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BackgroundBackground

Many distributed applications 
make use of predefined network 
representations:
◦ Compact routing schemes
◦ Informative labeling schemes 
for a variety of applications



BackgroundBackground

An important special case of a 
predefined network representation 
is that of a spanning tree.

Applications:
◦ Broadcast 
◦ Convergecast
◦ Graph exploration



BackgroundBackground

Desired property:                      
compact storage                            
   (in terms of number of bits).

Studied extensively for a variety 
of types of spanning trees.



Port-Based Port-Based 
RepresentationsRepresentations

n-node graph G(V,E) 
Each node u has        

  a pre-assigned 
distinct port number 
Port(u,v)                  
(from the range {0,
…,deg(u)-1})       for 
each edge (u,v)
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Port-Based Port-Based 
RepresentationsRepresentations

Note: 
The port numbers 
are not necessarily 
symmetric;

it could be that 
Port(u,v) ≠ Port(v,u).
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Port-Based Port-Based 
RepresentationsRepresentations
The nodes are required to maintain 

a directed spanning tree T of G
Each node is required to remember 

the port number leading to its 
parent in T.



The problemThe problem

The cost of a tree T is the total 
number of bits stored by the nodes,

 
Cost(T,G) ≈ ∑v log(Port(v,parent(v,T)))

Cost(G) = minT {Cost(T,G)} 



Illustration: Bad TreeIllustration: Bad Tree
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Illustration: Good TreeIllustration: Good Tree
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GoalsGoals

Algorithmic goal: given a graph G(V,E) 
and port assignment, find a spanning 
tree T of minimum cost.

Combinatorial goal: establish tight 
bounds on the function Cost(G)



Schemes for Port-Based Tree Schemes for Port-Based Tree 
RepresentationsRepresentations
The problem of compact port-based 

representations for spanning trees 
was introduced in [Cohen, 
Fraigniaud, Ilcinkas, Korman, Peleg, IWDC’05]

Question raised: the existence of 
spanning trees with representations 
in which the average number of bits 
stored at each node is constant 
(Cost(T,G) = O(n) )



KnownKnown
Lemma [Cohen et al., IWDC’05]:

  Cost(G) = O(n loglog n)                         
 for every n-node graph G.

Special cases: Cost(G) = O(n) 
for every complete n-node graph G 
for every n-node graph with a 

symmetric port labeling.



Conjecture [Cohen et al., IWDC’05]:

 Cost(G) = O(n) for every n-node G. 



New resultNew result

We confirm this conjecture, 
establishing a tight upper bound of O(n) 
for an arbitrary n-node  graph G with 
an arbitrary port assignment.



Trivial Upper BoundTrivial Upper Bound

A trivial upper bound of O(n log n) 
can be derived by taking an arbitrary 
spanning tree of the graph G.



Complete GraphsComplete Graphs

The algorithm maintains a collection 
of rooted directed trees.

Initially, each vertex forms a tree 
on its own. 

A tree construction algorithm



Complete GraphsComplete Graphs

The algorithm merges these trees into 
larger trees until it remains  with a 
single tree spanning the entire graph.



Complete GraphsComplete Graphs
The algorithm operates in log n phases 
Phase k handles all trees T such that 
size(T) < 2k



Complete GraphsComplete Graphs

For each such tree T with root r(T), look 
at the set of outgoing edges that connect 
T to some other tree T’ and select the 
edge e(T) of minimum cost.

r(T) T’



Complete GraphsComplete Graphs

Lemma
This process yields a tree of cost O(n)



Handling General GraphsHandling General Graphs
For an arbitrary graph, this process 
might fail once it encounters a tree T 
whose root has no outgoing edge        
to any node outside T

r(T)



Handling General GraphsHandling General Graphs
For each directed sub-tree T, 

search for the shortest 
reverse-path (v1,…,vk) of T     
(in hops):
◦ v1 = r(T),
◦ v1,…,vk ∈ V(T),
◦ (vi, vi+1) ∈ E,

◦ vk is an exit node, i.e.,             
 it has a neighbor                   
outside T



Handling General GraphsHandling General Graphs

Reverse the relevant edges on the 
path (v1,…,vk).



Handling General GraphsHandling General Graphs

Second, the algorithm looks at the set of 
exit edges of r(T’), and selects the exit 
edge (r(T’), z) of minimum Port(r(T’), z).

Merge T’ with the tree containing z by 
adding the edge (r(T’), z).



Handling General GraphsHandling General Graphs

By the analysis of Cohen et al., 
this algorithm yields a tree of 
cost O(n loglogn)



A tight Upper Bound – O(n)A tight Upper Bound – O(n)

The reverse paths could be 
expensive.
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A tight Upper Bound – O(n)A tight Upper Bound – O(n)

The goal is to use reverse paths as 
“light” as possible.



A tight Upper Bound – O(n)A tight Upper Bound – O(n)
Consider all nodes that participate 

in some “lighter” reverse path of 
later iterations .

Treat these nodes as nodes outside 
the tree T.

x



A tight Upper Bound – O(n)A tight Upper Bound – O(n)

x



A tight Upper Bound – O(n)A tight Upper Bound – O(n)

Partition the edges of the final tree 
into two subsets, Eout and Ervrs.

We bound separately the total cost 
of edges in each subset by O(n).



Out EdgesOut Edges



Reverse EdgesReverse Edges



Reverse Paths- CostReverse Paths- Cost

Consider a reverse edge (x,y). Let 
c = Port(x,y).

There are exactly c neighbors w of 
x that are “cheaper” than y, i.e., 
such that Port(x,w) < Port(x,y).

 Charging rule: If the algorithm 
selects the reverse edge (x,y),       
then for each such cheaper node w, 
incur a charge of 1 for w.



Reverse Paths- CostReverse Paths- Cost

Lemma 1
The lighter reverse paths are 

disjoint.

Lemma 2
Every node w is being charged in 

only one lighter reverse path.



Reverse Paths- CostReverse Paths- Cost

Lemma 3
Consider a reverse path P where w is being 
charged. 
Then there are at most three edges on P 
that charge  w.



A tight Upper Bound – O(n)A tight Upper Bound – O(n)

A careful analysis of the 
construction with the lighter reverse 
paths shows that the cost of the 
tree is O(n).



SummarySummary

We show the construction of 
spanning trees in which the average 
number of bits stored at each node 
is constant.

This is a tight upper bound.
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