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Introduction Applications Results Approximation Algorithm Hypocoloring Questions

Subcoloring

Let G = (V ,E ) be a graph.
A Subcoloring of G is a partition
V1, · · · ,Vk of V , such that
each Vi is a union of disjoint
cliques.
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Subchromatic Number

S2

S1

The subchromatic number of a
graph G , χs(G ) is the smallest
k for which such a partition
V1, · · · ,Vk exists.
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Example

χs(Kn) = 1
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χs(G ) ≤ χ(G )

S2

S1

χs(G ) ≤ χ(G )

Infact,
χs(G ) ≤ min{χ(G ), χ(G )}
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Applications:
Approximation Algorithms

Several Optimization problems on graphs are easier when the
underlying graph is a clique, or a disjoint union of cliques.
If χs(G ) is small, obtaining a good solution to each subcolor class,
and picking the best gives a good approximation.
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Applications:
Maximum Feasible subsystems

1 1 0 0

0 1 0 1

1 1 1 0

x1

x2

x3

C1 C2 C3 C4

Given l ≤ Ax ≤ u, Aij ∈ {0, 1},
x ≥ 0
Find the largest system of
inequalities that has a feasible
solution.
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Applications:
Maximum Feasible subsystems

1 1 0 0

0 1 0 1

1 1 1 0

x1

x2

x3

C1 C2 C3 C4

A is a clique-vertex incidence
matrix if there is a graph G s.t.
xi ∈ Cj iff Aij = 1.
Consecutive-ones ⇒ Interval
Graphs.
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Maximum Feasible subsystems

1 1 0 0

0 1 0 1

1 1 1 0

x1

x2

x3

C1 C2 C3 C4

Computing a subcoloring gives a
partition of the inequalities that
are easier to handle.
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Applications

Item Pricing: Highway Problem.
Unspittable Flow on a path.
Distributed Computing: Cluster graph.
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Results

Graph U.B L.B
General n

log2 n/4 + O( n
log2

2 n
) n

2 log2 n+1 [Albertson et al 89]

[Broersma et al. 03]

Perfect
√

2n + 1/4
√

2n − 1 [Erdös et al. 91]

Chordal log n log n [Broersma et al. 03]
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Results

F -free coloring: Color so that no color class has an induced graph
isomorphic to F .
Pk -free coloring: Each color class does not contain an induced Pk
(path with k vertices).
Subcoloring = P3-free coloring.
[Fiala et al. 01] Deciding if G has an F -free coloring with r ≥ 2
colors is NP-hard for triangle-free planar graphs of max. degree 4.
[Stacho 08] Deciding of a chordal graph has a subcoloring with
r ≥ 3 colors is NP-hard. For r = 2, poly. time.
[Hoàng Le 01] P4-free coloring of comparability, co-comparability
graphs is NP-hard.
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Interval Graphs

a

b c d

ee

e

b c d

a

G = (V ,E ) is an interval graph
if the vertices can be
represented as an intersection
graph of intervals.
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Subchromatic Number
Interval Graphs

Pick the middle clique and
recurse.
χs(G ) ≤ blog2(n + 1)c
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K1,k-free graphs

K1,3 [Albertson et al. 89]
Interval graphs without an
induced K1,k have subchromatic
number at most k − 1.
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Subcoloring Interval Graphs

Dynamic Programming [Broersma et al.]
Proceed in the order of the left endpoints of the intervals.

Ii+1

For a color class C , either
Ii+1 can be added to the last
clique (if it does not intersect
the previous clique), or
Ii+1 can form a new clique in C .
Hence we only need
max(Cq−1),min(Cq),max(Cq)
to decide the two cases.
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Subcoloring Interval Graphs

Dynamic Programming [Broersma et al.]

Ii+1

State specified by a
(3r + 1)-tuple
[k; union′, inter , union]

where union′, inter , union are
r -tuples.
Total states O(n3r+1).
Compute Boolean value
B[k; union′, inter , union]
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Subcoloring Interval Graphs

Dynamic Programming [Broersma et al.]

Ii+1

Compute Boolean value
B[k; union′, inter , union]

B[k; union′, inter , union] = 1 iff
there is a subcoloring of Gk
with r colors s.t.

– unionj is the right endpoint of
inter(Kl ),

– unionj is the right endpoint of
union(Kl−1)

– interj is the right end point of
intersection of Kl
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Subcoloring Interval Graphs

Dynamic Programming [Broersma et al.]

Ii+1
Running time O(r · n3r+1).
Since r = O(log n),
Running time O(nlog n)
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A 3-approximation algorithm

We give a 3-approximation algorithm for subcoloring interval
graphs.
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Binary clique

BC(1)

χs(BC (k)) ≥ k
BC (k) can also be realized as
an interval graph.
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Binary clique

BC(2)

χs(BC (k)) ≥ k
BC (k) can also be realized as
an interval graph.
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Approximation Algorithm

Phase I: Assign to each interval a subclique number, scn.
– Let Si = {I : scn(I ) = i}

Phase II: Compute a 3-subcoloring for each Si .
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Approximation Algorithm

Subclique Numbers

I1 I2

I

Internal

External

An interval I is internal if ∃
I1, I2 ⊆ I s.t.

– I1 ∩ I2 = ∅.
– I1 ⊆ I and I2 ⊆ I

Otherwise I is external
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Approximation Algorithm

Subclique Numbers

I1 I2

I

Internal

External
S1

Phase I: Peel off External
Intervals.

1. Set k = 1
2. While I 6= ∅ do

– Sk = {I : I is external }
– I = I \ Sk
– k = k + 1

3. Return S1, · · · ,Sk
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Approximation Algorithm

Lemma
If Phase I returns S1, · · · ,Sk , then there exists a BC (k) as an
induced subgraph
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Approximation Algorithm

Subcoloring S = Si

a

b

c

d
e

f g

1. Mk = leftmost maximal clique.
2. Ik = Interval in Mk with

rightmost endpoint.
3. Nk = intervals not in Mk

completely in Ik .
4. S = S \ (Nk ∪Mk)

5. If k = 0(mod)2 C0 = C0 ∪Mk

6. Else C1 = C1 ∪Mk

7. C2 = C2 ∪ Nk

8. Return C0,C1,C2
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Approximation Algorithm

SubColor(G )
1. Compute scn(I ) for each interval.
2. Let Si = {I : scn(I ) = i}.
3. Subcolor each Si with at most 3 colors.

Theorem
Algorithm SubColor(G ) is a 3-approximation for subcoloring interval
graphs.
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Proper Interval Graphs

An interval graph is proper if it
can be realized such that no
interval properly contains
another.
This is equivalent to interval
graphs that can be drawn with
all intervals of equal length.
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Proper Interval Graphs

Partitioning an interval graph
into the fewest number of
proper interval graphs.
SubColor(G) gives a
6-approximation.
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Proper Interval Graphs

Let k= fewest no. of proper
interval graphs.

k ≤ χs(G )

A proper interval graph has
χs(G ) ≤ 2.
Hence χs(G ) ≤ 2k.
Subcolor(G ) ≤ 3χs(G ) ≤ 6k.
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Hypocoloring

888

4 4 4 4

22

8 + 4 + 2 = 14

Given G = (V ,E ), w : V → N,
Compute a sub-coloring
{V1, . . . ,Vk} of G such that∑k

i=1 maxK∈Vi w(K ) is
minimized, where
w(K ) =

∑
v∈K w(v).
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Hypocoloring

Introduced by deWerra, et al. [DeWerra 05]
NP-hard on bipartite graphs
NP-hard for triangle-free planar graphs with ∆ ≥ 3.
PTAS for graphs of bounded tree-width.
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Hypocoloring

Hypocoloring is NP-complete on interval graphs.
DSA ≤ Hypocoloring ≤ Max-Coloring ≤ O(log n) Hypocoloring.
This gives an O(log n) approximation algorithm for hypocoloring.
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Questions

Polynomial time algorithm for subcoloring interval graphs ?
Constant factor approximations for chordal/perfect graphs ?
Constant factor approximation for disk graphs ?
Constant factor approximation for hypocoloring interval graphs ?
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