in T.

The problemThe problem

The cost of a tree T is the total
number of bits stored by the nodes,

Cost(T,G) ≈ ∑v log(Port(v,parent(v,T)))

Cost(G) = minT {Cost(T,G)}

Illustration: Bad TreeIllustration: Bad Tree

2

2

2

2

0

0

0

0

1

1

1

1

x y

zw 2

2

2x y

zw

Cost(T,G) = 6

Illustration: Good TreeIllustration: Good Tree

0

0

0x y

zw2

2

2

2

0

0

0

0

1

1

1

1

x y

zw
Cost(T,G) = 3

GoalsGoals

Algorithmic goal: given a graph G(V,E)
and port assignment, find a spanning
tree T of minimum cost.

Combinatorial goal: establish tight
bounds on the function Cost(G)

Schemes for Port-Based Tree Schemes for Port-Based Tree
RepresentationsRepresentations
The problem of compact port-based

representations for spanning trees
was introduced in [Cohen,
Fraigniaud, Ilcinkas, Korman, Peleg, IWDC’05]

Question raised: the existence of
spanning trees with representations
in which the average number of bits
stored at each node is constant
(Cost(T,G) = O(n))

KnownKnown
Lemma [Cohen et al., IWDC’05]:

 Cost(G) = O(n loglog n)
 for every n-node graph G.

Special cases: Cost(G) = O(n)
for every complete n-node graph G
for every n-node graph with a

symmetric port labeling.

Conjecture [Cohen et al., IWDC’05]:

 Cost(G) = O(n) for every n-node G.

New resultNew result

We confirm this conjecture,
establishing a tight upper bound of O(n)
for an arbitrary n-node graph G with
an arbitrary port assignment.

Trivial Upper BoundTrivial Upper Bound

A trivial upper bound of O(n log n)
can be derived by taking an arbitrary
spanning tree of the graph G.

Complete GraphsComplete Graphs

The algorithm maintains a collection
of rooted directed trees.

Initially, each vertex forms a tree
on its own.

A tree construction algorithm

Complete GraphsComplete Graphs

The algorithm merges these trees into
larger trees until it remains with a
single tree spanning the entire graph.

Complete GraphsComplete Graphs
The algorithm operates in log n phases
Phase k handles all trees T such that
size(T) < 2k

Complete GraphsComplete Graphs

For each such tree T with root r(T), look
at the set of outgoing edges that connect
T to some other tree T’ and select the
edge e(T) of minimum cost.

r(T) T’

Complete GraphsComplete Graphs

Lemma
This process yields a tree of cost O(n)

Handling General GraphsHandling General Graphs
For an arbitrary graph, this process
might fail once it encounters a tree T
whose root has no outgoing edge
to any node outside T

r(T)

Handling General GraphsHandling General Graphs
For each directed sub-tree T,

search for the shortest
reverse-path (v1,…,vk) of T
(in hops):
◦ v1 = r(T),
◦ v1,…,vk ∈ V(T),
◦ (vi, vi+1) ∈ E,

◦ vk is an exit node, i.e.,
 it has a neighbor
outside T

Handling General GraphsHandling General Graphs

Reverse the relevant edges on the
path (v1,…,vk).

Handling General GraphsHandling General Graphs

Second, the algorithm looks at the set of
exit edges of r(T’), and selects the exit
edge (r(T’), z) of minimum Port(r(T’), z).

Merge T’ with the tree containing z by
adding the edge (r(T’), z).

Handling General GraphsHandling General Graphs

By the analysis of Cohen et al.,
this algorithm yields a tree of
cost O(n loglogn)

A tight Upper Bound – O(n)A tight Upper Bound – O(n)

The reverse paths could be
expensive.

1

100

A tight Upper Bound – O(n)A tight Upper Bound – O(n)

The goal is to use reverse paths as
“light” as possible.

A tight Upper Bound – O(n)A tight Upper Bound – O(n)
Consider all nodes that participate

in some “lighter” reverse path of
later iterations .

Treat these nodes as nodes outside
the tree T.

x

A tight Upper Bound – O(n)A tight Upper Bound – O(n)

x

A tight Upper Bound – O(n)A tight Upper Bound – O(n)

Partition the edges of the final tree
into two subsets, Eout and Ervrs.

We bound separately the total cost
of edges in each subset by O(n).

Out EdgesOut Edges

Reverse EdgesReverse Edges

Reverse Paths- CostReverse Paths- Cost

Consider a reverse edge (x,y). Let
c = Port(x,y).

There are exactly c neighbors w of
x that are “cheaper” than y, i.e.,
such that Port(x,w) < Port(x,y).

 Charging rule: If the algorithm
selects the reverse edge (x,y),
then for each such cheaper node w,
incur a charge of 1 for w.

Reverse Paths- CostReverse Paths- Cost

Lemma 1
The lighter reverse paths are

disjoint.

Lemma 2
Every node w is being charged in

only one lighter reverse path.

Reverse Paths- CostReverse Paths- Cost

Lemma 3
Consider a reverse path P where w is being
charged.
Then there are at most three edges on P
that charge w.

A tight Upper Bound – O(n)A tight Upper Bound – O(n)

A careful analysis of the
construction with the lighter reverse
paths shows that the cost of the
tree is O(n).

SummarySummary

We show the construction of
spanning trees in which the average
number of bits stored at each node
is constant.

This is a tight upper bound.

	Low-Port Tree Representations
	Background
	Page 3
	Page 4
	Port-Based Representations
	Page 6
	Page 7
	The problem
	Illustration: Bad Tree
	Illustration: Good Tree
	Goals
	Schemes for Port-Based Tree Representations
	Known
	Slide 14
	New result
	Trivial Upper Bound
	Complete Graphs
	Page 18
	Page 19
	Page 20
	Page 21
	Handling General Graphs
	Page 23
	Page 24
	Page 25
	Page 26
	A tight Upper Bound – O(n)
	Page 28
	Page 29
	Page 30
	Page 31
	Out Edges
	Reverse Edges
	Reverse Paths- Cost
	Page 35
	Page 36
	Page 37
	Summary

