

Hardness Results and Efficient Algorithms for Graph Powers

Authors: Van Bang Le, Ngoc Tuy Nguyen University of Rostock, Germany

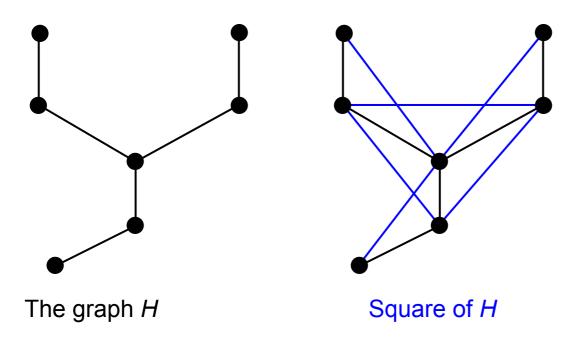
Speaker: Ngoc Tuy Nguyen

Outline

- Introduction
- NP-completeness results for recognizing powers of graphs
- Efficient algorithms for solving SQUARE OF STRONGLY CHORDAL SPLIT GRAPH and CUBE OF GRAPH WITH GIRTH ≥ 10
- Conclusion and open problems

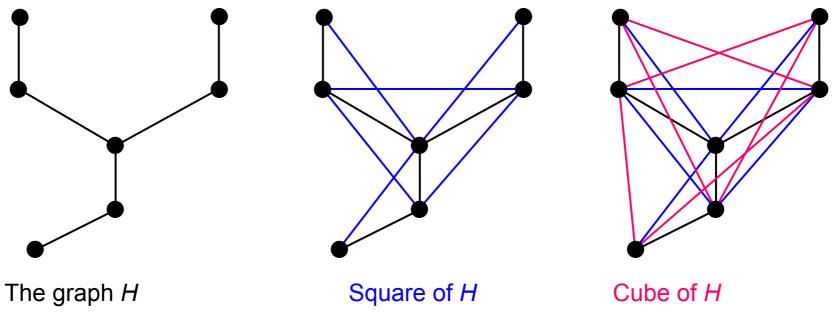
Graph powers

- *k*-th power and *k*-th root of graph.
 - Let H = (V, E) be a graph. Let k be a positive integer. The graph $G = (V, E^k)$ is the *k*-th power of H, and H is called a *k*-th root of G, where $E^k = \{ xy \mid 1 \le d_H(x, y) \le k \}$.



Graph powers

- *k*-th power and *k*-th root of graph.
 - Let H = (V, E) be a graph. Let k be a positive integer. The graph $G = (V, E^k)$ is the *k*-th power of H, and H is called a *k*-th root of G, where $E^k = \{xy \mid 1 \le d_H(x,y) \le k\}$.



Problems on graph powers

• *k*-TH POWER OF GRAPH

Instance: A graph G = (V, E). *Question*: Is there a graph *H* such that $G = H^k$?

For a given graph class C:

• k-TH POWER OF C GRAPH

Instance: A graph G = (V, E). *Question*: Is there a graph *H* in *C* such that $G = H^k$?

- k= 2: SQUARE OF GRAPH and SQUARE OF C GRAPH
- k= 3: CUBE OF GRAPH and CUBE OF C GRAPH

Related work

- In 1960 Ross and Harary [*The square of a tree, Bell System Tech. J.39*] first studied the concept of the square of a graph.
- The computational complexity of *k*-TH POWER OF GRAPH was unresolved until 1994 when Motwani and Sudan proved that SQUARE OF GRAPH is NP-complete [Computing roots of graphs is hard, *Discrete Applied Math 54* (1994)].
- In 2006, Lau proved the NP-completeness of CUBE OF GRAPH [Bipartite roots of graphs, ACM Transactions on Algorithm 2 (2006)].
- For $k \ge 4$, the computational complexity of *k*-TH POWER OF GRAPH remains open.
- Conjecture 1 [Lau, 2006]:

For all fixed $k \ge 4$, *k*-TH POWER OF GRAPH is NP-complete.

Tree powers

- In 1995, Lin and Skiena gave an algorithm that solves SQUARE OF TREE in linear time.
- In 1998, Kearney and Corneil solved k-TH POWER OF TREE in cubic time for all fixed k.
- In 2006, Chang *et al.* gave O(n+m)-time algorithms for k-TH POWER OF TREE.
- New and simpler linear-time algorithms for SQUARE OF TREE are given by Brandstädt et al. (2006)

Powers of bipartite and chordal graphs

- In 2006, Lau showed that SQUARE OF BIPARTITE GRAPH is polynomially solvable, while CUBE OF BIPARTITE GRAPH is NP-C
- Conjecture 2 [Lau, 2006]: For all fixed $k \ge 3$, *k*-TH POWER OF BIPARTITE GRAPH is NP-C

- In 2004, Lau and Corneil proved NP-completeness for SQUARE OF CHORDAL GRAPH and SQUARE OF SPLIT GRAPH, while SQUARE OF PROPER INTERVAL GRAPH can be recognized efficiently.
- For $k \ge 3$, the computational complexity of *k*-TH POWER OF CHORDAL GRAPH was unknown so far.

Powers versus girth

- The girth of a (connected) graph G, girth(G), is the smallest length of a cycle in G. In case G has no cycles, girth(G)= ∞.
- Very recently, square roots with girth conditions have been considered by Farzad et al.[Computing graph roots without short cycles, STACS 2009].

SQUARE OF GRAPH WITH GIRTH \leq 4 is NP-complete, while SQUARE OF GRAPH WITH GIRTH \geq 6 is polynomially solvable.

• Conjecture 3 [Farzad *et al.* STACS 2009]: *k*-TH POWER OF GRAPH WITH GIRTH \ge 3*k* -1 is polynomially solvable.

Motivation

Conjectures of Lau

The following problems are NP-complete.

• *k*-TH POWER OF BIPARTITE GRAPH

Instance : A graph G = (V, E).

Question: Is there a *bipartite graph* H such that $G = H^k$?

• *k*-TH POWER OF GRAPH

Instance : A graph G = (V, E). Question: Is there a graph H such that $G = H^k$?

Set splitting

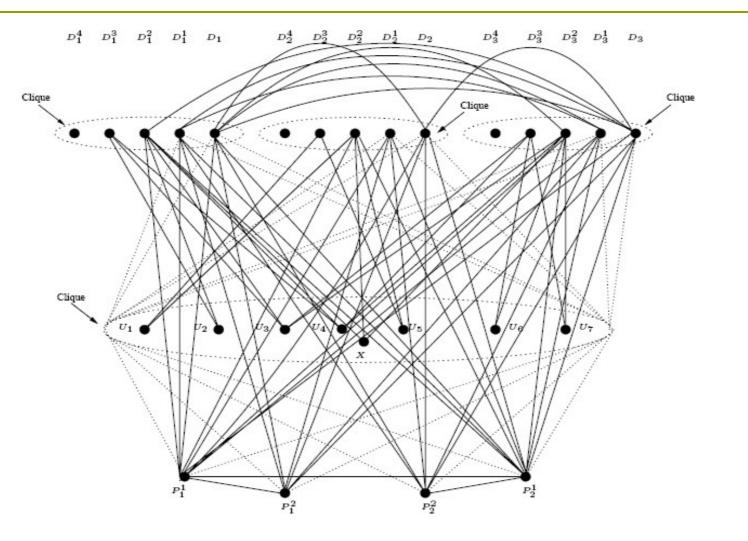
SET SPLITTING [Garey and Johnson, Problem SP4]

Instance : Collection *D* of subsets of a finite set *S*. *Question*: Is there a partition of *S* into two disjoint subsets S_1 and S_2 such that each subset in *D* intersects both S_1 and S_2 ?

- Given $S = \{u_1, \ldots, u_7\}$ and $D = \{d_1, d_2, d_3\}$ with $d_1 = \{u_2, u_3, u_4\}$, $d_2 = \{u_1, u_5\}$, $d_3 = \{u_3, u_4, u_6, u_7\}$.
- We will reduce SET SPLITTING to *k*-TH POWER OF BIPARTITE GRAPH

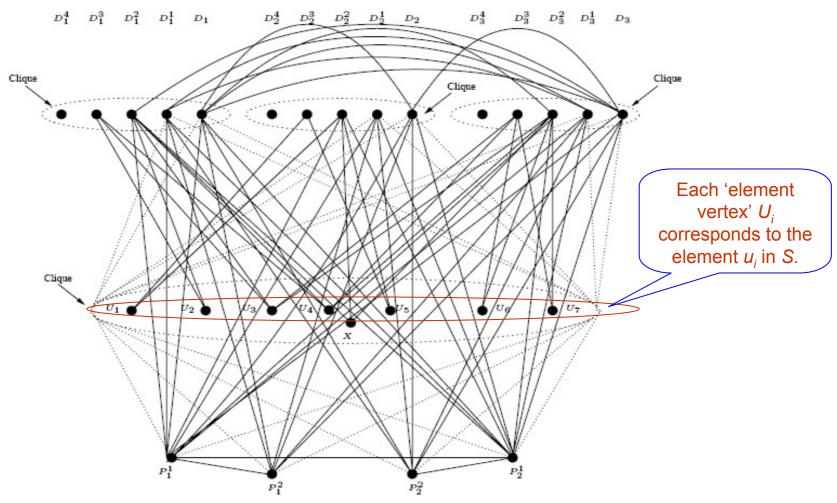
NP-completeness Results

An instance G = G(D,S) for 4-TH POWER OF BIPARTITE GRAPH



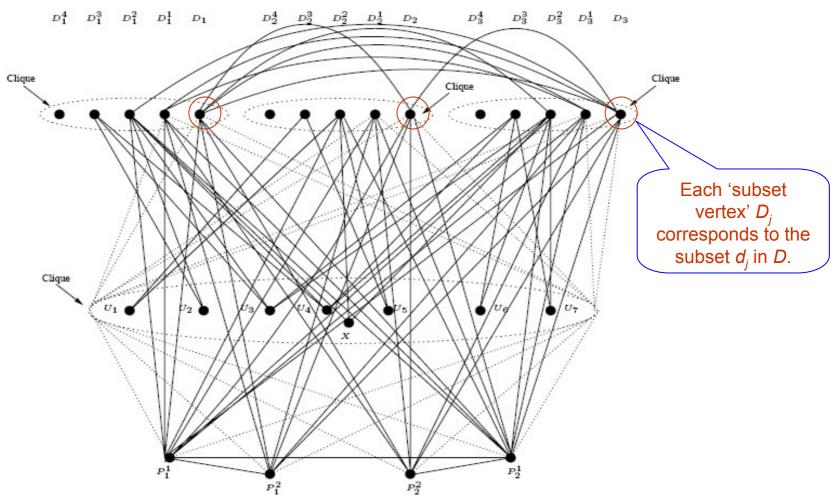
NP-completeness Results

An instance G = G(D,S) for 4-TH POWER OF BIPARTITE GRAPH

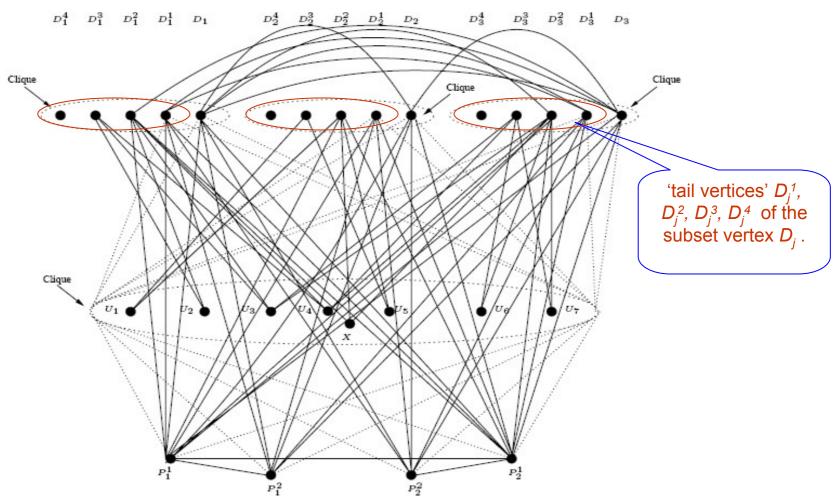


NP-completeness Results

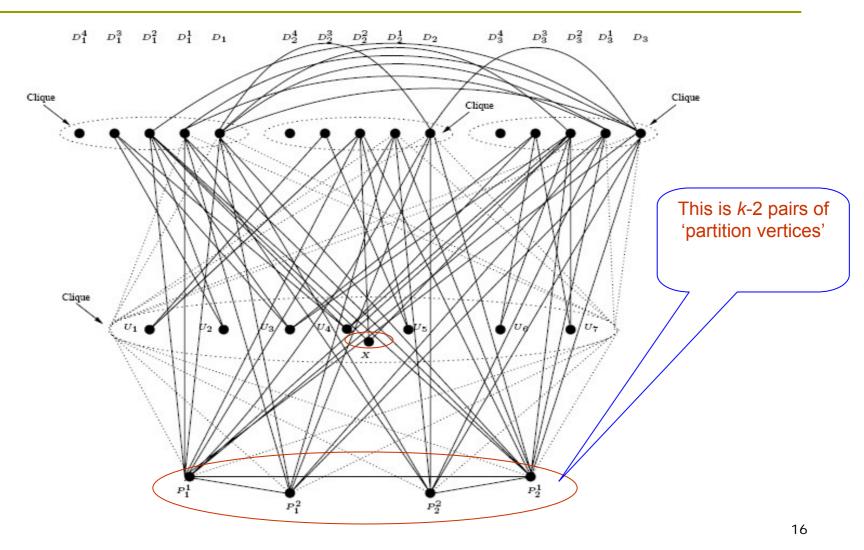
An instance G = G(D,S) for 4-TH POWER OF BIPARTITE GRAPH



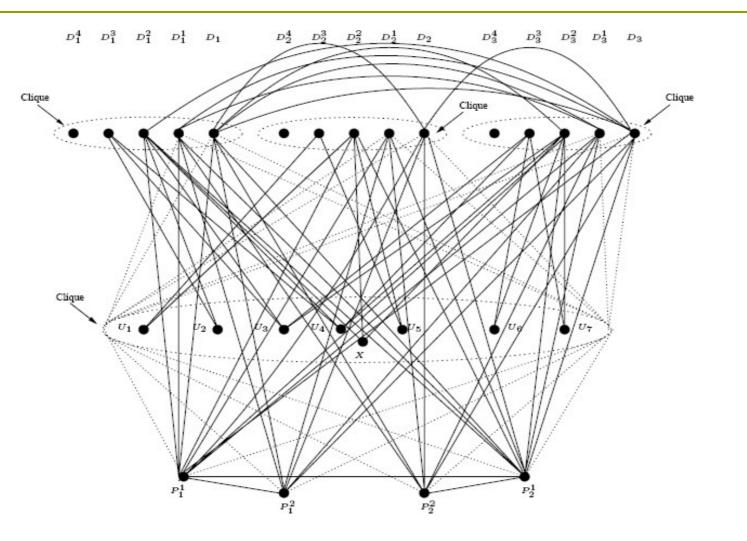
An instance G = G(D,S) for 4-TH POWER OF BIPARTITE GRAPH



An instance G = G(D,S) for 4-TH POWER OF BIPARTITE GRAPH

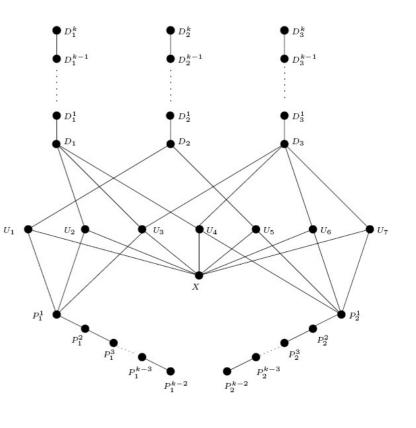


An instance G = G(D,S) for 4-TH POWER OF BIPARTITE GRAPH



The bipartite k-th root H of G to the solution S_1 , S_2

- Lemma 1: If there exists a partition of S into two disjoint subsets S₁ and S₂ such that each subset in D intersects both S₁ and S₂, then there exists a *bipartite graph H* such that G=H^k.
- $S_1 = \{u_1, u_2, u_3\}$, $S_2 = \{u_4, u_5, u_6, u_7\}$ is a solution of SET SPLITTING.
- Lemma 2: If *H* is a *k*-th root of *G*, then there exists a partition of *S* into two disjoint subsets S₁ and S₂ such that each subset in *D* intersects both S₁ and S₂.
- Theorem: *k*-TH POWER OF BIPARTITE GRAPH is NP-C for fixed $k \ge 3$.

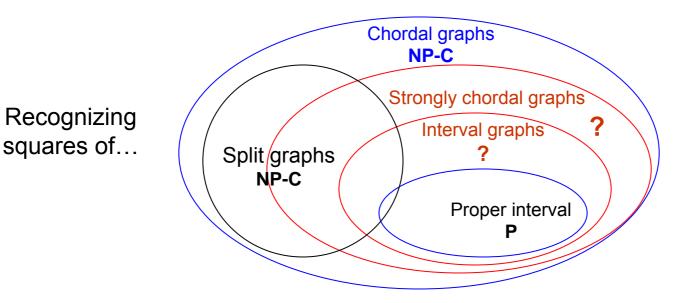


Hardness results

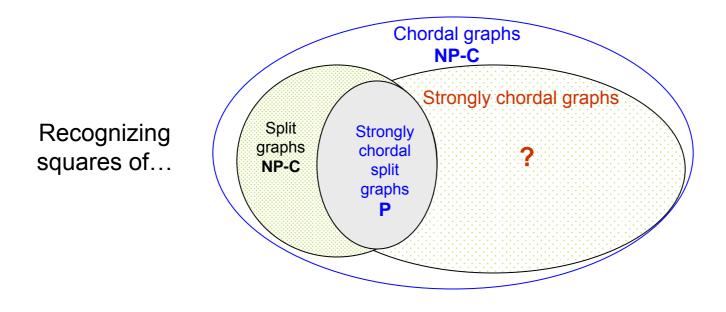
- Theorem 1: *k*-TH POWER OF BIPARTITE GRAPH is NP-complete for all fixed $k \ge 3$.
- Theorem 2: *k*-TH POWER OF GRAPH is NP-complete for all fixed $k \ge 2$.
- Theorem 3: *k*-TH POWER OF CHORDAL GRAPH is NP-complete for all fixed *k* ≥ 2.

Squares of subclasses of chordal graphs

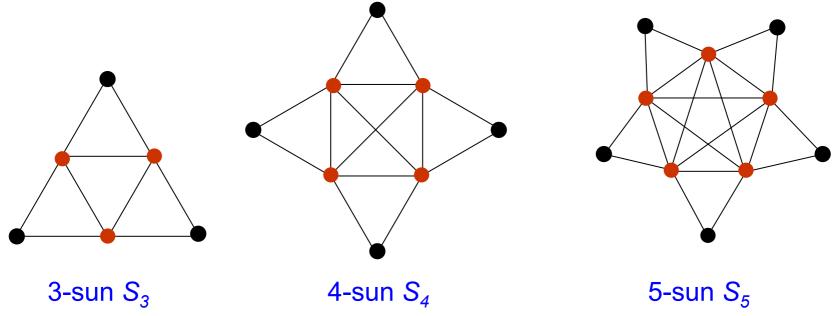
- What is the complexity of squares of
 - strongly chordal graphs ?
 - interval graphs ?
 - strongly chordal split graphs ?



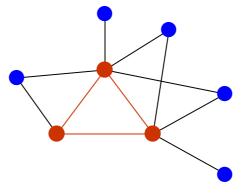
 There exists a good characterization for squares of strongly chordal split graphs that gives a recognition algorithm in time O(min{n², mlogn}) for such squares.



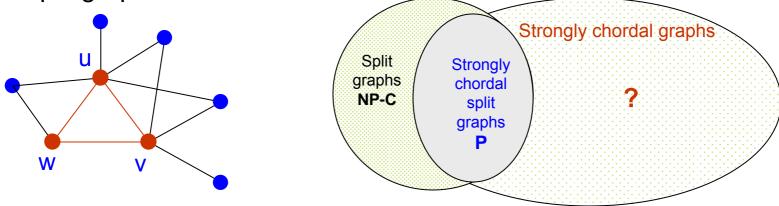
- Graph G is *chordal* if it is C_k -free for $k \ge 4$.
- An ℓ -sun, $\ell \ge 3$, consists of a stable set $\{u_1, ..., u_\ell\}$ and a clique $\{v_1, ..., v_\ell\}$ such that for $i \in \{1, ..., \ell\}$, u_i is adjacent to exactly v_i and v_{i+1} (index arithmetic modulo ℓ).



- Graph G is *chordal* if it is C_k -free for $k \ge 4$.
- A graph is strongly chordal if it is chordal and S_{ℓ} -free for all $\ell \ge 3$.
- Theorem [Lubiw 1982; Dahlhaus, Duchet 1987; Raychaudhuri 1992] For every $k \ge 2$, *G* is strongly chordal $\Rightarrow G^k$ is strongly chordal.
- A *split graph* is one whose vertex set can be partitioned into a clique and a stable set.



A graph G is strongly chordal split graph if it is strongly chordal and split graph.



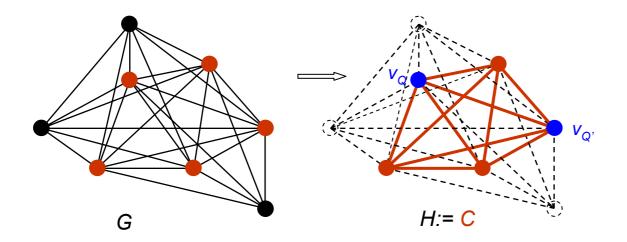
- In a graph, a vertex is *maximal* if its closed neighborhood is maximal.
- C(G) denotes the set of all maximal cliques of G.
- For split graphs $H = (V_H, E_H)$ we write $H = (C \cup S, E_H)$, meaning $V_H = C \cup S$ is a partition of the vertex set of H into a clique C and a stable set S.

• Key Lemma: Let $H = (C \cup S, E_H)$ be a connected split graph without 3-sun. Then Q is a maximal clique in $G = H^2$ if and only if $Q = N_H[v]$ for some maximal vertex $v \in C$ of H.

• Theorem 4: G is the square of a strongly chordal split graph if and only if G is strongly chordal and $|\bigcap_{Q \in C(G)} Q| \ge |C(G)|$.

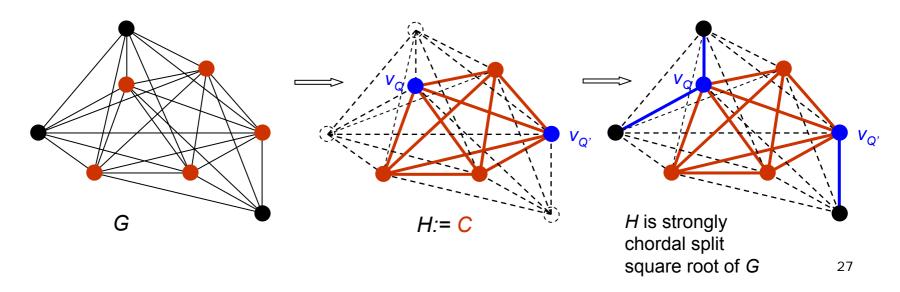
Recognizing if G is the square of some s.c.s.g H

- Testing if G is strongly chordal can be done in time O(min{n², mlogn}).
- Computing all maximal cliques of chordal *G* in linear time.
- Compute $C = \bigcap_{Q \in C(G)} Q$, for $Q \in C(G)$.
- If $|C| \ge |C(G)|$ then we construct H as follows:
- Put the clique *C* into *H*. For each Q, choose a unique vertex $v_Q \in C$ such that $v_Q \neq v_{Q'}$ if and only if $Q \neq Q'$.



Recognizing if G is the square of some s.c.s.g H

- Testing if G is strongly chordal can be done in time O(min{n², mlogn}).
- Computing all maximal cliques of chordal *G* in linear time.
- Compute $C = \bigcap_{Q \in C(G)} Q$, for $Q \in C(G)$.
- If $|C| \ge |C(G)|$ then we construct H as follows:
- Put the clique C into H. For each Q choose a unique vertex $v_Q \in C$ such that $v_Q \neq v_{Q'}$ if and only if $Q \neq Q'$.
- For each maximal clique Q of G, put the edges $v_Q v$, $v \in Q \setminus C$, into H.



Recognizing if G is the square of some s.c.s.g H

Theorem 5: Given an *n*-vertex and *m*-edge graph $G=(V_G, E_G)$, recognizing if G is the square of some strongly chordal split graph can be done in time $O(\min\{n^2, m\log n\})$, and if any, such a square root H of G can be constructed in the same time.

Algorithm:

7.

- 1. If *G* is strongly chordal then
- 2. compute all maximal cliques Q_1, \ldots, Q_q of G

3. compute
$$C = \bigcap_{1 \le i \le q} Q_i$$

4. <u>If</u> $|C| \ge q$ <u>then</u>

5.
$$V_H := V_G ; E_H := \{ xy \mid x, y \in C \}$$

6. <u>for</u> i = 1 to q <u>do</u>

choose a vertex $v_i \in C$ with $v_i \neq v_j$ for $i \neq j$

8. for
$$i:= 1$$
 to q do

9. $E_H := E_H \cup \{ v_i v \mid v \in Q_i \setminus C \}$

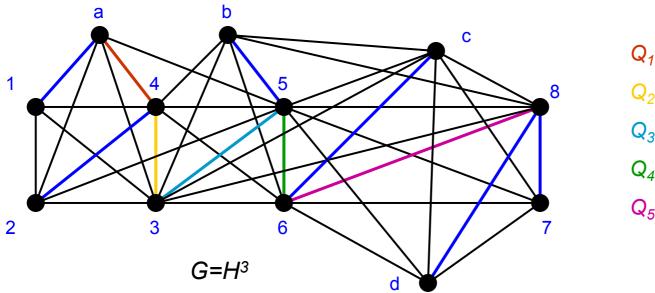
- 10. return *H*
- 11. <u>else</u> return ' NO'
- 12. <u>else</u> return 'NO'

Cube of graphs with girth conditions

- Square roots with girth conditions have been considered by Farzad et al. [Computing graph roots without short cycles, STACS 2009].
- SQUARE OF GRAPH WITH GIRTH ≤ 4 is NP-complete, while SQUARE OF GRAPH WITH GIRTH ≥ 6 is polynomially solvable.
- Conjecture 3 [Farzad *et al.* STACS 2009]: *k*-TH POWER OF GRAPH WITH GIRTH \ge 3*k* -1 is polynomially solvable.
- We show that CUBE OF GRAPH WITH GIRTH ≥ 10 is polynomially solvable.
 - Provide a good characterization of graphs that are cubes of a graph having girth at least 10.
 - Give a recognition algorithm in time $O(nm^2)$ for cubes of graphs with girth ≥ 10 .

Maximal cliques in $G=H^3$

• Key Lemma: Let $G = (V, E_G)$ be a connected, non-complete graph such that $G=H^3$ for some graph $H=(V, E_H)$ with girth at least 10. Then $Q \subseteq V$ is a maximal clique in G iff $Q = N_H [u, v]$ for some edge $uv \in E_H$ with deg_H $(u) \ge 2$ and deg_H $(v) \ge 2$.

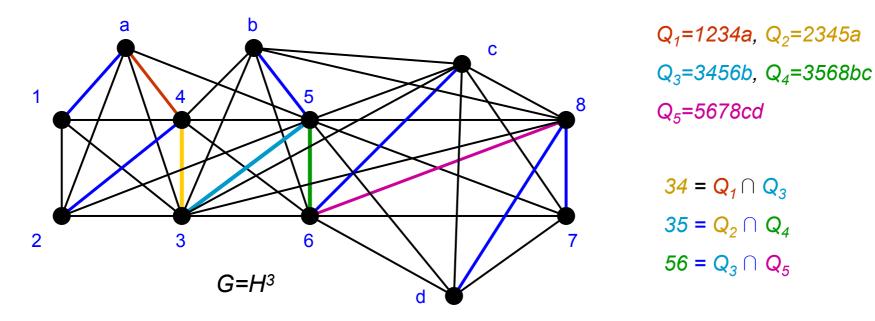


 $Q_{1}=1234a = N_{H}[a, 4]$ $Q_{2}=2345a = N_{H}[3, 4]$ $Q_{3}=3456b = N_{H}[3, 5]$ $Q_{4}=3568bc = N_{H}[5, 6]$ $Q_{5}=5678cd = N_{H}[6, 8]$

• Corollary: If $G = (V_G, E_G)$ is the cube of some graph with girth at least 10, then *G* has at most $|E_G|$ maximal cliques.

Forced edges in G

- Definition: Let *G* be an arbitrary graph. An edge *e* of *G* is called *forced* if *e* is the intersection of two distinct maximal cliques in *G*.
- Observation: Let $G=H^3$ for some graph H with girth at least 10. Then, an edge of G is forced iff it is the mid-edge of a P_6 in H.



Trivial graphs

- Definition: A connected graph G is *trivial* if it contains a non-empty clique C such that G \ C is the disjoint union of at most |C|-1 cliques and every vertex in C is adjacent to every vertex in G \ C.
- Observation:
 - A graph is trivial iff it is the cube of some tree of diameter at most 4.
 - Trivial graphs can be recognized in linear time.



• C_e consists of all maximal cliques containing e

Characterization of cubes of...

Theorem 6: Let *G* be a connected non-trivial graph. Let *F* be the subgraph of *G* consisting of all forced edges in *G*. Then, *G* is the cube of a graph with girth at least 10 iff the following conditions hold.

(i) For each $e \in F$, there exists a unique maximal clique $Q_e \in C_e$ such that

- (a) For every two distinct non-disjoint forced edges e and e' , $e \cup e' \subseteq Q_e \cap Q_{e'}$
- (b) For every $Q \in C(G) \setminus \{Q_e | e \in F\}$ and for all forced edges e_1 , e_2 in Q, $Q_{e1} \cap Q = Q_{e2} \cap Q$

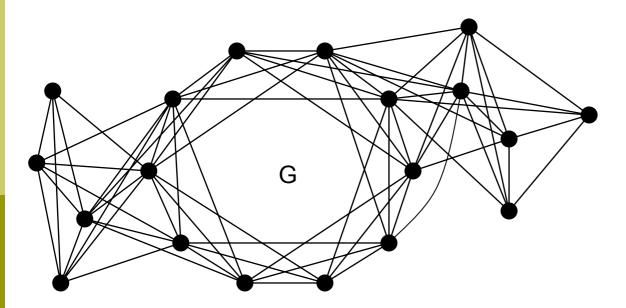
(ii) For each $e \in F$, $C_e \setminus \{Q_e\}$ can be partitioned into non-empty disjoint sets \mathcal{A}_e and \mathcal{B}_e with

- (a) $Q \cap Q' = e$ iff $Q \in \underline{\mathcal{A}}_e$ and $Q' \in \underline{\mathcal{B}}_e$ or vice versa
- (b) setting $A_e = \bigcap_{Q \in Ae} Q$, $B_e = \bigcap_{Q \in Be} Q$, all pairs of maximal cliques in \mathcal{A}_e have the same intersection A_e , all pairs of maximal cliques in \mathcal{B}_e have the same intersection B_e
- (c) $Q_e = A_e \cup B_e$ and $|A_e| \ge |\mathcal{A}_e| + 2$, $|B_e| \ge |\mathcal{B}_e| + 2$
- (d) $F[A_e \cap V_F]$ and $F[B_e \cap V_F]$ are stars with distinct universal vertices in e

(iii) $C(G) = \bigcup_{e \in F} C_e$

(iv) $V_G \setminus \bigcup_{e \in F} Q_e$ consists of exactly the simplicial vertices of *G* (v) *F* is connected and have girth at least 10.

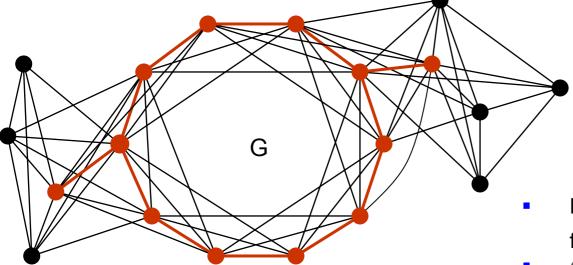
• List all maximal cliques of *G* in time *O*(*nm*²)



• C_e consists of all maximal cliques containing e

Recognizing if *G* is the cube of some *H* with girth...

- List all maximal cliques of G in time O(nm²)
- Compute the forced edges of G to form the subgraph F of G in time $O(m^2)$
- The lists C_e for each $e \in F$ can be computed in time $O(m^2)$
- Testing conditions (i) (v) can be done in time $O(nm^2)$

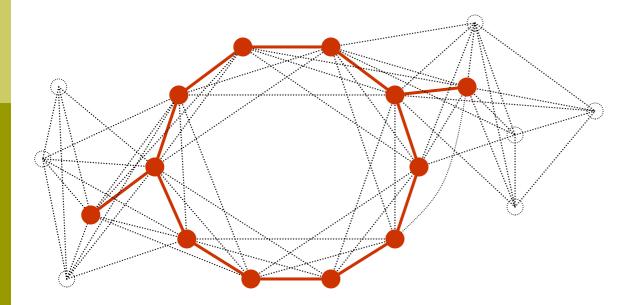


Partition $C_e = \mathcal{A}_e \cup \{Q_e\} \cup \mathcal{B}_e$

for each $e \in F$

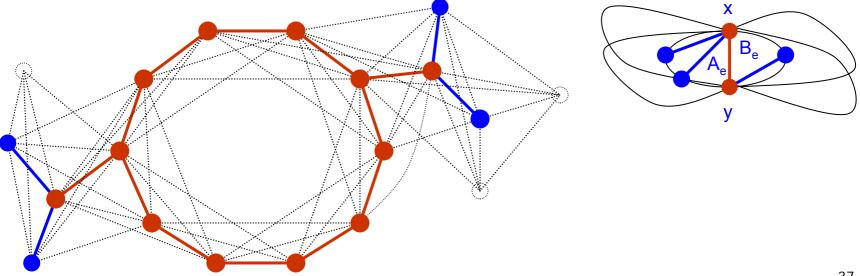
•
$$A_e = \bigcap_{Q \in \mathcal{A}_e} Q$$
, $B_e = \bigcap_{Q \in \mathcal{B}_e} Q$

- Testing conditions (i) (v) can be done in time $O(nm^2)$
- If conditions (i) (v) are satisfied then construct H is constructed as follows:
 - Put *F* into *H*



- Partition $C_e = \mathcal{A}_e \cup \{Q_e\} \cup \mathcal{B}_e$ for each $e \in F$.
- .𝒦:= {Q_e | e∈ F }.
- $A_e = \bigcap_{Q \in \mathcal{A}e} Q$, $B_e = \bigcap_{Q \in \mathcal{B}e} Q$

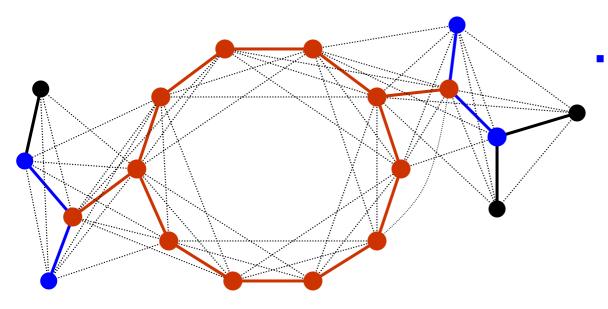
- Put *F* into *H*
- For each $Q_e \in \mathcal{K}$ with e=xy, put all edges xu, $u \in A_e \setminus V_F$ and yv, $v \in B_e \setminus V_F$, into H



- Partition $C_e = \mathcal{A}_e \cup \{Q_e\} \cup \mathcal{B}_e$ for each $e \in F$.
- $\mathcal{K}:=\{Q_e \mid e \in F\}.$

•
$$A_e = \bigcap_{Q \in \mathcal{A}e} Q$$
, $B_e = \bigcap_{Q \in \mathcal{B}e} Q$

- Put *F* into *H*
- For each $Q_e \in \mathcal{K}$ with e=xy, put all edges xu, $u \in A_e \setminus V_F$ and yv, $v \in B_e \setminus V_F$, into H



- For each Q ∉ *K* containing forced edge *e*
 - Choose a vertex

$$c_{\mathsf{Q}} \in (\mathsf{Q} \cap \mathsf{Q}_{\mathsf{e}}) \setminus V_{\mathsf{F}}$$

• Put all edges $c_Q v, v \in Q \setminus V_H$, into H.

Corollaries

In the characterization for cubes of graphs with girth at least 10, if we replace the condition (v) by " *F* is a (C_4 , C_6 , C_8)-free bipartite" or " *F* is a tree " then:

- There is a good characterization and an $O(nm^2)$ -time recognition for cubes of (C_4, C_6, C_8) -free bipartite, while CUBE OF BIPARITE GRAPH is NP-C.
- There is a good characterization and an O(nm²)-time recognition for cubes of trees.

Conclusion

Hardness results:

- *k*-TH POWER OF BIPARTITE GRAPH is NP-complete for all fixed $k \ge 3$.
- *k*-TH POWER OF GRAPH is NP-complete for all fixed $k \ge 2$.
- *k*-TH POWER OF CHORDAL GRAPH is NP-complete for all fixed $k \ge 2$.

Efficient algorithms:

- Provide a good characterization of squares of strongly chordal split graphs that gives a recognition algorithm in time O(min{n², mlogn}) for such squares.
- Give a good characterization of cubes of a graph with girth at least ten that leads to a recognition algorithm in time $O(nm^2)$ for such cubes.

Open Problems

- What is the complexity of recognizing powers of
 - strongly chordal graphs?
 - interval graphs?
 - chordal bipartite graphs (bipartite graphs without cycles of length at least six)?

