Finding induced paths of given parity in claw-free graphs

Pim van 't Hof

joint work with Marcin Kamiński and Daniël Paulusma

WG 2009, 24-26 June 2009

Finding paths of given parity

Finding paths of given parity

Finding paths of given parity

Finding paths of given parity

Odd Path

Instance: A graph G and two vertices s and t. Question: Does G have an odd path from s to t?

EVEN PATH

Instance: A graph G and two vertices s and t. Question: Does G have an even path from s to t?

Finding paths of given parity is easy

Odd Path

Instance: A graph G and two vertices s and t. Question: Does G have an odd path from s to t?

EVEN PATH

Instance: A graph G and two vertices s and t. Question: Does G have an even path from s to t?

Theorem (LaPaugh & Papadimitriou, 1984)

Both the ODD PATH problem and the EVEN PATH problem can be solved in linear time.

Finding induced paths of given parity

ODD INDUCED PATH

Instance: A graph G and two vertices s and t. Question: Does G have an odd induced path from s to t?

EVEN INDUCED PATH

Instance: A graph G and two vertices s and t. Question: Does G have an even induced path from s to t?

Finding induced paths of given parity is hard

ODD INDUCED PATH

Instance: A graph G and two vertices s and t. Question: Does G have an odd induced path from s to t?

EVEN INDUCED PATH

Instance: A graph G and two vertices s and t. Question: Does G have an even induced path from s to t?

Theorem (Bienstock, 1991)

The ODD INDUCED PATH problem is NP-complete.

The PARITY PATH problem

PARITY PATH

Instance: A graph G and two vertices s and t.

Question: Does G have an odd and even induced path from s to t?

The PARITY PATH problem

PARITY PATH

Instance: A graph G and two vertices s and t. Question: Does G have an odd and even induced path from s to t?

Theorem (LaPaugh & Papadimitriou, 1984)

Both the ODD PATH problem and the EVEN PATH problem can be solved in linear time.

Corollary

The PARITY PATH problem

Theorem ("folklore")

The PARITY PATH problem

Theorem ("folklore")

The PARITY PATH problem

Theorem ("folklore")

The PARITY PATH problem

Theorem ("folklore")

The PARITY PATH problem

Theorem ("folklore")

The PARITY PATH problem

Theorem ("folklore")

The PARITY PATH problem

Theorem ("folklore")

The PARITY PATH problem

Theorem ("folklore")

The PARITY PATH problem

The PARITY PATH can be solved in polynomial time for:

- line graphs
- perfect graphs

The PARITY PATH problem

The PARITY PATH can be solved in polynomial time for:

- line graphs
- perfect graphs
- perfectly orientable graphs
- circular-arc graphs
- chordal graphs
- comparability graphs
- cocomparability graphs
- permutation graphs
- planar perfect graphs

The PARITY PATH problem

The PARITY PATH can be solved in polynomial time for:

- line graphs
- perfect graphs
- perfectly orientable graphs
- circular-arc graphs

The PARITY PATH problem

The PARITY PATH can be solved in polynomial time for:

- line graphs
- perfect graphs
- perfectly orientable graphs
- circular-arc graphs

We show that claw-free graphs can be added to this list.

Claw-free graphs

A claw

Pim van 't Hof Finding induced paths of given parity in claw-free graphs

Claw-free graphs

A claw is the graph $(\{a, b, c, x\}, \{xa, xb, xc\})$.

A graph is claw-free if it does not contain a claw as an induced subgraph.

Solving PARITY PATH for claw-free graphs

We now present an algorithm that solves the following two problems in polynomial time if the input graph G is claw-free.

ODD INDUCED PATH

Instance: A graph G and two vertices s and t.

Question: Does G have an odd induced path from s to t?

Even Induced Path

Instance: A graph G and two vertices s and t. Question: Does G have an even induced path from s to t?

As an immediate result, we can solve the PARITY PATH problem in polynomial time for the class of claw-free graphs.

Preprocessing H is not perfect H is perfect

Outline of the algorithm

Input: a claw-free graph G and two vertices s and t.

• Preprocess G to obtain a graph H

Solve Odd Induced Path and Even Induced Path for ${\cal H}$

- H is not perfect
 - $\bullet \ H$ contains an odd hole
 - $\bullet~H$ contains an odd antihole
- *H* is perfect
 - H has no clique cutset
 - H is elementary
 - H is peculiar
 - H has a clique cutset

Preprocessing H is not perfect H is perfect

Outline of the algorithm

Input: a claw-free graph G and two vertices s and t.

• Preprocess G to obtain a graph H

Solve Odd Induced Path and Even Induced Path for ${\cal H}$

- H is not perfect
 - $\bullet \ H$ contains an odd hole
 - $\bullet~H$ contains an odd antihole
- *H* is perfect
 - *H* has no clique cutset
 - H is elementary
 - H is peculiar
 - H has a clique cutset

 $\begin{array}{l} \textbf{Preprocessing} \\ H \text{ is not perfect} \\ H \text{ is perfect} \end{array}$

Preprocessing the input graph

Step 1: **Making** *s* **and** *t* **simplicial.**

 $\begin{array}{l} \textbf{Preprocessing} \\ H \text{ is not perfect} \\ H \text{ is perfect} \end{array}$

Preprocessing the input graph

Step 1: **Making** *s* **and** *t* **simplicial.**

 $\begin{array}{l} \textbf{Preprocessing} \\ H \text{ is not perfect} \\ H \text{ is perfect} \end{array}$

Preprocessing the input graph

Step 1: **Making** *s* **and** *t* **simplicial.**

$\begin{array}{l} \textbf{Preprocessing} \\ H \text{ is not perfect} \\ H \text{ is perfect} \end{array}$

Preprocessing the input graph

Step 2: Cleaning the graph G'.

A vertex x is called irrelevant for s and t if it does not lie on any induced path from s to t.

 $\begin{array}{l} \textbf{Preprocessing} \\ H \text{ is not perfect} \\ H \text{ is perfect} \end{array}$

Preprocessing the input graph

Step 2: Cleaning the graph G'.

A graph is clean for s and t if it does not contain irrelevant vertices.

 $\begin{array}{l} \textbf{Preprocessing} \\ H \text{ is not perfect} \\ H \text{ is perfect} \end{array}$

Preprocessing the input graph

Step 2: Cleaning the graph G'.

THREE-IN-A-PATH

Instance: A graph G and three vertices v_1, v_2, v_3 of G. Question: Does G have an induced path containing v_1, v_2, v_3 ?

Theorem (Derhy & Picouleau, 2009)

The THREE-IN-A-PATH problem is NP-complete.

 $\begin{array}{l} \textbf{Preprocessing} \\ H \text{ is not perfect} \\ H \text{ is perfect} \end{array}$

Preprocessing the input graph

Step 2: Cleaning the graph G'.

THREE-IN-A-PATH

Instance: A graph G and three vertices v_1, v_2, v_3 of G. Question: Does G have an induced path containing v_1, v_2, v_3 ?

Theorem (Derhy & Picouleau, 2009)

The THREE-IN-A-PATH problem is NP-complete.

Corollary

In general, the problem of determining if a vertex x is irrelevant for two vertices s and t is NP-complete.

 $\begin{array}{l} \textbf{Preprocessing} \\ H \text{ is not perfect} \\ H \text{ is perfect} \end{array}$

Preprocessing the input graph

Step 2: Cleaning the graph G'.

 $\begin{array}{l} \textbf{Preprocessing} \\ H \text{ is not perfect} \\ H \text{ is perfect} \end{array}$

Preprocessing the input graph

Step 2: Cleaning the graph G'.

THREE-IN-A-TREE

Instance: A graph G and three vertices v_1, v_2, v_3 of G. Question: Does G have an induced tree containing v_1, v_2, v_3 ?

Theorem (Chudnovsky & Seymour, submitted)

The THREE-IN-A-TREE problem is solvable in polynomial time.

 $\begin{array}{l} \textbf{Preprocessing} \\ H \text{ is not perfect} \\ H \text{ is perfect} \end{array}$

Preprocessing the input graph

Step 2: Cleaning the graph G'.

THREE-IN-A-TREE

Instance: A graph G and three vertices v_1, v_2, v_3 of G. Question: Does G have an induced tree containing v_1, v_2, v_3 ?

Theorem (Chudnovsky & Seymour, submitted)

The THREE-IN-A-TREE problem is solvable in polynomial time.

Corollary

We can "clean" the graph G' in polynomial time.

 $\begin{array}{l} \textbf{Preprocessing} \\ H \text{ is not perfect} \\ H \text{ is perfect} \end{array}$

Preprocessing the input graph

We obtain a graph H such that

- *H* is claw-free;
- s and t are simplicial vertices of H;
- H is clean for s and t.

Observation

G, s, t is a YES-instance of ODD INDUCED PATH (respectively EVEN INDUCED PATH) if and only if H, s, t is a YES-instance.

 $\begin{array}{l} \textbf{Preprocessing} \\ H \text{ is not perfect} \\ H \text{ is perfect} \end{array}$

Outline of the algorithm

Input: a claw-free graph G and two vertices s and t.

• Preprocess G to obtain a graph H

- H is not perfect
 - $\bullet \ H$ contains an odd hole
 - $\bullet~H$ contains an odd antihole
- *H* is perfect
 - *H* has no clique cutset
 - \bullet H is elementary
 - H is peculiar
 - H has a clique cutset

Preprocessing *H* is not perfect *H* is perfect

Outline of the algorithm

Input: a claw-free graph G and two vertices s and t.

• Preprocess G to obtain a graph H

- H is not perfect
 - $\bullet \ H$ contains an odd hole
 - $\bullet~H$ contains an odd antihole
- *H* is perfect
 - *H* has no clique cutset
 - H is elementary
 - H is peculiar
 - H has a clique cutset

Preprocessing *H* is not perfect *H* is perfect

Outline of the algorithm

Input: a claw-free graph ${\cal G}$ and two vertices s and t.

• Preprocess G to obtain a graph H

- H is not perfect
 - $\bullet~H$ contains an odd hole
 - $\bullet \ H$ contains an odd antihole
- *H* is perfect
 - *H* has no clique cutset
 - H is elementary
 - H is peculiar
 - H has a clique cutset

A polynomial-time algorithm Conclusions

Preprocessing *H* is not perfect *H* is perfect

H is not perfect

Lemma

H is not perfect

Lemma

A polynomial-time algorithm Conclusions

Preprocessing *H* is not perfect *H* is perfect

H is not perfect

Lemma

H is not perfect

Lemma

Preprocessing *H* is not perfect *H* is perfect

Outline of the algorithm

Input: a claw-free graph G and two vertices s and t.

• Preprocess G to obtain a graph H

- H is not perfect
 - *H* contains an odd hole
 - $\bullet~H$ contains an odd antihole
- *H* is perfect
 - *H* has no clique cutset
 - H is elementary
 - $\bullet \ H \text{ is peculiar}$
 - H has a clique cutset

Preprocessing *H* is not perfect *H* is perfect

H is not perfect

Lemma

Let H be a claw-free graph that is clean for two simplicial vertices s and t. Then H does not contain an odd antihole of length more than 5.

Preprocessing *H* is not perfect *H* is perfect

Outline of the algorithm

Input: a claw-free graph G and two vertices s and t.

• Preprocess G to obtain a graph H

- *H* is not perfect
 - *H* contains an odd hole
 - *H* contains an odd antihole
- \bullet H is perfect
 - H has no clique cutset
 - H is elementary
 - $\bullet \ H \text{ is peculiar}$
 - H has a clique cutset

Introduction Preprocessing A polynomial-time algorithm Conclusions H is perfect

H is perfect

Theorem ("folklore")

The PARITY PATH problem can be solved in polynomial time for the class of perfect graphs.

H is perfect

Theorem ("folklore")

The PARITY PATH problem can be solved in polynomial time for the class of perfect graphs.

SHORTEST ODD INDUCED PATH

Instance: A graph G and two vertices s and t. Task: Find a shortest odd induced path from s to t.

SHORTEST EVEN INDUCED PATH

Instance: A graph G and two vertices s and t. Task: Find a shortest even induced path from s to t.

H is perfect

Theorem (Chvátal & Sbihi, 1988)

A perfect claw-free graph with no clique cutset is either elementary or peculiar.

H is perfect
Preprocessing H is not perfect H is perfect

Outline of the algorithm

Input: a claw-free graph ${\cal G}$ and two vertices s and t.

• Preprocess ${\cal G}$ to obtain a graph ${\cal H}$

Solve ODD INDUCED PATH and EVEN INDUCED PATH for H.

- *H* is not perfect
 - *H* contains an odd hole
 - *H* contains an odd antihole
- *H* is perfect
 - $\bullet~H$ has no clique cutset
 - H is elementary
 - H is peculiar
 - H has a clique cutset

Preprocessing H is not perfect H is perfect

Outline of the algorithm

Input: a claw-free graph ${\cal G}$ and two vertices s and t.

• Preprocess ${\cal G}$ to obtain a graph ${\cal H}$

Solve ODD INDUCED PATH and EVEN INDUCED PATH for H.

- *H* is not perfect
 - *H* contains an odd hole
 - *H* contains an odd antihole
- *H* is perfect
 - H has no clique cutset
 - \bullet H is elementary
 - H is peculiar
 - H has a clique cutset

Preprocessing H is not perfect H is perfect

Elementary graphs

Definition

A graph H is *elementary* if its edges can be colored with two colors such that every induced path on three vertices has its two edges colored differently. We call such a coloring an *elementary coloring* of H.

Preprocessing H is not perfect H is perfect

Elementary graphs

Definition

A graph H is *elementary* if its edges can be colored with two colors such that every induced path on three vertices has its two edges colored differently. We call such a coloring an *elementary coloring* of H.

Lemma

We can determine in polynomial time if a graph H is elementary. If it is, an elementary coloring of H can be found in polynomial time.
 Introduction
 Preprocessing

 A polynomial-time algorithm
 H is not perfect

 Conclusions
 H is perfect

Solving ODD INDUCED PATH for elementary graphs

An elementary graph H.

 Introduction
 Preprocessing

 A polynomial-time algorithm
 H is not perfect

 Conclusions
 H is perfect

Solving ODD INDUCED PATH for elementary graphs

An elementary coloring φ of H.

Introduction Preprocessing A polynomial-time algorithm Conclusions H is perfect

Solving ODD INDUCED PATH for elementary graphs

Neighbors u' of u and v' of v with $\varphi(uu') = \varphi(vv')$.

Solving ODD INDUCED PATH for elementary graphs

The graph $H_{u'v'}$ (all other neighbors of u and v deleted).

Introduction Preprocessing A polynomial-time algorithm H is not perfect Conclusions H is perfect

Solving ODD INDUCED PATH for elementary graphs

Vertices u and v are *not* in the same component of $H_{u'v'}$.

Solving ODD INDUCED PATH for elementary graphs

Neighbors u' of u and v' of v with $\varphi(uu') = \varphi(vv')$.

 Introduction
 Preprocessing

 A polynomial-time algorithm
 H is not perfect

 Conclusions
 H is perfect

Solving ODD INDUCED PATH for elementary graphs

Neighbors u'' of u and v'' of v with $\varphi(uu'') = \varphi(vv'')$.

Introduction Preprocessing A polynomial-time algorithm H is not perfect Conclusions H is perfect

Solving ODD INDUCED PATH for elementary graphs

The graph $H_{u''v''}$ (all other neighbors of u and v deleted).

A polynomial-time algorithm Conclusions H is not perfect H is perfect

Solving ODD INDUCED PATH for elementary graphs

Vertices u and v are in the same component of $H_{u''v''}$.

Preprocessing H is not perfect H is perfect

H is elementary

Since we only have to consider $\mathcal{O}(n^2)$ graphs $H_{u'v'}$ and we can perform all checks in polynomial time, we have the following.

Lemma

The ODD INDUCED PATH and EVEN INDUCED PATH problems can be solved in polynomial time for elementary graphs.

Preprocessing H is not perfect H is perfect

Outline of the algorithm

Input: a claw-free graph ${\cal G}$ and two vertices s and t.

• Preprocess ${\cal G}$ to obtain a graph ${\cal H}$

Solve ODD INDUCED PATH and EVEN INDUCED PATH for H.

- *H* is not perfect
 - *H* contains an odd hole
 - *H* contains an odd antihole
- *H* is perfect
 - H has no clique cutset
 - \bullet H is elementary
 - $\bullet \ H \text{ is peculiar}$
 - H has a clique cutset

 $\begin{array}{l} {\sf Preprocessing} \\ H \text{ is not perfect} \\ H \text{ is perfect} \end{array}$

Peculiar graphs

Peculiar graphs

Definition

A graph H is *peculiar* if it can be obtained from a complete graph K as follows. Partition V(K) into six mutually disjoint non-empty sets $A_i, B_i, i = 1, 2, 3$. For each i = 1, 2, 3, remove at least one edge with one end-vertex in A_i and the other end-vertex in B_{i+1} , where the subscripts are taken modulo 3. Finally, add three new mutually disjoint non-empty complete graphs $D_i, i = 1, 2, 3$, such that for each i = 1, 2, 3 each vertex in D_i is besides all vertices in D_i adjacent to all vertices in $V(K) \setminus (A_i \cup B_i)$ and to no other vertices.

Peculiar graphs

Definition

A graph H is *peculiar* if it can be obtained from a complete graph K as follows. Partition V(K) into six mutually disjoint non-empty sets $A_i, B_i, i = 1, 2, 3$. For each i = 1, 2, 3, remove at least one edge with one end-vertex in A_i and the other end-vertex in B_{i+1} , where the subscripts are taken modulo 3. Finally, add three new mutually disjoint non-empty complete graphs $D_i, i = 1, 2, 3$, such that for each i = 1, 2, 3 each vertex in D_i is besides all vertices in D_i adjacent to all vertices in $V(K) \setminus (A_i \cup B_i)$ and to no other vertices.

Observation

Every peculiar graph is P_{19} -free.

Peculiar graphs

Definition

A graph H is *peculiar* if it can be obtained from a complete graph K as follows. Partition V(K) into six mutually disjoint non-empty sets $A_i, B_i, i = 1, 2, 3$. For each i = 1, 2, 3, remove at least one edge with one end-vertex in A_i and the other end-vertex in B_{i+1} , where the subscripts are taken modulo 3. Finally, add three new mutually disjoint non-empty complete graphs $D_i, i = 1, 2, 3$, such that for each i = 1, 2, 3 each vertex in D_i is besides all vertices in D_i adjacent to all vertices in $V(K) \setminus (A_i \cup B_i)$ and to no other vertices.

Lemma

Every peculiar graph is P_6 -free but not P_5 -free.

A polynomial-time algorithm Conclusions Preprocessing H is not perfect

H is peculiar

The P_6 -freeness of peculiar graphs immediately implies:

Lemma

The ODD INDUCED PATH and EVEN INDUCED PATH problems can be solved in polynomial time for peculiar graphs.

Introduction A polynomial-time algorithm Conclusions H is perfect

H is peculiar

The P_6 -freeness of peculiar graphs immediately implies:

Lemma

The ODD INDUCED PATH and EVEN INDUCED PATH problems can be solved in polynomial time for peculiar graphs.

Together with the same result for elementary graphs, this yields:

Theorem

The ODD INDUCED PATH and EVEN INDUCED PATH problems can be solved in polynomial time for perfect claw-free graphs without clique cutsets.

Introduction A polynomial-time algorithm Conclusions H is perfect

H is peculiar

The P_6 -freeness of peculiar graphs immediately implies:

Lemma

The ODD INDUCED PATH and EVEN INDUCED PATH problems can be solved in polynomial time for peculiar graphs.

Together with the same result for elementary graphs, this yields:

Theorem

The ODD INDUCED PATH and EVEN INDUCED PATH problems can be solved in polynomial time for perfect claw-free graphs without clique cutsets.

So how do we deal with clique cutsets?

Preprocessing H is not perfect H is perfect

Outline of the algorithm

Input: a claw-free graph G and two vertices s and t.

• Preprocess G to obtain a graph H

Solve ODD INDUCED PATH and EVEN INDUCED PATH for H.

- *H* is not perfect
 - *H* contains an odd hole
 - *H* contains an odd antihole
- *H* is perfect
 - *H* has no clique cutset
 - *H* is elementary
 - H is peculiar
 - H has a clique cutset

Preprocessing H is not perfect H is perfect

Clique cutset decomposition

Theorem (Tarjan, 1985)

A clique cutset decomposition of a graph can be found in polynomial time.

Preprocessing H is not perfect H is perfect

Clique cutset decomposition

Theorem (Tarjan, 1985)

A clique cutset decomposition of a graph can be found in polynomial time.

Preprocessing H is not perfect H is perfect

Clique cutset decomposition

Theorem (Tarjan, 1985)

A clique cutset decomposition of a graph can be found in polynomial time.

Conclusions Open problems

Main results

Theorem

The ODD INDUCED PATH and EVEN INDUCED PATH problems can be solved in polynomial time for claw-free graphs.

Main results

Theorem

The ODD INDUCED PATH and EVEN INDUCED PATH problems can be solved in polynomial time for claw-free graphs.

Corollary

The PARITY PATH problem can be solved in polynomial time for claw-free graphs.

Main results

Theorem

The ODD INDUCED PATH and EVEN INDUCED PATH problems can be solved in polynomial time for claw-free graphs.

Corollary

The PARITY PATH problem can be solved in polynomial time for claw-free graphs.

Corollary

We can decide in polynomial time if a claw-free graph has an odd (or even) induced cycle through a specified vertex.

What would we like (you) to do

• Find a polynomial-time algorithm for the SHORTEST ODD INDUCED PATH problem for claw-free graphs, or show that the problem is NP-complete.

What would we like (you) to do

- Find a polynomial-time algorithm for the SHORTEST ODD INDUCED PATH problem for claw-free graphs, or show that the problem is NP-complete.
- Find a polynomial-time algorithm for the PARITY PATH problem for planar graphs, or show that the problem is NP-complete.

Thank you!

Pim van 't Hof www.dur.ac.uk/pim.vanthof

Pim van 't Hof Finding induced paths of given parity in claw-free graphs