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Problem Definition 

Edge Coloring: color the edges of a given graph 
with the minimum number of colors such that no 
two adjacent edges receive the same color

 Strong Edge Coloring: color the edges of a given graph
 with the minimum number of colors such that no two 
edges of distance ≤ 2 receive the same color

 Both problems are NP-hard (on general graphs)



Edge Coloring: Known Results

 Under the Centralized Model:  

   
Vizing [1964] ∆ +1 Non-constructive

Misra & Gries [1992] ∆ +1 Polynomial time

Ramanathan [1999] Ratio 2 Simple greedy 
algorithm



Edge Coloring: Known Results

 Under the Distributed Model:  

 
Gandam et al. [2005] ∆ +1

Nandagopal [2005] 2



Strong Edge Coloring: Known 
Results
 On planar graphs:  

 
Barrett et al. [2006] 17

Ito et al. [2007] 2



Edge Colorings on UDGs and quasi-
UDGs

We consider the Edge Coloring and Strong Edge 
Coloring  problems on UDGs and quasi-UDGs

We are motivated by applications in wireless 
computing: channel assignment



  A wireless ad hoc network is commonly modeled as a UDG U::

• Devices are the points of U in the 2-D Euclidean space

A B

 
• AB is an edge in U if and only if the two corresponding
  devices can communicate (i.e., |AB| ≤ 1)



  A quasi-UDG U with parameter  A quasi-UDG U with parameter  0 < r ≤ 1 0 < r ≤ 1 is a generalization of UDG:is a generalization of UDG:

 if |AB| ≤ r then AB is an edge in U  
    

 if |AB| > 1 then AB is not an edge in U

 if r < |AB| ≤ 1 then AB may or may not be an edge in U     
       



Motivation: Wireless Ad Hoc Networks

Channel Assignment Problem: Assign the channels 
frequency ranges so that channels that are close to each 
other receive different frequency ranges

  This is equivalent to coloring the edges of the graph so 
that edges that are “close” to each others receive different 
colors



The Local Distributed Model
 A distributed algorithm is k-local if the computation at 

each node depends solely on the initial states of the 
nodes that are at most k hops away

 A distributed algorithm is local if it is k-local for some 
fixed integer k

 Local distributed algorithms are important, especially in 
wireless ad-hoc and sensor networks, because they are 
naturally scalable, robust, and fault tolerant



Our Results On quasi-UDGs: Edge Coloring

For a quasi-UDG with parameter r:

Ratio Locality
2  (8r2 + 64r +88)/(πr2)

2 (8r2 + 40r +40)/(πr2)



Our Results On UDGs: Edge Coloring

By setting r=1 in the previous results for quasi-UDGs:

Ratio Locality
2 50

2 28



Our Results On UDGs: Strong Edge Coloring

Ratio Locality
128 22

10 10

Note. The techniques can be extended to quasi-UDGS



A Local Approximation Algorithm for Edge 
Coloring

 The centralized greedy algorithm
 Order the edges in the graph arbitrarily
 For each edge e=(u, v) considered in the given order:
          color e with the smallest available color 

      (i.e., the smallest color that no edge incident on u
        or v is colored with)

 The greedy algorithm has ratio 2  



The Centralized Greedy Algorithm

 Let e be an edge with the highest color number

 Color(e) ≤  (∆ -1) + (∆ -1) + 1 = 2∆ -1

                                      

 ∆ -1 ≥
≤ ∆ -1

u  v



Clustering
 To adapt the greedy algorithm to the local model,

 we use a “clustering” idea

 We tile the plane with square tiles of dimension 
α,  for some constant α > 2

All edges in the same connected component 
interior to a tile form a cluster



Edges Crossing Tiles

    TH = (α/2, 0)     TV = (0, α/2)        TD = (α/2, α/2)

Fact. For every edge e, there exists a translation 
         T  ∈ {TI =(0,0), TH, TV, TD } such that T(e) resides in some tile 



The Local Algorithm Edge-Coloring-APX

1. For each translation  T ∈ <TI, TH, TV, TD >:

1.1. All the points in U whose translations reside in the same  
       connected component within a single tile form a cluster 

1.2. All the points in a cluster apply the centralized greedy 
  algorithm to the subgraph of U induced by the points in the
  cluster

Note. When choosing the smallest available color, we take into account
       the colors assigned in previous rounds 

 



The Local Algorithm Edge-Coloring-APX

Theorem. The algorithm Edge-Coloring-APX has ratio 2

Proof. The same proof used for the centralized greedy algorithm works

Theorem. The algorithm Edge-Coloring-APX is k-local where 
              k = (22 α2 + 32 α + 8)/π

Proof. (Sketch) 

 We use a geometric argument to bound the propagation of 
information

 For two edges e and e’, we prove that if e affects e’ then e’ must reside 
within a bounded region in the vicinity of e

 More specifically, we prove that the endpoints of e and e’ must be k-
neighbors, where  k = (22 α2 + 32 α + 8)/π



Locality Bound
 Assume that the translations are applied in the 

following order:  < TI, TH, TV, TD > 



Locality Bound
  Any two points residing in this area must be is 

  k-neighbors where k = (22 α2 + 32 α + 8)/π 



Concluding Remarks

We gave local distributed algorithms for 
approximating Edge Coloring and Strong Edge 
Coloring on UDGs and quasi-UDGs

 The locality of the algorithms is high
 

The complexity of the problems (on UDGs) is 
open
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