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Problem Definition
Input: an undirected graph G whose edges are labeled/colored; 

     a property Π
Problem: compute a set of edges in G satisfying property Π that uses

           the minimum number of colors



Motivation

 Applications:  
 Telecommunication networks
 Multi-model transportation

 Example: Telecommunication Networks
 Nodes can communicate via different types of media
 Compute a connected topology that uses the fewest 

number of communication types/media
                          ⇔ Minimum Label Spanning Tree (MLST)
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Our Work

 We look at the minimum label graph problems from the 
parameterized complexity angle

 Parameter: number of labels
 Parameter: size of the solution (cardinality of the set of edges 

forming the solution)

 We show that most of the problems under consideration are W[2]-
hard when parameterized by the number of labels/colors, even on 
graphs whose pathwidth is at most a constant



Our Work

 We show that most of these problems are FPT when parameterized
by the solution size, with the exception of Minimum Label Path and 
Minimum Label Cut, which are W[1]-hard, even on graphs of 
pathwidth at most 2 and 4, respectively

 We present nontrivial FPT algorithms for Minimum Label Maximum 
Matching and Minimum Label Edge Dominating Set parameterized 
by the solution size
 



Parameterized Complexity: A 
Quick Review

  A parameterized problem Q is a set of
 instances of the form (x, k) 

Q is FPT if it can be solved in time f(k)nO(1)

Q is fpt-reducible to Q’ if there exists a reduction 
T that:                  

                      (x, k)  (x’, g(k)),
          and T runs in time f(k)|x|O(1)



Parameterized Complexity: A 
Quick Review

W-hierarchy:
                   At the bottom:  FPT 
                   W[i]: i ≥ 1

  W[1]-complete: Clique, IS
     W[2]-complete: DS, Set Cover, Hitting Set

   



W-hardness Results

 Theorem. Parameterized by the number of used labels:
 MLEDS and MLMM are W[2]-hard on trees of pw ≤ 2
 MLST and MLP are W[2]-hard on graphs with pw ≤ 2
 MLC and MLPM are W[2]-hard on graphs with pw ≤ 2
 MLHC is W[2]-hard on graphs with pw ≤ 5

    Proof. FPT-reduction from the W[2]-hard problem 
 Hitting Set 



W-hardness Results

 Theorem. Parameterized by the solution size:
 MLC is W[1]-hard on graphs of pw ≤ 4
 MLP is W[2]-hard on graphs with pw ≤ 2
 

    Proof. FPT-reduction from the W[1]-hard problem 
 Multicolored Clique



Tractability Results

Minimum Label Maximum Matching (MLMM)

Input: an undirected graph G whose edges are colored; 
      a parameter k: size of a maximum matching in G
     

Problem: compute a matching in G of size k whose edges 
           are colored with the minimum number of colors

 Theorem. MLMM is FPT 

 



The Algorithm

 The algorithm is a search-tree algorithm

 It grows a partial solution into an optimal solution OPT

 Let M be a maximal matching in G and I = V(G)\V(M); 
note that I is an independent set and that |M| ≤ k

 The algorithm consists of 3 stages

 



Stage 1

 
 

M

I

Branch on every e ∈ G[M]:

e in OPT: 
 remove e and its endpoints
 decrement k
 record color(e)

e ∉OPT:  remove e 



Stage 1

 
 

M

I

Branch on every remaining 
vertex v ∈ V(M):

v ∈ OPT:  keep v

v ∉OPT:   remove v



Stage 1
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I

B=(S, I) is bipartite
S has at most k vertices

Number of search-tree paths 
is O((8ek)k)



Stage 2

 
 

  S

I

 B=(S, I) is bipartite

 S has at most k vertices
  (assume w.l.o.g. |S|= k)

 Every vertex in S is an endpoint of
   an edge in OPT

  Problem: Compute a matching from
    S into I that uses the minimum
    number of colors 

 Constraint: some of the
   colors have already been used



Stage 2

 A matching is monochromatic if all its edges have the 
same color

 We try every possible partition of S into groups S1, …, Sl, 
such that all vertices in Si are matched in OPT by a 
monochromatic matching of distinct color

  Fix such a partition S1, …, Sl   



Stage 2
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Stage 2

 It is possible that a group Si uses the color of an edge 
that was determined to be in OPT in Stage 1

 Therefore, for each subset of the colors used in Stage 1, 
we try every possible one-to-one mapping from this 
subset to S1, …, Sl  



Stage 2
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Stage 2

 For each Si, if Si  has a pre-assigned color ci let
   Mi  = {Mi : Mi is a monochromatic matching of color ci that 

           matches Si into I} 
Otherwise, let

 Mi  = {Mi : Mi is a monochromatic matching that 
           matches Si into I}

 Let h(k) be a function of k to be determined later



Stage 2

We branch further to make B=(S, I) satisfy the following: 

Assumption. For each i=1,…, l
–  |Mi|  > h(k) 
–  Either the number of colors in Mi is more than h(k) or it is

 exactly 1 

–   If Mi has exactly one color in it, the every vertex in Si has
  more than h(k) edges incident on it in Mi

The number of branches in Stage 2 is O(kk+1 k! +h(k)3k),
and the running time along each branch is O(m√n +h(k)n)

            
 



Stage 3

  Let h(k) = k2 + k, and consider a partition of S into S1, 
…, Sl  where each Mi satisfies the previous assumption

Then:

 Theorem. In O(k3) we can compute a matching M’ 
matching S into I such that the set of edges in M’ 
incident on Si is a monochromatic matching in Mi



Proof

 
 

Sj+1

S1

I

 

 

Case 1: Mj+1 
contains more 
than h(k) colors

Case 2: Mj+1 
contains a single 
color



Running Time

Choosing h(k) = k2 + k: 

 The number of search-tree paths in Stage 1 is 
O((8ek)k) 

 The number of search-tree paths in Stage 2 is 
O((8ek)k k7k) 

  Stage 3 has no branching
 The running time along each path in the search-tree is 

O(km√n + k3n)
 Therefore, the running time of the algorithm is  

O((8e)k k7k+3m√n)
 

            
 



Minimum Label Edge Dominating 
Set

 Theorem. Parameterized by the solution size, Minimum 
Label Edge Dominating Set (MLEDS) is FPT

 

    Proof. Similar in flavor to that of MLMM



Concluding Remarks

 We showed that most minimum label problems are 
(parameterized) intractable w.r.t. the number of labels, 
even on graphs of bounded pathwidth, whereas most of 
these problems are FPT w.r.t. solution size

  Structured graph problems have received a lot of
  attention recently:

 Applications in Computational Biology and Networking
 They are hard
 Try to parameterize by different parameters: treewidth, pathwidth, VC, etc…

 Study other minimum label problems: Minimum Label 
Feedback Arc Set on directed graphs
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