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Introduction

Graph Complexity Measures

Tree-width, clique-width or rank-width are interesting.
I They yield Fixed Parameter Tractable algorithms.
I They give structural informations on graphs.

Rank-width is particularly interesting.
I It is equivalent to clique-width (OS, 06).
I Recognition of RWD(≤ k) in cubic-time (HO, 07).
I Characterization by a finite list of graphs to exclude as vertex-minors (O, 05).

I Algebraic characterization (CK, 07).
I Rank-width is related to split decomposition (O, 05).
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Introduction

Rank-Width and Split Decomposition

Split decomposition generalizes modular decomposition.

A split in an undirected graph.
I A ∪ B = VG.
I |A|, |B| ≥ 2.

Prime graph = no split. A B

rwd(G) = max{rwd(H) | H induced prime wrt to split decomposition}
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Introduction

Nice Characterization of RWD(= 1)

y is a pendant vertex.

z and t are twins.

u t

z x y

The following are equivalent
G has rank-width 1.

G is obtained by creating twins or adding pendant vertices.

G is a distance-hereditary graph.

G is completely decomposable by the split decomposition.

G is

“ ”
-free.

distance hereditary: dH(x , y) = dG(x , y) for any connected subgraph H.
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Introduction

Limits

Rank-width is defined only for undirected graphs.

But

There exist several generalizations of rank-width to directed graphs. [Kanté]
I GF (4)-rank-width and bi-rank-width.

GF (4)-rank-width has also good combinatorial properties.
I Some of the known properties of undirected rank-width can be generalized

to GF (4)-rank-width.

Goal: A characterization of GF (4)-RWD(≤ 1) similar to the one of RWD(≤ 1).
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Introduction

Outline

1 Directed Rank-Width

2 Displit Decomposition

3 Digraphs of Rank-Width 1
The Theorem
Proof of Theorem
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Directed Rank-Width

Representation of a digraph over GF(4)

4 elements {0,1, a, a2} in GF(4).
I 1 + a + a

2 = 0.
I a

3 = 1.
I α+ α = 0 for all α ∈ {0, 1, a, a2}.

MG =

x1 x2 x3 x4 x5 x6 x7 x8

x1 0 a
2

a a
2 0 a a

2 1
x2 a 0 0 0 a

2 0 0 0
x3 a

2 0 0 a
2 0 a a

2 0
x4 a 0 a 0 0 0 a

2 0
x5 0 a 0 0 0 0 0 a

2

x6 a
2 0 a

2 0 0 0 0 0
x7 a 0 a a 0 0 0 0
x8 1 0 0 0 a 0 0 0

x2

x7

x3

x6

x1

x4

x5 x8
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Directed Rank-Width

Cut-Rank Function
cutrkG(X ) = rk

(
MG[X ,VG\X ]

)

MG =

x1 x2 x3 x4 x5 x6 x7 x8

x1 0 a
2

a a
2 0 a a

2 1
x2 a 0 0 0 a

2 0 0 0
x3 a

2 0 0 a
2 0 a a

2 0
x4 a 0 a 0 0 0 a

2 0
x5 0 a 0 0 0 0 0 a

2

x6 a
2 0 a

2 0 0 0 0 0
x7 a 0 a a 0 0 0 0
x8 1 0 0 0 a 0 0 0

x2

x7

x3

x6

x1

x4

x5 x8

σ(a) = a
2, σ(a2) = a: σ is an automorphism

MG[VG\X ,X ] = σ
(

MG[X ,VG\X ]
)

=⇒ cutrkG is symmetric and submodular.
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Directed Rank-Width

Directed Rank-Width

A layout is a pair (T ,L).
I T is a sub-cubic tree.
I L : VG → LT is a bijection.

e induces a bipartition (Xe,VG\Xe) of VG.

wd(e) = cutrkG(Xe) = cutrkG(VG\Xe).

rwd(T ,L) = max
e
{wd(e)}·

x3

x1

x2 x8

x5

x6

x4 x7

rwd(G) = min{rwd(T ,L) | (T ,L) layout of G}
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Directed Rank-Width

Some Properties

Directed rank-width is equivalent to clique-width.
I rwd(G) ≤ cwd(G) ≤ 2 · 4rwd(G) − 1.

Directed RWD(≤ k) recognizable in cubic-time.

Characterization by a finite list of excluded configurations.

Algebraic operations for solving MS-definable problems exist.

It is not related to split decomposition but to displit decomposition.
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Displit Decomposition

Plan

1 Directed Rank-Width

2 Displit Decomposition

3 Digraphs of Rank-Width 1
The Theorem
Proof of Theorem
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Displit Decomposition

Displit Decomposition
A displit in a graph is a bipartition {X ,Y} (with |X | ≥ 2 ≤ |Y |) such that

cutrkG(X ) = cutrkG(Y ) = 1

Generalize undirected split.

If a graph has a displit, then it can be decomposed.

The displit decomposition is the recursive decomposition of a graph by simple
displit decompositions, until every graph is prime (i.e. has no displit).

X0

Ya2
Y1X1

Xa2Xa
Ya
Y0

⇒
Ya2
Y1

Ya
Y0X0

X1

Xa2Xa
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Displit Decomposition

Displit Decomposition Tree

Displit decomposition respects the decomposition frame of Cunningham and Edmonds

Thus it can be represented by a unique undirected tree.

This tree is called the Displit decomposition tree.

Theorem
Displit decomposition tree can be computed in O(nm)-time.

Lemma
rwd(G) = max{rwd(H) | H induced prime wrt to displit decomposition}
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Digraphs of Rank-Width 1 The Theorem

Dtwins
x and y are dtwins if (A = N+

G−y (x), B = N−G−y (x))

N+
G−x(y) = A, N−G−x(y) = B x2

x7

x3

x6

x1

x4

x5 x8

Proposition
{{x , y},−} is a displit if and only if x and y are dtwins or x is pendant to y or y
is pendant to x .
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Digraphs of Rank-Width 1 The Theorem

The Main Theorem

Let G be a connected digraph with at least 2 vertices. Then the following conditions
are equivalent:

1. G is completely decomposable by the displit decomposition.

2. G can be obtained from a single vertex by creating dtwins or adding pendant
vertices.

3. G has rank-width 1.

4. For every W ⊆ V with |W | ≥ 4, G[W ] has a non-trivial displit.

5. u(G) is distance-hereditary and for every W ⊆ V with |W | ≤ 5, rwd(G[W ]) ≤ 1.

u(G) = G without directions on arcs.

completely decomposable = no prime nodes.

Condition 1 gives an O(nm)-time algorithm.

Condition 5 gives a characterization by forbidden induced subgraphs.
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Digraphs of Rank-Width 1 Proof of Theorem

1 =⇒ 2: By Induction

Completely Decomposable =⇒ sum of dtwins and pendant vertices

Let (T ,L) a displit decomposition of G.

u is degenerated (or linear).

x2 and x8 are dtwins.

x3

x1

x2 x8

x5

x6

x4 x7

u

Inductive hypothesis: G − x2 sum of dtwins and pendant vertices.

=⇒ G also.
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Digraphs of Rank-Width 1 Proof of Theorem

2 =⇒ 3: By Induction
Sum of dtwins and pendant vertices =⇒ rwd(G) = 1

x8 is the last added vertex.

Inductive hypothesis: G − x8 has rank-width 1.

=⇒ G has rank-width 1 since x2 and x8 forms a dtwin.

x2

x7

x3

x6

x1

x4

x5 x8

x3

x1

x5

x6

x4 x7

x2

x3

x1

x2 x8

x5

x6

x4 x7
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Digraphs of Rank-Width 1 Proof of Theorem

3 =⇒ 4
rwd(G) = 1 =⇒ G[W ] has a displit, |W | ≥ 4

G[W ] has rank-width at most 1.

{{x3, x4}, {x5, x1}} is a displit.

x2

x7

x3

x6

x1

x4

x5 x8

x3

x1x5

x4

¬ completely decomposable =⇒ ∃ G[W ] prime, |W | ≥ 4

G not completely decomposable =⇒ ∃ a prime node u.

u adjacent with at least 4 vertices of G (otherwise u is degenerated).

=⇒ ∃ an induced subgraph of G which is prime.
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Digraphs of Rank-Width 1 Proof of Theorem

3⇐⇒ 5

rwd(G) = 1 =⇒ u(G) distance hereditary and rwd(G[W ]) ≤ 1, |W | ≤ 5

rwd(G) = 1 =⇒ rwd(u(G)) = 1.

=⇒ u(G) is distance-hereditary graph.

u(G) distance hereditary and rwd(G[W ]) ≤ 1, |W | ≤ 5 =⇒ rwd(G) = 1

rwd(G) > 1 and u(G) is distance hereditary.

Let W st rwd(G[W ]) > 1 be minimal (wrt this property).

One can prove the following (working on the split decomposition tree of u(G)):
I u(G[W ]) has no pendant vertex,
I if u(G[W ]) has a false twin, then G[W ] has at most 4 vertices,
I if u(G[W ]) has no false twin and no pendant vertex, then u(G) is complete,
I if u(G[W ]) is complete, then G[W ] has at most 5 vertices.

=⇒ ∃W st rwd(G[W ]) > 1 with |W | ≤ 5.
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Conclusion and Perspectives

Conclusion and Perspectives

Conclusion
Nice characterization of digraphs of rank-width 1.

Extends to digraphs with labels (from fields) on the arcs.

Remarks
A notion of directed split by Cunningham.

bi-rank-width 2 ≡ completely decomposable by directed split decomposition.

Perspectives

Similar characterization for bi-rank-width 2.

A better combinatorial characterization of digraphs of rank-width 1.
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