Directed Rank-Width and Displit Decomposition

Mamadou Moustapha KANTÉ Michael Rao

WG'09, Montpellier

June 25, 2009

• Tree-width, clique-width or rank-width are interesting.

- They yield Fixed Parameter Tractable algorithms.
- They give structural informations on graphs.

Rank-width is particularly interesting.

- It is equivalent to clique-width (OS, 06)
- Recognition of $RWD(\leq k)$ in cubic-time (HO, 07).
- Characterization by a finite list of graphs to exclude as vertex-minors (O, 05).
- Algebraic characterization (CK, 07).
- Rank-width is related to split decomposition (O, 05).

• Tree-width, clique-width or rank-width are interesting.

- They yield Fixed Parameter Tractable algorithms.
- They give structural informations on graphs.
- Rank-width is particularly interesting.
 - It is equivalent to clique-width (OS, 06).
 - Recognition of $RWD(\leq k)$ in cubic-time (HO, 07).
 - Characterization by a finite list of graphs to exclude as vertex-minors (O, 05).
 - Algebraic characterization (CK, 07).
 - Rank-width is related to split decomposition (O, 05).

Tree-width, clique-width or rank-width are interesting.

- They yield Fixed Parameter Tractable algorithms.
- They give structural informations on graphs.
- Rank-width is particularly interesting.
 - It is equivalent to clique-width (OS, 06).
 - Recognition of $RWD(\leq k)$ in cubic-time (HO, 07).
 - Characterization by a finite list of graphs to exclude as vertex-minors (O, 05).
 - Algebraic characterization (CK, 07).
 - Rank-width is related to split decomposition (O, 05).

Tree-width, clique-width or rank-width are interesting.

- They yield Fixed Parameter Tractable algorithms.
- They give structural informations on graphs.
- Rank-width is particularly interesting.
 - It is equivalent to clique-width (OS, 06).
 - Recognition of $RWD(\leq k)$ in cubic-time (HO, 07).
 - Characterization by a finite list of graphs to exclude as vertex-minors (O, 05).
 - Algebraic characterization (CK, 07).
 - Rank-width is related to split decomposition (O, 05).

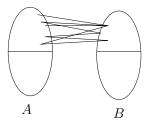
• Tree-width, clique-width or rank-width are interesting.

- They yield Fixed Parameter Tractable algorithms.
- They give structural informations on graphs.
- Rank-width is particularly interesting.
 - It is equivalent to clique-width (OS, 06).
 - Recognition of $RWD(\leq k)$ in cubic-time (HO, 07).
 - Characterization by a finite list of graphs to exclude as vertex-minors (O, 05).
 - Algebraic characterization (CK, 07).
 - Rank-width is related to split decomposition (O, 05).

Rank-Width and Split Decomposition

Split decomposition generalizes modular decomposition.

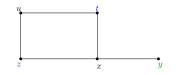
- A split in an undirected graph.
 - $A \cup B = V_G$.
 - $\bullet |A|, |B| \ge 2.$
- Prime graph = no split.



 $rwd(G) = max\{rwd(H) \mid H \text{ induced prime wrt to split decomposition}\}$

Nice Characterization of RWD(=1)

- y is a pendant vertex.
- z and t are twins.



The following are equivalent

- G has rank-width 1.
- G is obtained by creating twins or adding pendant vertices.
- G is a distance-hereditary graph.
- G is completely decomposable by the split decomposition.

• distance hereditary: $d_H(x, y) = d_G(x, y)$ for any connected subgraph *H*.

Limits

Rank-width is defined only for undirected graphs.

Limits

Rank-width is defined only for undirected graphs.

But

- There exist several generalizations of rank-width to directed graphs. [Kanté]
 - ► *GF*(4)-rank-width and bi-rank-width.
- *GF*(4)-rank-width has also good combinatorial properties.
 - Some of the known properties of undirected rank-width can be generalized to GF(4)-rank-width.

Limits

Rank-width is defined only for undirected graphs.

But

- There exist several generalizations of rank-width to directed graphs. [Kanté]
 - ► *GF*(4)-rank-width and bi-rank-width.
- GF(4)-rank-width has also good combinatorial properties.
 - Some of the known properties of undirected rank-width can be generalized to GF(4)-rank-width.

Goal: A characterization of GF(4)- $RWD(\leq 1)$ similar to the one of $RWD(\leq 1)$.

Outline

Directed Rank-Width

2 Displit Decomposition

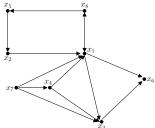
Oigraphs of Rank-Width 1

- The Theorem
- Proof of Theorem

Representation of a digraph over GF(4)

- 4 elements $\{0, 1, a, a^2\}$ in GF(4).
 - ► $1 + \alpha + \alpha^2 = 0$.
 - ► 0³ = 1.
 - $\alpha + \alpha = 0$ for all $\alpha \in \{0, 1, 0, 0^2\}$.

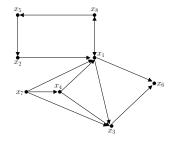
		<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	X 5	<i>x</i> ₆	X 7	<i>X</i> 8	x_5
	<i>X</i> 1	0	©2	Q	©2	0	۵	0 ²	1	│ ● ●
	<i>X</i> ₂	Ũ	0	0	0	0 ²	0	0	0	
	<i>X</i> 3	0 ²	0	0	0 ²	0	۵	©2	0	L
<i>M</i> _{<i>G</i>} =	<i>X</i> 4	Ũ	0	۵	0	0	0	0 ²	0	x_2
	<i>X</i> 5	0	Q	0	0	0	0	0	0 ²	<i>x</i> 7 •
	<i>X</i> 6	0 ²	0	© ²	0	0	0	0	0	<i>x</i> 7 -
	X 7	Ũ	0	Ø	۵	0	0	0	0	
	<i>X</i> 8	1	0	0	0	Ø	0	0	0	



Cut-Rank Function

$$\mathit{cutrk}_G(X) = \mathsf{rk}\left(\mathit{M}_G[X, \mathit{V}_G ackslash X]
ight)$$

		<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>X</i> 6	X 7	<i>X</i> 8
$M_G =$	<i>X</i> ₁	0	0 ²	Ũ	0 ²	0	O	0 ²	1
	<i>X</i> 2	Ũ	0	0	0	© ²	0	0	0
	<i>X</i> 3	0 ²	0	0	0 ²	0	O	0 ²	0
	<i>X</i> ₄	Ũ	0	۵	0	0	0	0 ²	0
	X 5	0	Ũ	0	0	0	0	0	0 ²
	<i>X</i> 6	0 ²	0	0 ²	0	0	0	0	0
	X 7	Ũ	0	Ũ	Ũ	0	0	0	0
	<i>X</i> 8	1	0	0	0	Ũ	0	0	0



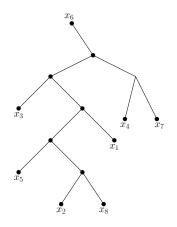
- $\sigma(\mathbf{a}) = \mathbf{a}^2, \ \sigma(\mathbf{a}^2) = \mathbf{a}$: σ is an automorphism
- $M_G[V_G \setminus X, X] = \sigma \left(M_G[X, V_G \setminus X] \right)$
- \implies *cutrk*_G is symmetric and submodular.

- A layout is a pair (T, \mathcal{L}) .
 - T is a sub-cubic tree.
 - $\mathcal{L}: V_G \to L_T$ is a bijection.

• *e* induces a bipartition $(X_e, V_G \setminus X_e)$ of V_G .

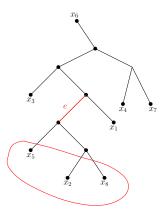
•
$$wd(e) = cutrk_G(X_e) = cutrk_G(V_G \setminus X_e).$$

• $\operatorname{rwd}(T, \mathcal{L}) = \max_{e} \{ wd(e) \}$



- A layout is a pair (T, \mathcal{L}) .
 - T is a sub-cubic tree.
 - $\mathcal{L}: V_G \to L_T$ is a bijection.
- *e* induces a bipartition $(X_e, V_G \setminus X_e)$ of V_G .

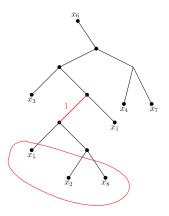
•
$$wd(e) = cutrk_G(X_e) = cutrk_G(V_G \setminus X_e).$$



- A layout is a pair (T, \mathcal{L}) .
 - T is a sub-cubic tree.
 - $\mathcal{L}: V_G \to L_T$ is a bijection.
- *e* induces a bipartition $(X_e, V_G \setminus X_e)$ of V_G .

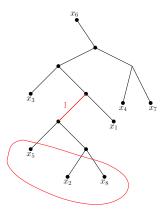
•
$$wd(e) = cutrk_G(X_e) = cutrk_G(V_G \setminus X_e)$$

```
• \operatorname{rwd}(T, \mathcal{L}) = \max_{e} \{ wd(e) \}
```



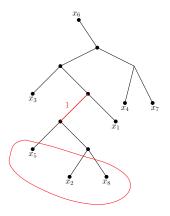
- A layout is a pair (T, \mathcal{L}) .
 - T is a sub-cubic tree.
 - $\mathcal{L}: V_G \to L_T$ is a bijection.
- *e* induces a bipartition $(X_e, V_G \setminus X_e)$ of V_G .

•
$$wd(e) = cutrk_G(X_e) = cutrk_G(V_G \setminus X_e).$$



- A layout is a pair (T, \mathcal{L}) .
 - T is a sub-cubic tree.
 - $\mathcal{L}: V_G \to L_T$ is a bijection.
- *e* induces a bipartition $(X_e, V_G \setminus X_e)$ of V_G .

•
$$wd(e) = cutrk_G(X_e) = cutrk_G(V_G \setminus X_e)$$
.



$\mathsf{rwd}(G) = \min\{\mathsf{rwd}(T, \mathcal{L}) \mid (T, \mathcal{L}) \text{ layout of } G\}$

Some Properties

- Directed rank-width is equivalent to clique-width.
 - $rwd(G) \leq cwd(G) \leq 2 \cdot 4^{rwd(G)} 1.$
- Directed $RWD(\leq k)$ recognizable in cubic-time.
- Characterization by a finite list of excluded configurations.
- Algebraic operations for solving MS-definable problems exist.
- It is not related to split decomposition but to displit decomposition.

Some Properties

- Directed rank-width is equivalent to clique-width.
 - $\operatorname{rwd}(G) \leq \operatorname{cwd}(G) \leq 2 \cdot 4^{\operatorname{rwd}(G)} 1.$
- Directed $RWD(\leq k)$ recognizable in cubic-time.
- Characterization by a finite list of excluded configurations.
- Algebraic operations for solving MS-definable problems exist.
- It is not related to split decomposition but to displit decomposition.

Plan

Directed Rank-Width

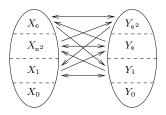
2 Displit Decomposition

Digraphs of Rank-Width 1
 The Theorem

Proof of Theorem

A displit in a graph is a bipartition $\{X, Y\}$ (with $|X| \ge 2 \le |Y|$) such that $cutrk_G(X) = cutrk_G(Y) = 1$

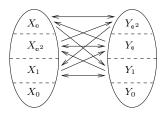
- Generalize undirected split.
- If a graph has a displit, then it can be decomposed.
- The displit decomposition is the recursive decomposition of a graph by simple displit decompositions, until every graph is prime (i.e. has no displit).



A displit in a graph is a bipartition $\{X, Y\}$ (with $|X| \ge 2 \le |Y|$) such that $cutrk_G(X) = cutrk_G(Y) = 1$

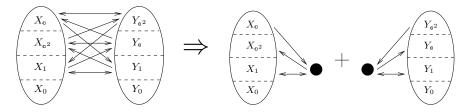
Generalize undirected split.

- If a graph has a displit, then it can be decomposed.
- The displit decomposition is the recursive decomposition of a graph by simple displit decompositions, until every graph is prime (i.e. has no displit).



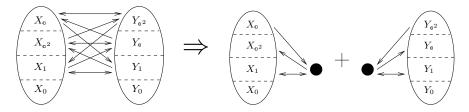
A displit in a graph is a bipartition $\{X, Y\}$ (with $|X| \ge 2 \le |Y|$) such that $cutrk_G(X) = cutrk_G(Y) = 1$

- Generalize undirected split.
- If a graph has a displit, then it can be decomposed.
- The displit decomposition is the recursive decomposition of a graph by simple displit decompositions, until every graph is prime (i.e. has no displit).



A displit in a graph is a bipartition $\{X, Y\}$ (with $|X| \ge 2 \le |Y|$) such that $cutrk_G(X) = cutrk_G(Y) = 1$

- Generalize undirected split.
- If a graph has a displit, then it can be decomposed.
- The displit decomposition is the recursive decomposition of a graph by simple displit decompositions, until every graph is prime (i.e. has no displit).



Displit decomposition respects the decomposition frame of Cunningham and Edmonds

Thus it can be represented by a unique undirected tree.

This tree is called the Displit decomposition tree.

Theorem

Displit decomposition tree can be computed in O(nm)-time.

Lemma

Displit decomposition respects the decomposition frame of Cunningham and Edmonds

Thus it can be represented by a unique undirected tree.

This tree is called the Displit decomposition tree.

Theorem

Displit decomposition tree can be computed in O(nm)-time.

Lemma

Displit decomposition respects the decomposition frame of Cunningham and Edmonds

Thus it can be represented by a unique undirected tree.

This tree is called the Displit decomposition tree.

Theorem

Displit decomposition tree can be computed in O(nm)-time.

Lemma

Displit decomposition respects the decomposition frame of Cunningham and Edmonds

Thus it can be represented by a unique undirected tree.

This tree is called the Displit decomposition tree.

Theorem

Displit decomposition tree can be computed in O(nm)-time.

Lemma

Plan

Directed Rank-Width

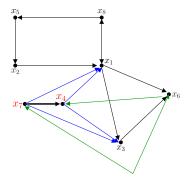
2 Displit Decomposition

Oigraphs of Rank-Width 1

- The Theorem
- Proof of Theorem

x and y are dtwins if
$$(A = N^+_{G-y}(x), B = N^-_{G-y}(x))$$

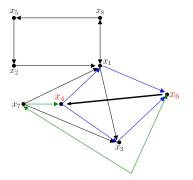
•
$$N_{G-x}^+(y) = A, \ N_{G-x}^-(y) = B$$



• x and y are dtwins if
$$(A = N_{G-y}^+(x), B = N_{G-y}^-(x))$$

•
$$N_{G-x}^+(y) = A, \ N_{G-x}^-(y) = B$$

•
$$N^+_{G-x}(y) = B$$
, $N^-_{G-x}(y) = (B \setminus A) \cup (A \setminus B)$

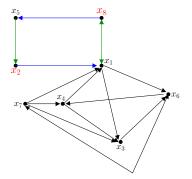


• x and y are dtwins if
$$(A = N_{G-y}^+(x), B = N_{G-y}^-(x))$$

•
$$N_{G-x}^+(y) = A, \ N_{G-x}^-(y) = B$$

•
$$N^+_{G-x}(y) = B, \ N^-_{G-x}(y) = (B \setminus A) \cup (A \setminus B)$$

•
$$N^+_{G-x}(y) = (A \setminus B) \cup (B \setminus A), \ N^-_{G-x}(y) = A$$

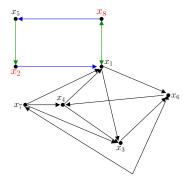


x and y are dtwins if
$$(A = N^+_{G-y}(x), B = N^-_{G-y}(x))$$

•
$$N^+_{G-x}(y) = A, \ N^-_{G-x}(y) = B$$

•
$$N^+_{G-x}(y) = B, \ N^-_{G-x}(y) = (B \setminus A) \cup (A \setminus B)$$

•
$$N^+_{G-x}(y) = (A \setminus B) \cup (B \setminus A), \ N^-_{G-x}(y) = A$$



Proposition

 $\{\{x, y\}, -\}$ is a displit if and only if x and y are dtwins or x is pendant to y or y is pendant to x.

The Main Theorem

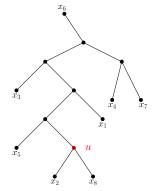
Let *G* be a connected digraph with at least 2 vertices. Then the following conditions are equivalent:

- 1. G is completely decomposable by the displit decomposition.
- 2. *G* can be obtained from a single vertex by creating dtwins or adding pendant vertices.
- 3. G has rank-width 1.
- 4. For every $W \subseteq V$ with $|W| \ge 4$, G[W] has a non-trivial displit.
- 5. u(G) is distance-hereditary and for every $W \subseteq V$ with $|W| \leq 5$, $rwd(G[W]) \leq 1$.
- u(G) = G without directions on arcs.
- completely decomposable = no prime nodes.
- Condition 1 gives an *O*(*nm*)-time algorithm.
- Condition 5 gives a characterization by forbidden induced subgraphs.

1 \Longrightarrow 2: By Induction

Completely Decomposable \Longrightarrow sum of dtwins and pendant vertices

- Let (T, \mathcal{L}) a displit decomposition of *G*.
- *u* is degenerated (or linear).
- x₂ and x₈ are dtwins.



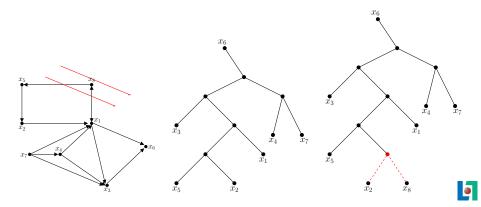
Inductive hypothesis: $G - x_2$ sum of dtwins and pendant vertices.

 \implies G also.

$2 \Longrightarrow 3$: By Induction

Sum of dtwins and pendant vertices \implies rwd(G) = 1

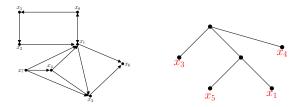
- x₈ is the last added vertex.
- Inductive hypothesis: $G x_8$ has rank-width 1.
- \implies *G* has rank-width 1 since x_2 and x_8 forms a dtwin.



$3 \Longrightarrow 4$

 $\mathsf{rwd}(G) = 1 \Longrightarrow G[W]$ has a displit, $|W| \ge 4$

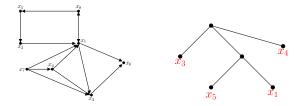
- G[W] has rank-width at most 1.
- $\{\{x_3, x_4\}, \{x_5, x_1\}\}$ is a displit.



$3 \Longrightarrow 4, 4 \Longrightarrow 1$

 $\mathsf{rwd}(G) = 1 \Longrightarrow G[W]$ has a displit, $|W| \ge 4$

- G[W] has rank-width at most 1.
- $\{\{x_3, x_4\}, \{x_5, x_1\}\}$ is a displit.



- \neg completely decomposable $\implies \exists G[W]$ prime, $|W| \ge 4$
 - *G* not completely decomposable $\implies \exists$ a prime node *u*.
 - *u* adjacent with at least 4 vertices of *G* (otherwise *u* is degenerated).
 - \implies \exists an induced subgraph of *G* which is prime.

$3 \Longleftrightarrow 5$

 $rwd(G) = 1 \implies u(G)$ distance hereditary and $rwd(G[W]) \le 1, |W| \le 5$

- $rwd(G) = 1 \implies rwd(u(G)) = 1.$
- \implies u(G) is distance-hereditary graph.

u(G) distance hereditary and $rwd(G[W]) \le 1$, $|W| \le 5 \implies rwd(G) = 1$

- rwd(G) > 1 and u(G) is distance hereditary.
- Let W st rwd(G[W]) > 1 be minimal (wrt this property).

• One can prove the following (working on the split decomposition tree of u(G)):

- u(G[W]) has no pendant vertex,
- ▶ if *u*(*G*[*W*]) has a false twin, then *G*[*W*] has at most 4 vertices,
- if u(G[W]) has no false twin and no pendant vertex, then u(G) is complete,
- ▶ if *u*(*G*[*W*]) is complete, then *G*[*W*] has at most 5 vertices.
- $\implies \exists W \text{ st rwd}(G[W]) > 1 \text{ with } |W| \le 5.$

Conclusion and Perspectives

Conclusion

- Nice characterization of digraphs of rank-width 1.
- Extends to digraphs with labels (from fields) on the arcs.

Remarks

- A notion of directed split by Cunningham.
- bi-rank-width $2 \equiv$ completely decomposable by directed split decomposition.

Perspectives

- Similar characterization for bi-rank-width 2.
- A better combinatorial characterization of digraphs of rank-width 1.

Conclusion and Perspectives

