Daniel Meister Jan Arne Telle

Daniel Meister Jan Arne Telle

Department of Informatics, University of Bergen, Norway

important and famous graph class with many graph-theoretic and algorithmic applications

important and famous graph class with many graph-theoretic and algorithmic applications

Chordal graphs

closely related to treewidth and efficient solvability of difficult problems

important and famous graph class with many graph-theoretic and algorithmic applications

Chordal graphs

closely related to treewidth and efficient solvability of difficult problems

Chordal graphs

appear in many applications directly or as important subproblem

important and famous graph class with many graph-theoretic and algorithmic applications

Change is a/the

closely related to treewidth and efficient solvability of difficult problems

directed analogue?

Chordal graphs

appear in many applications directly or as important subproblem

What is a/the directed analogue?

class should be big enough to contain enough structure, small enough to admit efficient solutions

Overview

Outline of the talk

- 1 Everybody's darlings: chordal (undirected) graphs
- 2 Introducing: chordal digraphs
- 3 Characterisations of chordal digraphs
- 4 Forbidden subgraphs of semicomplete chordal digraphs

Presentation part

- 1 Everybody's darlings: chordal (undirected) graphs
- 2 Introducing: chordal digraphs
- 3 Characterisations of chordal digraphs
- 4 Forbidden subgraphs of semicomplete chordal digraphs

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Inductive construction

start from an empty graph,

- select clique
- add new vertex
- make it adjacent to all vertices in the clique

Alternative characterisations

Theorem [folklore]

Graph is chordal if and only if it does not contain a chordless cycle of length at least 4 as induced subgraph.

Alternative characterisations

Theorem [folklore]

Graph is chordal if and only if

it does not contain a chordless cycle of length at least 4 as induced subgraph.

Chordal (undirected) graphs

Alternative characterisations

Layout pair (σ, σ') with transitivity property:

for all vertex triples $\bullet \circ \circ$ with $\bullet \prec_{\sigma} \circ$ and $\circ \prec_{\sigma'} \circ$

if and

Chordal (undirected) graphs

Alternative characterisations

Layout pair (σ, σ') with transitivity property:

for all vertex triples $\bullet \circ \circ$ with $\bullet \prec_{\sigma} \circ$ and $\circ \prec_{\sigma'} \circ$

Chordal (undirected) graphs

Alternative characterisations

Layout pair (σ,σ') with transitivity property: for all vertex triples \bullet \bullet with \bullet \prec_{σ} \bullet and \bullet $\prec_{\sigma'}$ \bullet if \bullet and \bullet then

Theorem [folklore]

Graph is chordal if and only if it has vertex layout σ such that (σ,σ^R) has transitivity property.

Presentation part

- 1 Everybody's darlings: chordal (undirected) graphs
- 2 Introducing: chordal digraphs
- 3 Characterisations of chordal digraphs
- 4 Forbidden subgraphs of semicomplete chordal digraphs

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

What is "clique"?, what is "adjacent"?

"Clique"

sets A and B of vertices with (a,b) arcs for all $a\in A$ and $b\in B$, where $a\neq b$

"Clique"

sets A and B of vertices with (a,b) arcs for all $a\in A$ and $b\in B$, where $a\neq b$

Remark

A = B results in a complete digraph

"Clique"

sets A and B of vertices with (a,b) arcs for all $a\in A$ and $b\in B$, where $a\neq b$

"Adjacent"

add arcs without creating unnecessary cycles

"Clique"

sets A and B of vertices with (a,b) arcs for all $a\in A$ and $b\in B$, where $a\neq b$

"Adjacent"

add arcs without creating unnecessary cycles

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Inductive construction

start from an empty digraph,

- select "clique"
- add new vertex
- make it "adjacent" to all vertices in the "clique"

Observation

chordal digraphs exist and have non-trivial structure

Characterisations of chordal digraphs

Presentation part

- 1 Everybody's darlings: chordal (undirected) graphs
- 2 Introducing: chordal digraphs
- 3 Characterisations of chordal digraphs
- 4 Forbidden subgraphs of semicomplete chordal digraphs

Characterisations of chordal digraphs

Layout characterisation

Layout pair (σ, σ') with transitivity property:

for all vertex triples $\bullet \circ \circ$ with $\bullet \prec_{\sigma} \circ$ and $\circ \prec_{\sigma'} \circ$

if and

Layout characterisation

Layout pair (σ, σ') with transitivity property:

for all vertex triples $\bullet \circ \circ$ with $\bullet \prec_{\sigma} \circ$ and $\circ \prec_{\sigma'} \circ$

Layout characterisation

Layout pair (σ,σ') with transitivity property: for all vertex triples \bullet \bullet \bullet with \bullet \prec_{σ} \bullet and \bullet $\prec_{\sigma'}$ \bullet if \bullet and \bullet then

Theorem

Digraph is chordal if and only if it has vertex layout σ such that (σ,σ^R) has transitivity property.

Theorem

Digraph is chordal if and only if it has vertex layout σ such that (σ, σ^R) has transitivity property.

For G digraph and σ vertex ordering, G acyclic and σ topological \longrightarrow (σ,σ^R) has transitivity property

Theorem

Acyclic digraphs are exactly the chordal digraphs without double-connections.

Elimination characterisation

vertex x is di-simplicial if $(N^{\text{in}}(x), N^{\text{out}}(x))$ is "clique"

Elimination characterisation

vertex x is di-simplicial if $(N^{\text{in}}(x), N^{\text{out}}(x))$ is "clique"

Theorem

Digraph is chordal if and only if

it can be reduced to empty digraph by repeatedly deleting arbitrary di-simplicial vertex.

Elimination characterisation

vertex x is di-simplicial if $(N^{\text{in}}(x), N^{\text{out}}(x))$ is "clique"

Theorem

Digraph is chordal if and only if

it can be reduced to empty digraph by repeatedly deleting arbitrary di-simplicial vertex.

Remark

di-simplicial vertex verification in $\mathcal{O}(n^2)$ time

Elimination characterisation

vertex x is di-simplicial if $(N^{\text{in}}(x), N^{\text{out}}(x))$ is "clique"

Theorem

Digraph is chordal if and only if it can be reduced to empty digraph by repeatedly deleting arbitrary di-simplicial vertex.

Remark

di-simplicial vertex verification in $\mathcal{O}(n^2)$ time chordal digraph recognition in $\mathcal{O}(n^4)$ time

Presentation part

- 1 Everybody's darlings: chordal (undirected) graphs
- 2 Introducing: chordal digraphs
- 3 Characterisations of chordal digraphs
- 4 Forbidden subgraphs of semicomplete chordal digraphs

connection between two vertices in a digraph

connection between two vertices in a digraph

In this part:

forbid a connection type

connection between two vertices in a digraph

In this part:

forbid a connection type

Such digraphs: semicomplete

Observation for semicomplete digraphs

number of complete undirected graphs on r vertices: 1

number of semicomplete digraphs on r vertices: >40 (for $r \ge 5$)

Observation for semicomplete digraphs

number of complete undirected graphs on r vertices: 1 number of semicomplete digraphs on r vertices: > 40 (for $r \ge 5$)

Observation for semicomplete digraphs

number of complete undirected graphs on r vertices: 1 number of semicomplete digraphs on r vertices: >40 (for $r \ge 5$)

Remark

class of semicomplete digraphs at least as rich as whole class of undirected graphs

first result and connection to chordal undirected graphs

Lemma

first result and connection to chordal undirected graphs

Lemma

first result and connection to chordal undirected graphs

Lemma

first result and connection to chordal undirected graphs

Lemma

first result and connection to chordal undirected graphs

Lemma

For an arbitrary chordal digraph, the restriction to only double-connections induces a chordal undirected graph.

Remark

lemma shows everything that there is to know about structure among double-connected vertices

first result and connection to chordal undirected graphs

Lemma

For an arbitrary chordal digraph, the restriction to only double-connections induces a chordal undirected graph.

Remark

lemma shows everything that there is to know about structure among double-connected vertices

chordal digraphs with only double-connections correspond exactly to chordal undirected graphs

now, consider single-connections

now, consider single-connections

now, consider single-connections

Observation

pairs of non-adjacent vertices are double-connected so connection type precisely known

now, consider single-connections

Lemma

Depicted

semicomplete digraphs are not chordal.

now, consider single-connections

Lemma

Depicted (restricted) semicomplete digraphs are not chordal.

now, consider single-connections

Lemma

Depicted (restricted) semicomplete digraphs are not chordal.

Lemma

Induced subgraphs of chordal digraphs are chordal.

now, consider single-connections

Lemma

Depicted

semicomplete digraphs are not chordal.

Lemma

Induced subgraphs of chordal digraphs are chordal.

Lemma

No chordal digraph contains depicted digraphs as induced subgraph.

Lemma

No chordal digraph contains depicted digraphs as induced subgraph.

For semicomplete digraphs, also converse holds.

our main result about chordal semicomplete digraphs

Lemma

For G semicomplete digraph,

if restriction to double-connections chordal

and G not chordal

then G contains one of depicted digraphs as induced subgraph.

our main result about chordal semicomplete digraphs

Lemma

For G semicomplete digraph,

if restriction to double-connections chordal

and G not chordal

then G contains one of depicted digraphs as induced subgraph.

Proof very nice and longer, also relies on properties of chordal graphs and simplicial vertices

final characterisation

Theorem

A semicomplete digraph is chordal if and only if

restriction to only double-connections is chordal

induced subgraph.

Example

Example

Example

Example

Example

Does example digraph contain forbidden induced subgraphs?

Yes!

Presentation part

- 1 Everybody's darlings: chordal (undirected) graphs
- 2 Introducing: chordal digraphs
- 3 Characterisations of chordal digraphs
- 4 Forbidden subgraphs of semicomplete chordal digraphs

We have seen:

- without double-connections
 acyclic digraphs are exactly the chordal digraphs
- without single-connections
 chordal undirected graphs "are" exactly the chordal digraphs
- with single- and double-connections
 characterisation of a class of chordal digraphs

We have seen:

- without double-connections
 acyclic digraphs are exactly the chordal digraphs
- without single-connections
 chordal undirected graphs "are" exactly the chordal digraphs
- with single- and double-connections
 characterisation of a class of chordal digraphs

Main goal

complete list of forbidden subgraphs for chordal digraphs

Question

Does every chordal undirected graph appear as the double-connection structure of a semicomplete chordal digraph?

In other words,

do

implicitly forbid more structure?

chordal undirected graphs have more characterisations such as using minimal separators and cliques

Question

Is there a similar characterisation for chordal digraphs?

What is an appropriate notion of separator and clique?

definition of chordal digraphs is motivated and inspired by Kelly-width definition by Hunter and Kreutzer

⇒ strong algorithmic connections

Question

Which problems are easy on chordal digraphs?