Maximum Series-Parallel Subgraph

Gruia Călinescu

Illinois Institute of Technology

Joint work with Cristina Fernandes and Hemanshu Kaul

SP graphs

Simple graph is series-parallel:

- No K_4 minor/subdivision
- Partial 2-tree. Maximal SP graph is a 2-tree
- Arises from a forest by adding parallel edges, subdividing edges, and at the end removing parallel edges to keep the graph simple.

Treewidth decomposition of maximal SP graphs

The problem , and known results

On input (V, E), find maximum $F \subseteq E$ such that (V, F) is a SP graph. Known to be NP-Hard, approximation 1/2 trivial as for SP graphs, $|E| \leq 2|V| - 3$.

Also, weighted: Maximum Spanning Tree achieves 1/2 of OPT (from arboricity).

All our graphs from are simple (except when called multigraphs).

<u>New results</u>

- 7/12 approximation using spruce structures
- Maximum spruce structure is a 2/3-approximation
- Computing maximum spruce structure NP-Hard

A **spruce** has two bases and several tips. A tip is adjacent exactly to the two bases. If bases are adjacent, the spruce is complete.

A **spruce structure** has blocks spruces or bridges.

If blocks of finite size, the approach fails.

gain(S) := cyclomatic number.

For complete spruces, gain is the number of tips; adjusted gain $\widehat{gain} := gain$.

For incomplete spruces, gain is one less then the number of tips; adjusted gain $\widehat{gain} := gain - 1$. Selecting spruces of large gain without discarding fails (a).

Degenerate spruces have $\widehat{gain} \leq 0$. Only two types (b).

Local improvement examples

What we add

Spruces with tips isolated vertices.

What do we remove

We keep a weighted forest, with weights 1 between each tip and one of the bases, and \widehat{gain} between bases. Trees: T_C

 $index_Q(x, y)$ is an edge in T_C of minimum weight in the path in T_C from x to y. If x and y are in different components of Q, then let $index_Q(x, y)$ be undefined and consider its weight to be zero. CONSTRUCT-SPRUCE-STRUCTURE (G)

1 $Q \leftarrow \emptyset$ $\mathbf{2}$ while there are x and y such that $S_Q(x, y)$ is defined and $\widehat{gain}(S_Q(x, y)) > w(index_Q(x, y))$ do if $index_Q(x, y)$ is undefined 3 then $Q \leftarrow Q \cup \{S_Q(x, y)\}$ $\mathbf{4}$ else let x' and y' be the endpoints of $index_Q(x, y)$ 5let S' be the spruce in Q containing x' and y' $Q \leftarrow Q \setminus \{S'\} \cup \{S_Q(x, y)\}$ 6 $\overline{7}$ if x' or y' is a tip of S'then let z be between x', y', a tip of S'let $\{e, f\}$ be the edges of S' touching z8 9 10 $S \leftarrow S' - \{e, f\}$ 11if S is not degenerate nor single edge 1213then $Q \leftarrow Q \cup \{S\}$ 14add bridges to Q to obtain a connected spanning subgraph of G15return Q

Running time analysis

Increasing \widehat{gain} would be good, but doesn't quit work as we use \widehat{gain} .

Define $\Phi(Q) = 3 \operatorname{gain}(Q) + c(Q)$, where c(Q) is the number of components of Q when Q is seen as a spanning subgraph of G.

Lemma 1 Every iteration of the algorithm increases the parameter Φ .

Approximation ratio ideas - to be at $1/2\,$

significant = constant fraction of n

- 1. If significantly many vertices in our structure, we win
- 2. If OPT has significantly less than 2n edges, we win
- 3. If none of the above, the spruces of OPT have significant \widehat{gain}

The spruces of OPT

These spruces do not share tips. Some \widehat{gain} is lost, when the tips are not isolated in our structure. Still, enough left.

Approximation ratio ideas - beating 1/2

From OPT, construct weighted SP graph with \widehat{gain} on edges.

Compare to our weighted forest.

We have a maximum spanning forest in the union of the two graphs!

Thus our \widehat{gain} is 1/2 of what that of OPT.

Therefore we have significant \widehat{gain} .

7/12 tight

Maximum spruce structure

The spruces of a SP graph have n-2 tips. We get 1/3 of that by partitioning those into three spruce structures.

Turns out if no parent-child, no two siblings, it is a spruce structure.

Color root 1 and for every node, color its children with the two other colors.

Tight example for maximum spruce structure

Contructed inductively.

The NP reduction for Maximum Spruce Structure

Conclusions

We do a very little better when we pick spruce maximizing $\widehat{gain} - index$.

Completely new approach? Also for Maximum Planar Subgraph, at 4/9 since 1996.

Weighted?