

and R. Raman³

Subcoloring and Hypocoloring Interval Graphs

WG 2009

 $^1\mathrm{Rutgers}$ University, Camden. $^2\mathrm{University}$ of Iowa, USA. $^3\mathrm{Max-Planck-Institut}$ für Informatik, Germany

June 24, 2009

- Let G = (V, E) be a graph.
- A Subcoloring of G is a partition V₁, ..., V_k of V, such that each V_i is a union of *disjoint* cliques.

- Let G = (V, E) be a graph.
- A Subcoloring of G is a partition V₁, ..., V_k of V, such that each V_i is a union of *disjoint* cliques.

- Let G = (V, E) be a graph.
- A Subcoloring of G is a partition V₁, ..., V_k of V, such that each V_i is a union of *disjoint* cliques.

- Let G = (V, E) be a graph.
- A Subcoloring of G is a partition V₁, ..., V_k of V, such that each V_i is a union of *disjoint* cliques.

- Let G = (V, E) be a graph.
- A Subcoloring of G is a partition V₁, ..., V_k of V, such that each V_i is a union of *disjoint* cliques.

- Let G = (V, E) be a graph.
- A Subcoloring of G is a partition V₁, ..., V_k of V, such that each V_i is a union of *disjoint* cliques.

The subchromatic number of a graph G, χ_s(G) is the smallest k for which such a partition V₁, · · · , V_k exists.

Results

Approximation Algorithm

Questions

$$\chi_{s}(K_{n})=1$$

- $\chi_s(G) \leq \chi(G)$
- Infact, $\chi_{s}(G) \leq \min\{\chi(G), \chi(\overline{G})\}$

- $\chi_s(G) \leq \chi(G)$
- Infact, $\chi_{s}(G) \leq \min\{\chi(G), \chi(\overline{G})\}$

- $\chi_s(G) \leq \chi(G)$
- Infact, $\chi_{s}(G) \leq \min\{\chi(G), \chi(\overline{G})\}$

- $\chi_s(G) \leq \chi(G)$
- Infact, $\chi_{s}(G) \leq \min\{\chi(G), \chi(\overline{G})\}$

- $\chi_s(G) \leq \chi(G)$
- Infact, $\chi_{s}(G) \leq \min\{\chi(G), \chi(\overline{G})\}$

- $\chi_s(G) \leq \chi(G)$
- Infact, $\chi_{s}(G) \leq \min\{\chi(G), \chi(\overline{G})\}$

- Several Optimization problems on graphs are easier when the underlying graph is a clique, or a disjoint union of cliques.
- If χ_s(G) is *small*, obtaining a *good* solution to each subcolor class, and picking the best gives a good approximation.

- Given $l \le Ax \le u$, $A_{ii} \in \{0, 1\}$, $x \ge 0$
- Find the largest system of inequalities that has a feasible solution.

- Given $l \le Ax \le u$, $A_{ii} \in \{0, 1\}$, $x \ge 0$
- Find the largest system of inequalities that has a feasible solution.

- A is a clique-vertex incidence *matrix* if there is a graph G s.t. $x_i \in C_i$ iff $A_{ii} = 1$.
- Consecutive-ones \Rightarrow Interval Graphs.

- A is a clique-vertex incidence *matrix* if there is a graph G s.t. $x_i \in C_i$ iff $A_{ii} = 1$.
- Consecutive-ones \Rightarrow Interval Graphs.

• Computing a subcoloring gives a partition of the inequalities that are easier to handle.

• Computing a subcoloring gives a partition of the inequalities that are easier to handle.

- Item Pricing: Highway Problem.
- Unspittable Flow on a path.
- Distributed Computing: Cluster graph.

GraphU.BL.BGeneral
$$\frac{n}{\log_2 n/4} + O(\frac{n}{\log_2^2 n})$$
 $\frac{1}{2\log_2 n+1}$ [Albertson et al 89][Broersma et al. 03]Perfect $\sqrt{2n+1/4}$ $\sqrt{2n-1}$ [Erdös et al. 91]Chordal $\log n$ $\log n$ [Broersma et al. 03]

- *F*-free coloring: Color so that no color class has an induced graph isomorphic to *F*.
- *P_k*-free coloring: Each color class does not contain an induced *P_k* (path with *k* vertices).
- Subcoloring = *P*₃-free coloring.
- [Fiala et al. 01] Deciding if G has an F-free coloring with r ≥ 2 colors is NP-hard for triangle-free planar graphs of max. degree 4.
- [Stacho 08] Deciding of a chordal graph has a subcoloring with $r \ge 3$ colors is NP-hard. For r = 2, poly. time.
- [Hoàng Le 01] *P*₄-free coloring of comparability, co-comparability graphs is NP-hard.

 G = (V, E) is an interval graph if the vertices can be represented as an intersection graph of intervals.

Subchromatic Number Interval Graphs

- Pick the middle clique and recurse.
- $\chi_s(G) \leq \lfloor \log_2(n+1) \rfloor$

- [Albertson et al. 89]
- Interval graphs without an induced K_{1,k} have subchromatic number at most k - 1.

Subcoloring Interval Graphs

Dynamic Programming [Broersma et al.] Proceed in the order of the left endpoints of the intervals.

For a color class C, either

- *I*_{i+1} can be added to the last clique (if it does not intersect the previous clique), or
- I_{i+1} can form a new clique in C.
- Hence we only need max(C_{q-1}), min(C_q), max(C_q) to decide the two cases.

Subcoloring Interval Graphs

Dynamic Programming [Broersma et al.] Proceed in the order of the left endpoints of the intervals.

For a color class C, either

- *I*_{i+1} can be added to the last clique (if it does not intersect the previous clique), or
- I_{i+1} can form a new clique in C.
- Hence we only need max(C_{q-1}), min(C_q), max(C_q) to decide the two cases.

Subcoloring Interval Graphs

Dynamic Programming [Broersma et al.]

- State specified by a (3r + 1)-tuple
 [k; union', inter, union]
- where union', inter, union are r-tuples.
- Total states $O(n^{3r+1})$.
- Compute Boolean value B[k; union', inter, union]

Dynamic Programming [Broersma et al.]

- Compute Boolean value B[k; union', inter, union]
- B[k; union', inter, union] = 1 iff there is a subcoloring of G_k with r colors s.t.
 - *union_j* is the right endpoint of inter(K₁),
 - $union_j$ is the right endpoint of $union(K_{l-1})$
 - *inter_j* is the right end point of intersection of K_l

Dynamic Programming [Broersma et al.]

1	
	 I_{i+1}
	 -

- Running time $O(r \cdot n^{3r+1})$.
- Since $r = O(\log n)$,
- Running time O(n^{log n})

• We give a 3-approximation algorithm for subcoloring interval graphs.

BC(1)

- $\chi_s(BC(k)) \ge k$
- BC(k) can also be realized as an interval graph.

BC(2)

- $\chi_s(BC(k)) \ge k$
- BC(k) can also be realized as an interval graph.

BC(2)

- $\chi_s(BC(k)) \ge k$
- BC(k) can also be realized as an interval graph.

BC(3)

- $\chi_s(BC(k)) \ge k$
- BC(k) can also be realized as an interval graph.

BC(3)

- $\chi_s(BC(k)) \ge k$
- BC(k) can also be realized as an interval graph.

Phase I: Assign to each interval a *subclique number*, *scn*.

- Let
$$S_i = \{I : scn(I) = i\}$$

• Phase II: Compute a 3-subcoloring for each S_i.

- An interval *I* is *internal* if \exists $I_1, I_2 \subseteq \mathcal{I}$ s.t. $-I_1 \cap I_2 = \emptyset$. $-I_1 \subseteq I$ and $I_2 \subseteq I$
- Otherwise *I* is *external*

Results

Approximation Algorithm

Subclique Numbers

Phase I: Peel off External Intervals.

- 1. Set k = 1
- 2. While $\mathcal{I} \neq \emptyset$ do - $S_k = \{I : I \text{ is external }\}$ - $\mathcal{I} = \mathcal{I} \setminus S_k$ - k = k + 1
- 3. Return S_1, \cdots, S_k

Results

Approximation Algorithm

Subclique Numbers

Phase I: Peel off External Intervals.

- 1. Set k = 1
- 2. While $\mathcal{I} \neq \emptyset$ do - $S_k = \{I : I \text{ is external }\}$ - $\mathcal{I} = \mathcal{I} \setminus S_k$ - k = k + 1
- 3. Return S_1, \cdots, S_k

Lemma

If Phase I returns S_1, \dots, S_k , then there exists a BC(k) as an induced subgraph

Subcoloring $S = S_i$

- 1. $M_k =$ leftmost maximal clique.
- 2. $I_k =$ Interval in M_k with rightmost endpoint.
- 3. N_k = intervals not in M_k completely in I_k .

4.
$$S = S \setminus (N_k \cup M_k)$$

5. If
$$k = 0 \pmod{2} C_0 = C_0 \cup M_k$$

6. Else
$$C_1 = C_1 \cup M_k$$

$$7. C_2 = C_2 \cup N_k$$

8. Return C_0, C_1, C_2

- 1. $M_k =$ leftmost maximal clique.
- 2. $I_k =$ Interval in M_k with rightmost endpoint.
- 3. N_k = intervals not in M_k completely in I_k .

$$4. \ S = S \setminus (N_k \cup M_k)$$

5. If
$$k = 0 \pmod{2} C_0 = C_0 \cup M_k$$

6. Else
$$C_1 = C_1 \cup M_k$$

$$7. C_2 = C_2 \cup N_k$$

8. Return C_0, C_1, C_2

SubColor(G)

- 1. Compute scn(I) for each interval.
- 2. Let $S_i = \{I : scn(I) = i\}.$
- 3. Subcolor each S_i with at most 3 colors.

Theorem

Algorithm SubColor(G) is a 3-approximation for subcoloring interval graphs.

Proper Interval Graphs

- An interval graph is proper if it can be realized such that no interval properly contains another.
- This is equivalent to interval graphs that can be drawn with all intervals of equal length.

Proper Interval Graphs

- Partitioning an interval graph into the fewest number of proper interval graphs.
- SubColor(G) gives a 6-approximation.

Let k= fewest no. of proper interval graphs.

- $k \leq \chi_s(G)$
- A proper interval graph has *χ_s*(*G*) ≤ 2.
- Hence $\chi_s(G) \leq 2k$.
- Subcolor(G) $\leq 3\chi_s(G) \leq 6k$.

Given G = (V, E), $w : V \to \mathbb{N}$,

- Compute a sub-coloring
 {V₁,..., V_k} of G such that
- $\sum_{i=1}^{k} \max_{K \in V_i} w(K)$ is minimized, where

•
$$w(K) = \sum_{v \in K} w(v).$$

$$14 + 6 + 4 = 24$$

Given G = (V, E), $w : V \to \mathbb{N}$,

- Compute a sub-coloring
 {V₁,..., V_k} of G such that
- $\sum_{i=1}^{k} \max_{K \in V_i} w(K)$ is minimized, where

•
$$w(K) = \sum_{v \in K} w(v).$$

$$8 + 4 + 2 = 14$$

Given G = (V, E), $w : V \to \mathbb{N}$,

- Compute a sub-coloring
 {V₁,..., V_k} of G such that
- $\sum_{i=1}^{k} \max_{K \in V_i} w(K)$ is minimized, where

•
$$w(K) = \sum_{v \in K} w(v).$$

- Introduced by deWerra, et al. [DeWerra 05]
- NP-hard on bipartite graphs
- NP-hard for triangle-free planar graphs with $\Delta \ge 3$.
- PTAS for graphs of bounded tree-width.

- Hypocoloring is NP-complete on interval graphs.
- DSA ≤ Hypocoloring ≤ Max-Coloring ≤ O(log n) Hypocoloring.
- This gives an $O(\log n)$ approximation algorithm for hypocoloring.

- Polynomial time algorithm for subcoloring interval graphs ?
- Constant factor approximations for chordal/perfect graphs ?
- Constant factor approximation for disk graphs ?
- Constant factor approximation for hypocoloring interval graphs ?

