The Parameterized Complexity of Some Minimum Label Problems

Iyad Kanj

DePaul University

Joint work with

Mike Fellows Jiong Guo University of Newcastle University of Jena

Problem Definition

Input: an undirected graph G whose edges are labeled/colored; a property ∏

Problem: compute a set of edges in G satisfying property ∏ that uses the minimum number of colors

Examples of Π :

- Spanning Tree
- Path between two designated vertices s and t
- Cut between two designated vertices s and t
- Perfect Matching
- Maximum Matching
- Edge Dominating Set

Motivation

Applications:

- Telecommunication networks
- Multi-model transportation

Example: Telecommunication Networks

- Nodes can communicate via different types of media
- Compute a connected topology that uses the fewest number of communication types/media

 \Leftrightarrow Minimum Label Spanning Tree (MLST)

Previous Work

Mainly dealt with classical complexity and approximation: all aforementioned problems are NP-hard

Minimum Label Spanning Tree:

- NP-hard Broersma & Li [1997]; Chang & Leu [1997]
- APX-hard Krumke & Wirth [1998]
- Can be approximated to a ratio ln(n-1) + 1

Previous Work

Exact Algorithms:

- Minimum Label Path: O(n×min{|C|^{d(s,t)}, 2^{|C|}}) Broersma et al. [2005]
- Minimum Label Cut: O(n²|C|!)
 Broersma et al. [2005]

Our Work

- We look at the minimum label graph problems from the parameterized complexity angle
 - Parameter: number of labels
 - Parameter: size of the solution (cardinality of the set of edges forming the solution)

We show that most of the problems under consideration are W[2]hard when parameterized by the number of labels/colors, even on graphs whose pathwidth is at most a constant

We show that most of these problems are FPT when parameterized by the solution size, with the exception of Minimum Label Path and Minimum Label Cut, which are W[1]-hard, even on graphs of pathwidth at most 2 and 4, respectively

We present nontrivial FPT algorithms for Minimum Label Maximum Matching and Minimum Label Edge Dominating Set parameterized by the solution size

Parameterized Complexity: A Quick Review

- A parameterized problem Q is a set of instances of the form (x, k)
- \geq Q is *FPT* if it can be solved in time f(k)n^{O(1)}
- Q is fpt-reducible to Q' if there exists a reduction T that:

 $(x, k) \rightarrow (x', g(k)),$ and T runs in time $f(k)|x|^{O(1)}$

Parameterized Complexity: A Quick Review

➤ W-hierarchy: At the bottom: FPT W[i]: i ≥ 1

W[1]-complete: Clique, IS W[2]-complete: DS, Set Cover, Hitting Set

W-hardness Results

Theorem. Parameterized by the number of used labels:

- MLEDS and MLMM are W[2]-hard on trees of pw ≤ 2
- MLST and MLP are W[2]-hard on graphs with $pw \le 2$
- MLC and MLPM are W[2]-hard on graphs with pw ≤ 2
- MLHC is W[2]-hard on graphs with pw ≤ 5

Proof. FPT-reduction from the W[2]-hard problem Hitting Set

W-hardness Results

Theorem. Parameterized by the solution size:

- MLC is W[1]-hard on graphs of pw ≤ 4
- MLP is W[2]-hard on graphs with pw ≤ 2

Proof. FPT-reduction from the W[1]-hard problem Multicolored Clique

Tractability Results

Minimum Label Maximum Matching (MLMM)

Input: an undirected graph G whose edges are colored; a parameter k: size of a maximum matching in G

Problem: compute a matching in G of size k whose edges are colored with the minimum number of colors

Theorem. MLMM is FPT

The Algorithm

The algorithm is a search-tree algorithm

It grows a partial solution into an optimal solution OPT

Let M be a maximal matching in G and I = V(G)\V(M); note that I is an independent set and that |M| ≤ k

The algorithm consists of 3 stages

Branch on every $e \in G[M]$:

<u>e in OPT:</u>

- remove e and its endpoints
- decrement k
- record color(e)

```
<u>e∉OPT:</u> remove e
```


B=(S, I) is bipartite S has at most k vertices

Number of search-tree paths is $O((8ek)^k)$

- B=(S, I) is bipartite
- S has at most k vertices (assume w.l.o.g. |S|= k)
- Every vertex in S is an endpoint of an edge in OPT
- Problem: Compute a matching from S into I that uses the minimum number of colors
- Constraint: some of the colors have already been used

- A matching is monochromatic if all its edges have the same color
- We try every possible partition of S into groups S₁, ..., S_I, such that all vertices in S_i are matched in OPT by a monochromatic matching of distinct color
- \succ Fix such a partition S_1, \dots, S_l

It is possible that a group S_i uses the color of an edge that was determined to be in OPT in Stage 1

Therefore, for each subset of the colors used in Stage 1, we try every possible one-to-one mapping from this subset to S₁, ..., S₁

> For each S_i , if S_i has a pre-assigned color c_i let

M_i = {M_i : M_i is a monochromatic matching of color c_i that matches S_i into I}

Otherwise, let

M_i = {M_i: M_i is a monochromatic matching that matches S_i into I}

Let h(k) be a function of k to be determined later

We branch further to make B=(S, I) satisfy the following:

Assumption. For each i=1,..., I

- $|\mathbf{M}_{i}| > h(k)$
- Either the number of colors in M_i is more than h(k) or it is exactly 1
- If M_i has exactly one color in it, the every vertex in S_i has more than h(k) edges incident on it in M_i

The number of branches in Stage 2 is $O(k^{k+1} k! + h(k)^{3k})$, and the running time along each branch is $O(m\sqrt{n + h(k)n})$

Let h(k) = k² + k, and consider a partition of S into S₁, ..., S₁ where each M_i satisfies the previous assumption Then:

Theorem. In O(k³) we can compute a matching M' matching S into I such that the set of edges in M' incident on S_i is a monochromatic matching in M_i

Proof

<u>Case 2: M_{i+1}</u>

contains a single color

 S_1

Running Time

Choosing $h(k) = k^2 + k$:

- The number of search-tree paths in Stage 1 is O((8ek)^k)
- The number of search-tree paths in Stage 2 is O((8ek)^k k^{7k})
- Stage 3 has no branching
- The running time along each path in the search-tree is O(km√n + k³n)
- Therefore, the running time of the algorithm is O((8e)^k k^{7k+3}m√n)

Minimum Label Edge Dominating Set

Theorem. Parameterized by the solution size, Minimum Label Edge Dominating Set (MLEDS) is FPT

Proof. Similar in flavor to that of MLMM

Concluding Remarks

- We showed that most minimum label problems are (parameterized) intractable w.r.t. the number of labels, even on graphs of bounded pathwidth, whereas most of these problems are FPT w.r.t. solution size
- Structured graph problems have received a lot of attention recently:
 - Applications in Computational Biology and Networking
 - They are hard
 - Try to parameterize by different parameters: treewidth, pathwidth, VC, etc...
- Study other minimum label problems: Minimum Label Feedback Arc Set on directed graphs