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Abstract

We study the minimal complexity of tilings of a plane with a/g tile set. We note that every tile
set admits either no tiling or some tiling witi(n) Kolmogorov complexity of itgn x n)-squares. We
construct tile sets for which this bound is tight: @lx n)-squares in all tilings have complexity at least
n. This adds a quantitative angle to classical results onreoursivity of tilings — that we also develop
in terms of Turing degrees of unsolvability.
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1 Introduction

Tilings have been used intensively as powerful tools inowsifields such as mathematical logic (see,
e.g., [Borger Gradel Gurevich 96] and references withiahplexity theory[Gurevich 91, Levin 86], or in
physics for studying quasicrystals (see for instance thiewepaper|[Ingersent 91]). In all of these branches
the ability of tile sets to generate “complicated” tilingsdssential — it was already clear in Wang’s original
papers|[[Wang 61, Wang 62].

A tileis an unit square with colored edges (each of the four sidest@e color). Assume that a finite
sett of tiles is given. We want to form a-tiling, i.e., to cover plane with translated copies of tiles frarm
such a way that adjacent tiles have a common edge which haaiie color in both tiles.

Tiles placed in the plane can be seen as a dual view of crossegrid. Acrossin a grid is a combination
of four (colored) edges sharing a corner. Given a set of @tberosses, one may wish to color all edges of a
grid in such a way that all crosses are allowed. This questiequivalent to the original one. (Turning each
edge orthogonally around its own center turns the grid oeedgto its dual graph and tiles into crosses and
vice versa.) Thus, one can use either representation forisesl advantages.

We call apalette a finite set of tiles that can be used to tile the planpea{ette for crosses). The problem
to know whether a set of tiles is or is not a palette, is theadtzd domino problem.

In order to prove its undecidability left open in [Wangd 61, Wya62], Berger|[Berger 66] constructed
an aperiodic set of tiled,e., a palettet such that allt-tilings are aperiodic (no translation keeps them
unchanged) (see also [Robinson 71] end [Allauzen Durand 96]
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Hanf in [Hanf 74] (for the origin constrained case) and theyeks in [Myers 74] (for the general case)
have strengthened this result and constructed a paletteab@nly non-computable (non-recursive) tilings.

The aim of this paper is to understand how “complexity-detivagi’ a palette can be, and we measure
the complexity of a palette by the minimal Kolmogorov conxitie of tiling it can form. More specifically,
we measure the complexity of regions in the simplest tillmagt tan be formed (a formal definition is given
in the next section).

Some information about the complexity of tiling from the uesion-theoretic viewpoint is also provided
(sectior 111).

What can be said about Kolmogorov complexity of a tiling?inglis an infinite object, so we look at
(nx n)-squares and measure their Kolmogorov complexity.

Item[1 of Theorenill below states that for each palette thastsex tiling such that complexity of its
(nx n)-squares ig’(n). This bound is tight: iteri]2, our main result, constructs ketpar that has only
complex tilings: in each tiling, evergn x n)-square has complexity at least The construction is rather
complicated and is based on Berger’s construction in [Be8ggand its further developments.

If Tis a palette with all tilings of at least linear complexititeh all -tilings are aperiodic and non-
computable because for every computabléo(tiori periodic) tiling, the complexity of its centerdd x n)-
squares iZ’'(logn).

Note that the right question is “what is the minimal compigxaf a t-tiling” (for a given paletter) but
not “what is the maximal complexity of &tiling”. Indeed, the maximal complexity could be large for
trivial T such as the set of all tiles having black and white edges wiaedom tiling has complexit@(n?).

Theorenti L uses the same idea of embedding computationdgliims that was used to construct palette
that has only non-computable tiling$s ([Hanf 74, Myer$ 74hwever, in our case we need embedding that
is “dense” enough, and its construction (in non-constiicese) requires additional efforts.

It seems likely to one of us that Kurdiumov-Gacs hierardhiedlular automata (see, e.d., [Gacs$ 01])
could be used instead of Berger’s square hierarchy. Thisarxsgonger result (allowing a constant fraction
of missing tiles in random places) might possibly be actdeWe, however, are confident in our inability to
use these (enormously complex) constructions and, in asg, ¢he simplicity of the structure we propose
has independent merits.

A more structural approach can be used to handle the compleiiilings: a palette can always form
“quasiperiodic” tilings (see€l [Durand 99]). We can measure tegularity of quasiperiodic tiling by the
growth of the function assigning to an integethe minimal “window” size in which all patterns smaller
thann x n must appear (for every position of the window and for all gatts that appear somewhere in the
tiling). This approach was further developed[in [Cervelig@&nhd 00].

Theorent 1 also implies lower and upper bounds for the numbeifferent (n x n)-squares in a tiling
(Corollary(1).

Let us make some remarks about the complexity of tilings ftbenviewpoint of hierarchy of Turing-
degrees of unsolvability. Hanf and Myers resultlin [HanfVWers 74] says that some palettes can generate
only non-recursive tilingsif(e., of degree> 0). This cannot be improved significantly: we cannot find a
palette for which all tilings are, say,-@ard, since for every paletie and undecidable sét, there exists a
T-tiling T such thatA is not Turing-reducible td@. This result is a corollary of classical results in recunsio
theory because the set of all tilings with a given paletteﬁlgfset (see Odifreddi book p.508 [Odifreddil 89]
and references WitHﬂ). However, we present (see Proposifion 3) a short direaifmbthis fact (that goes
back to Albert Muchnik and Elena Dyment and was communictted by Andrei Muchnik [Muchnik 00]).

IThanks to Frank Stephan for references.



2 TheMain Results

There are several versions of Kolmogorov compleXtix) expressing “the minimal description length
(see|[Li Vitanyi 97]). For our purposes it does not matterahhof them we use.

Theorem 1
1. For each palette 1, there exists a 7-tiling in which all n x n squares n have complexity &'(n).

2. There exists a palette T such that in every t-tiling all n x n squares have complexity > n.

(The second part can be slightly generalized. A pattern aconaected subsd® of a tiled planar grid
is the list of tiles inP and their coordinates relative to the centelPofWe encode all objects in binary
denoting their length ai%||. In Theoreni L2 we can replaoe< n squares by patterns of diametey

Item[1 of this Theorem and the following Corollary are prowesectiori 8. The proof of itefd 2 involves
several constructions and will be split into several paBisction 4 considers the easier origin-constrained
case. Section]5 describes aperiodic tilings used as a lmakgjin the rest of the proof. Sectibh 6 explains
the general structure of the computation embedded in gtifectiorl 8 considers computational power of
stripes (modules of different ranks that interact during the corafiah). Finally, section9 considers the
communication between stripes and explains how all thpestrivorking in parallel achieve the declared
goal (preventing low-complexity fragments from appeaiimghe tiling).

Corollary 1 Let Dy(ar) be the number of different n x n squares that appear intiling a.
1. Each palette T hasa 1-tiling a such that D,(a) = 27",

2. There exists a palette T such that Dy(ar) > 2" for every t-tiling a and every n.

(See sectioh]3 for the proof.)

Theorent L has a finitary version that says, informally spegkhat (for some palette) a patterwhose
complexity is less than its diametdrcannot appear in Bl x N-square wherd is the polynomial of the
time needed to establish th&tx) < d.

LetU : p — x be the universal algorithm defining Kolmogorov Complexityx) of x as the minimal
length of its co-image. LetU’(p) = (U (p), ||p||) enumerate the super-graphkof Let Ty(x) be the optimal
inversion time ofU’ on (x, k) andS(x) be the minimal space (p) needs to compute each digit xfrom
somep € {0,11%.

Theorem2 1. Every palette 7, for each N,k > K(N) + O(1), has t-tiled N x N squares x
with K (x) < kand S((x) = O(N) + S(N).

2. There exists a palette 1 such that no pattern x of diameter d > K(x) can be extended to a 1-tiled
square of diameter Tq(x)°.

See Sectioh 10 for the proof.



3 Proof: the Upper Bound (Theorem [11)

Proof of the upper bound.

Fix a paletter. A border coloring b of a (n x n)-square assigns colors tm 4le sides on the square
border. A border colorindp is calledconsistent if it can be extended to a tiling of the entife x n)-square,
i.e., there exists a tiling afn x n)-square that matchds Consider the following algorithm that, applied to a
consistent border coloring of a square of sizen wheren = 2%, extends it to the tiling of the entire square:

A. Find the alphabetically first coloring of the central kndividing the square into four equal squares
such that all four squares get a consistent border coloring.

B. Apply the algorithm recursively to four border coloringé smaller squares. (Fdd x 1)-square
consistent border coloring is just a tile coloring.)

When this algorithm is applied to a square with sidleigenerates a tree of recursive calls for sub-
squares with sided for all | (“standard” sub-squares). On each standard sub-squaterti@exity of tiling
is proportional to square side (since tiling is computed biyalgorithm starting from border coloring).

Each non-standard sub-square with sitis contained in 4 standard sub-squares with sides smadler th
2m and therefore has complexity(m). This argument shows that for some constaand for allk there
exists a tiling of size '2x 2¢ such that al{m x m)-sub-squares in this tiling have complexity at mast

Using compactness argument, we conclude that there exigtéimite tiling with the same property.

(Here are the details. For a fixedet us call a tiling of(n x n)-squaregood if all (mx m)-subsquares of it
have complexity at mosim. As we have seen, for sonsghere exist goodn x n)-tilings for arbitrarily large
n. Call atiling of (n x n)-squareaxtendible if it appears as a central part of some good tiling of arbjttarge
size. Note that each extendible tiling can be extended tesaxtendible tiling of n+ 2) x (n+ 2)-square
by adding one more layer. Continuing this process, we géihg tf the entire plane.) O

Proof of the Corollary. The first statement of Corollafy 1 is a direct consequencepéubound in Theo-
rem[d, since the number of different objects with complexitin) is 27(".

To prove the second statement we use the lower bound fronr&@inéb. Lett be the palette such that
all T-tilings have complexity at leaskSor (k x k)-squares. (We have weaker bounth Theoreni 1, but it
does not matter since we can combine several tiles into ogerléle.)

Let o be at-tiling. Assume that for somethe number ofn x n)-squares ir is less than 2 Consider
a square of sizkx k wherek is a large multiple of, and its “border” formed byn x n)-squares. Since each
border square can be describedrblits (there are less thart Bf them), the whole border has complexity
approximately & (for largek). Then we can change the tiling, replacing the interiofkof k)-square by the
alphabetically first tiling that is compatible with the berd Then new interior is determined by the border,
therefore the complexity of neyk x k)-square is less thark&nd this contradicts to our lower bound (that
is valid for all tilings). O



4  Proof: Origin Constrained Case

To prove the lower bound, we start with the much simpler ‘iorigonstrained case”. It means that we
consider only those tilings of the plane that have a fixeditithe origin. This allows us to enforce the tiling
to be a time-space diagram of a Turing machine.

4.1 Computation Performed

Let us agree that each horizontal line in a tiling represanisiring machine’s tape at timewheret is the
vertical position of that line. The tile used at positiogt) encodes the contents of cell numbxeat timet
(including the head state if the head is inside gelt timet).

The rules of Turing machine are local and therefore can bedsttin terms of tilings (one may represent
overlapping groups of cells on time-space diagram by a. tilE)is technique is well known (see, e.g.,
[Wang 61]) and we won't go into details here. It works only fmnstrained case; we require the origin to
be the tile that contains head of TM, otherwise a tiling maytam no computation.

Since tilings can simulate the behavior of a TM with an inért&pe, it remains to construct a TM that
will ensure high complexity of its time-space diagram.

Imagine that we have a TM with a double tape: each cell is thiéee€ian product of a workspace and an
“input bit”. The TM may change only the workspace of each,dék input bit is read-only. This TM can
checks that input sequence is “complex enough”, that igjitist string has Kolmogorov complexity at least
ck for a constant < 1 in eachk consecutive columns. More precisely, the set of all finitengs with low
Kolmogorov complexity is enumerable (we can try all the paogs in parallel and look for the cases when
the output of a program is significantly longer than the paogitself). Our TM can enumerate such simple
finite strings, compare them with segments of the input tegecting the tiling if any match is found.

This addresses Theorénf 1.2 for patterns of width (equalegatimber of input bits) close to their di-
ameter. For narrow patterns we must superimpose two ortfabgopies of this construction. This suffices,
since diameter of any pattern equals, within a factor of 2jtteer its width or height.

We need now to prove existence of sequences our machine dbesgect.

4.2 Complexity Lemma

Lemmal For each c< 1 there exists a binary sequence w with K (x) > c||x|| — €(1) for all its substrings x.

Remark 1. For our purposes it is enough to prove this lemma for somitiyes (however small). Still,
the more general statement (for alk 1) is of some independent interest, so we prove it in thimgeo
form. We cannot strengthen this Lemma further since for eatjuencev the above inequality fails for
somec < 1 and an infinite set of substrings of unbounded lengths.v@fyebinary string is a substring of
w, then this is evident. If some string does not appear iw, then the bound (x) < c||x|| + £/(1) is true
for somec and for each substringof w.)

Remark 2. It is not important which version of complexity to use in teenma sincet is not fixed and
all versions differ by a logarithmic term. However, in th@gf it is convenient to use prefix complexity.

Remark 3. In this lemma we speak about sequences that are infinite endoection (though the
sequence of indices on the tape is bi-infinite). Howeves ithinot important: if there exists an infinite in
one direction sequence with this property, there are aryitiong finite sequences with this property, and
the standard compactness argument shows that there arfiniiei sequences with this property.

[In fact, compactness is not even needed here. We can conatiitinfinite sequence with this property
from a one-way infinite one by putting bits alternativelytlahd right at the small cost of a multiplicative
factor 2 on(1—c).]



Thus our lemma proves that the above constructed TM doesaftdioh some input sequences (having
this propertyﬁ

Proof of Lemmal[ll
Let us prove first for some constanfsc” that for every stringc and natural numben there exists an
n-bit stringy such that

KP(xy) +KP(n) 4+ ¢ > KP({x,y)) +¢" > KP(x) +n

Here(x,y) stands for the encoding of the ordered pair formed bydy. The second inequality is true since
of 2" such pairs with a giver some must have a universal semimeasure smallentlateast by a factor
of 2" and thus am bits higher complexity.

And the first inequality is true sincg,y) can be reconstructed frory and||y|| = n.

Now we can prove the lemma as follows. For a gigen 1 we choosen such that

m—KP(m) —c >cm.

Then, starting with an empty sequence, we add blocks of emgto it in such a way that each block
increases the complexity at leastdim. Adding several blocks, we increase the length by séh{evhich is
a multiple ofm) and the complexity at least M. Since

KP(uv) < KP({u,v)) + O(1) < KP(u) + KP(v) 4",

the group of added blocks has complexity at ledt— ¢”’. Thus we have proved our Lemma for segments
that start and end at coordinates that are multiplesi.ofThe boundary effects can be compensated by a
small change ir. d

5 Proof: Saf-smilar Pattern

Now we have to consider the general case, no more requirigéfiie at the origin. Let us start with some
informal remarks. The palette must prevent individuahgh from being periodic. This can be provided by
a “self-similar” structure: tiling is divided into “megalés” — blocks of large sizes (squares of siZex22"

for all n) that behave like individual tiles.

A self-similarity of this type was used in Robinson’s coastion of an aperiodic tiling (see Robinson’s
original paper/[Robinson 71] and an exposition giveri in §iten Durand 96]). A slightly more rigid con-
struction (where all “mega-tiles” are aligned, which was the case for Robinson’s palette), is explained
in [Levin 04] and [Durand Levin Shen 04]. We do not repeat #i#el construction here but just describe
the self-similar pattern that can be enforced by it.

Consider a grid of % 2 squares separated by two cells (Fig. 1).

Then group these squares into groups of four squares whoggErséorm a twice larger square (Fig. 2).
We get a rank 2 grid formed b x 4)-squares separated by four cells; this grid is twice largen the rank
1 grid.

Then we group rank 2 squares into groups of four squares wtesgers are corners of rank 3 square
etc. We will refer to the edges on the borders of squares odiakls aglark. (Fig.[3 shows one rank 4 square
and underlying hierarchy of smaller squares.)

2Note that time-space diagram occupies only the upper halfepwhere time is positive, but this does not matter singé hi
complexity of squares is guaranteed by input bits which agape vertically in both directions. Similarly in extendalastract of
this article (STOC 2001 [Durand Levin Shen 01]) the complerf all squares was assured by each square propagatinpus i
bits vertically, horizontally, and diagonally. (The lastattion of propagation was among many details missing & abstract. It
referred to the version posted at arXiv.org simultaneoustly STOC 2001 for more details; now, we give an entirelyetint, and
simpler, proof of a stronger result.)



Figure 1. Rank 1 squares Figure 2: Rank 2 squares

Figure 3: Hierarchy of squares

Note that we have described not one specific pattern but aouateble family of patterns: at each
rank we have a two-bit choice while grouping squares intootygs. Therefore, a pattern (together with a
specified cell in it) is determined by an infinite sequenceitsf b

Note also that the dark pattern may be either connected or Tio¢ latter happens if there exists a
“separating line” (a vertical or horizontal line that doest intersect any dark square). The dark pattern
in these cases has 2 or 4 connected components separatetidsyaehorizontal or vertical line, or by an
infinite cross. For the case of one separating line we redfuioebe of uniform color (either light or dark).
For the case of two separating lines they must form a darkecdfaur possible orientations).

Looking at some non-separating line, we see that it conefsédternating dark and light segments of
length 1 wherek is the rank of dark squares adjacent to it. We say that théstas rankk (is ak-line).

We assign infinite rank to separating lines. The non-comukechse (when separating lines exist) is
called thedegenerated case in the sequel and requires special treatment, see Subs@chio

Proposition 1 There exists a palette and a projection of its colorsinto {dark, light} such that every tiling is
projected onto some pattern of the described type.



See [Levin 04] and [Durand Levin Shenl|04] for the proof. ThadetteP (+palette, actually) provides
two orientation bits which will help us below. These bits on each edgshow vertical and horizontal
direction to the nearest center of the dark square with baaldinear tox. These bits form distinct crosses
at the intersections of lines of the same rank, of adjacemisraand of more distant ranks. In a more informal
language (that will be used in the sequel) one can say thate@ge on a dark square “knows’g, this
information is encoded in its color) whether it belongs te ligft or to the right half of the square. The same
is true for the lower and upper half of the square (and vdriadge). The corner node “knowsi'€, this
information is encoded in the neighbor colors) that it is meo node, etc.

To provide more formal description of the pattern, it is cement to use a kind of 2-adic coordinates.
Consider lines that go in-betweerx2 squares (one line per four cells). Taking them as referlineg, we
provide “modulo 4” coordinates, or just 4-coordinates, fa®x in Figure 4.

The same can be done modulo 8 for rank 2 squares, as showruire[Big

111
110
101
100
11 011
10 010
01 001
01 10 11 001 010 011 100 101 110 111
Figure 4: 4-coordinates and rank 1 squares Figure 5: 8-coordinates and rank 2 squares

Note that 8-coordinates are consistent with 4-coordin@tes last bits of the 8-coordinate form the 4-
coordinate). We can then consider 16-coordinates, 32dawates etc. They extend each other, and for each
point of the grid we get a 2-adic coordinate that is an infiftilethe left) sequence of bits.

Vertical sides of rank squares have-coordinates ..10¢1; the same is true foy-coordinates of hor-
izontal sides. So we can assign rank to vertical and homgdines (1 plus the number of zeros at the end
of their coordinates). Lines of rarkkcontain sides of rank squares. Each line has some uniquely defined
rank, except for the line with zero coordinates. This lina eaist or not depending on the pattern (this is
the separating line we mentioned above).

The centers of rank squares have coordinates that end Witteros, i.e., lie on the rank+ 1) lines.
Other features of the pattern can be also easily expressednis of coordinates. For example, a vertical
grid line with coordinat intersects (the interior of) rartkksquares if and only if lakt+ 1 digits ofx belong
to the open interval010¢ 1,110 1).



6 Proof: Stripesand Grids

Let us start with some informal remarks. The high complegityilings comes from amnput sequence I,
horizontal and infinite in both directions. Each bit occuggevertical line. A Turing Machine (TM) verifies
thatl has no low complexity segments. This computation represny tilings as space-time diagrams.

As it was done for the origin-constrained case, the conftopmeof a TM (the contents of its tape
including the head position) is represented by colors afzbatal edges. Their shifts in the vertical direction
represent time evolution. The consistency of states inexpuiEnt moments of time is achieved via vertical
edges that carry the state information from one horizomtaltb another. The correctness of state transitions
is assured by a palette that restricts the coloring of ceoskthese vertical and horizontal lines.

In the origin-constrained case the whole tiling represtioiee computation. Now, instead, we arrange
infinitely many coexisting and interacting computationisisInot a problem to combine two computations
at the same location: the Cartesian product of two finiteadpls is still finite. But this cannot be done for
infinitely many computations. Instead, they are separategpace and time so that each edge is used only
by a limited number of them. All the computations should themmunicate with each other to check that
every substring of the input sequence has high complexity.

The organization of these processes “formats” the plangukie self-similar Block Pattern (described
above). This formatting is used to arrange space for infini@any “computations”. Each computation is
performed by aubgrid that consist of finite number of (infinite) vertical lines anéinite number of (finite)
horizontal lines arranged as in Fig. 6. Their intersectiomts are calledhodes of the subgrid.

time

81| 82 83 Sn

Figure 6: Subgrid for one computation

Each horizontal line is divided by nodes into segmests. (.,s,). Each segment carries one symbol
of TM tape or the state of one cell in the cellular automatohe €hanges happens in nodes only (both for
horizontal and vertical lines). All this can be:

e organized locally if each edge of the subgrid knows its pladbe subgrid (whether it is at the node,
lies on the left/right boundary, or between nodes, etc.).

e used in a usual way to simulate computations of TM (or cellal&omata) with the tape of fixed size.
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Note that the “physical” distances between the grid lines loa arbitrary, they do not affect at all the
computation performed on the grid. (In fact all the vertidiskances will be the same, but not the horizontal
distances. This is somehow shown in Figure 6.)

Note also that the edges included in the grid do not know howhfzy are from the nodes they connect
(it is not needed and also there is not enough colors to ertbag)e

Now we describe how the subgrids are localized. Let us intedsome terminology. Each dark square
of rank k is included in a twice largek-block. For eachk, the plane is split intk-blocks. A bi-infinite
column of vertically alignedk-blocks forms &-stripe (see Fig[LT).

The borderlines betwedablocks have 2-adic coordinates that end viith 1 zeros.

Eachk-stripe is a union of twdk — 1)-stripes, called it€hildren (see Fig[B). (For example, 3-stripe
[...0000Q...10000 that lies between vertical lines with coordinatesD0000 and .. 10000 is the union of
two 2-stripes: the leftis...0000Q...01000Q, the right is[...0100Q...10000.

] ]

— ] ]
] ]
] ]
] ]
i i

— ! (k — 1)-stripe | (k — 1)-stripe
0 | m

k-block

1 1 |
] ] |

— ] ] |
] ]
] ] |
] ] |
] ] |
] ] |
] ]
\ k-stripe 1 k-stripe

Figure 7: Grid ofk-blocks andk-stripe Figure 8: Stripe and its two children

We provide for each stripe a subgrid that is located insigestnipe. (This subgrid hosts a computa-
tion that is finite in space but infinite in time.) These conaioins are not completely independent: each
computation communicates with its parent computationafled in the parent stripe) and its two children
computations (located in children stripes). The commuitnais implemented by sharing some vertical
lines, communication lines. There are three communication lines in each subdhniel:center line and the
vertical lines that contain the vertical side lekquare; the latter two lines are the leftmost and rightmost
lines in the subgrid and are called “border lines”.

Note that the center line é&fsquare is at the same time the border line forkthel-level subgrid. Using
the center linek-computation can communicate with its paré¢kt- 1)-computation, and using the border
lines, k-computation can communicate with its two childrgn- 1)-computations.

We need also to specify the other vertical lines that araiged in thek-level subgrid. They are called
k-channels and lie between the border lines (see below about their éaeation). The horizontal lines of
the subgrid, calle#t-tapes in the sequel, are just bottom lineslebquares (see Figl 9).

10



child
parent
child

. :

Figure 9: Horizontal and some vertical subgrid lines férstripe

‘——>

‘ k-stripe

7 Designation of k-channels

Designatingk-channels, we should have in mind that:

(1) Each vertical line should be shared by a limited numberoshputation subgrids (in fact, three in
the construction explained below: it can be a communicdirain two subgrids and a channel in the third
one).

(2) There should be sufficiently makychannels to provide enough space for the computation imeefd
by a subgrid. (In our construction tlkelevel subgrid ha@(Zk/z) vertical lines, which is about the square
root of its geometric size.)

(3) Each node should know its role in every subgrid it belotmys(Since the number of subgrids is
limited, this is a finite amount of information that can be ethed in the finite number of colors. What is
important, we need the correct information be enforced bgllaules.)

Let us explain how all three goals can be achieved. Firsyydedgree that we have two types of dark
squares, sayed and blue squares, and the colors alternate (¥esguares are red an@k + 1)-squares
are blue or vice versa). This is very easy to arrange: aniaddltbit distinguishes between red and blue
squares, and this bit should differ for two intersectingkdaquares (note that if two squares intersect, their
ranks differ by 1).

Then for a vertical line we define its color (red or blue) asdbler of the square whose side it contains.
Since the vertical sides oflasquare have coordinates 010! and... 1101, the color of a vertical line
depends on whether the number of trailing zeros is even ar @dek color is defined uniguely for all lines
except for the separating vertical line if it exists in thétpm; the separating line can have arbitrary color.)
Note that we can easily distribute the color along the limegach point on the line knows the line color.

Now the rule:

for each lineL we look for the smallest square of the same color that intésde(not taking
into account the square that Haas its border); if this square is of rakkthel line is declared
to bek-channel and belongs to the computational subgrid for theespondingk-stripe.

11



In other terms, consider a line of rakk It is a border line fok-squares. The construction guarantees
that it is a center line fofk — 1)-squares and does not intersect smaller squares. So weldbollfor
squares of rank+ 2, k+ 4 etc. until we find a square that intersects this line. (Nio& tankk line cannot
go through the center or along the sides of those squares.)

For 2-adic coordinates: first we find the rank of the line logkat trailing zeros. Rank means that
there are&k — 1 trailing zeros, i.e., the coordinate ends with 70 Then we split bits on the left into 2-bit
blocks, as shown in Figufe 110. Going from right to left, we fthd first block that contains 01 or 10 (this
means that the line intersects the corresponding square).

10...0

Figure 10: Finding the square

So we see that goal (1) is achieved.

To estimate the number & channels in a givek-subgrid, we can either use the coordinate description
or geometric argument. The coordinate description shoatsvile can use blocks 00 or 11 after the 01/10
block and the trailer of the form.1.0. This gives #2t°() options fork-squares. (For each &f2+ O(1)
levels we exclude two of four possible blocks 00, 01, 10 and.&1 half of the lines.)

We can count also thie-channels for a givek in a top-down fashion. Eadksquare has twok — 1)-
children of the opposite color and fotk — 2)-grandchildren of the same color, see Fidurk 11. (This figure
does not keep the vertical distances since only horizowisitipns matter now.) Two grandchildren (and all
their descendants) lie outside the zon&-@iquare (i.e., on the left or on the right losquare). Two other
provide fourk-channels that are lines of rakk- 2.

| |
— T —

Figure 11: Grandchildren and their grandchildren

Each of these two grandchildren has four grandchildren;dfxtbem are shadowed bk — 2)-squares
(and producgk — 2)-channels, nok-channels); each of two other produces twwohannels, so we get 8
k-channels that are lines of rakk- 4.

We continue by induction and conclude that éesquare has'4descendants of rank— 2t; some of
them are shadowed by squares of intermediate level (togefkie the whole stripe), some lie outside the
zone of the initiak-square (together with the whole stripe), andt@gether with the whole stripe) are not
shadowed and lie inside the zone (together with the entifgetproducing 21 k-channels being lines of
rankk — 2t.

So the total number df-channels in the zone of sonkesquare is 48+ 16+ ..., and this sum has
k/2+4O(1) terms, so it is equal t®(2¢/?). The goal (2) is achieved.

For (3), let us look at some vertical line. It knows its colatso the points where it intersects the squares
of the same color are locally known. We can consider them excKets” (opening bracket means that line
comes in the square, and closing bracket means that is gtesSmwe reduce our task to the following
problem: having a correct bracket structure on a line, fimditimermost brackets. It is easy to do by local
rules, if each brackets sends a signal in the outside directhe innermost bracket is the bracket that does
not receive that signal.
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8 Proof: Computational Subgrids and their Power

Looking at a computational subgrid, we may ignore the regt@plane as well as the geometric parameters
of the embedding of this subgrid (distances between tha ite.). For us it is just a vertical stripe that
obeys some local rules (rules for the left/right boundamidaliffer).

Such a tiling represents the time-space diagram of a finllel@eautomaton (finite number of cells that
change their state depending on the previous states of giassand of their neighbors, according to some
rule which is the same for all automata except for the leftraosl rightmost one, who have special rules).

This confronts us with the problem we started with: how ttidmé a computation? But now the situation
is different: we work in a stripe of a finite size, so the lefshand rightmost cells know that they are on the
boundary, and this allows us to restart computation “on@miexponential while” using a counter.

This type of self-stabilization is easy to achieve. We mayutate a time-space diagram of a Turing
machine. To ensure that a head of TM exists and is unique, weenaire that some bit is 0 at the left end,
is 1 at the right end, is monotonic (local rule) and the platemn the bit changes behaves like a head of
TM. This machine can perform counting in a positional nungystem adding 1 to the counter all the time.
When an overflow happens, we have to restart some other catigpusimulated in parallel by the stripe.
If the base of our positional number system is large enodghgcounting process takes more time that the
other computation we simulate (if the latter computatioesinot repeat itself).

Let us illustrate this technique using the model examplenagalated stripe.

Consider a vertical stripe (finite in horizontal directiomdabi-infinite in vertical (temporal) direction.
Assume that left and right borders of the stripe have spée#f and “right” colors. We want to tile the
stripe with tiles from a given tile set (respecting the borcidors).

Let us assume also that all tiles of our palette are dividealtimo types (O-tiles and 1-tiles) and tiling
rules guarantee that all tiles on a vertical line have theesaape. This guarantees that each vertical line in
a tiling carries one bit (its type) and thus each tiling oipsrof widthw determines a bit string of lengtk.

So for each palette we get a set of strings; that corresponds to atHtilings of stripes (strings of length
nin L; correspond to the tilings of the stripe of width

Proposition 2 1. For every tile set T the language L; belongs to PSPACE.

2. Everylanguage L that is decidable in linear space can be represented as L; for sometile set 7.

Proof. Part1 can be proved in the same way as Savitch theorem (NFSPAESPACE). Art-tiling of
an infinite stripe exists if and only if there exists a tilinfjaow x h rectangle (wherev is stripe width and
h € 27(\W) that has the same colors on top and bottom lines. Indeetngles with this property can be
combined into a (periodic) tiling of the entire stripe. Or thither hand, there is only’®" possible colorings
in a horizontal section, so in every tiling of an infinite p&iidentical sections appear at distance at most
29" Now we can write a recursive procedure that checks wheltege texists a tiling of a rectangle of
width w and heighth with given top and bottom that runs in spagelogh)?M) and use it to determine
whether a given string of length belongs td_;. (Consider sequentially all possibilities for the colol@g
the middle line of the tiling and for each possibility makeotrecursive calls for the two parts of the tiling.)
Part’2 uses self-synchronization technique explainedeabsince every computation with spacgw)
terminates in time 2", we can superimpose the computation with a TM computatiankiéeps &' (w)-bit
integer (counter) in each horizontal line and increasey i hll the time. When an overflow happens, the
main computation is “rebooted” in that line. As we have meamdid, this rebooting procedure gives the main
computation enough time to terminate.
This proposition is not directly used in the proof of maindrem. It is presented here as an illustration
of the self-stabilization technique used in in our main ¢argion together with other key ingredient, the
hierarchical communication between the stripes. O
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9 Proof: Hierarchy of Computations

We have seen that a subgrid can compute every predicateahdieccomputed in linear (in its effective
width: ©(+/N) for square with sidé\) space.

However, our construction of tiling with linear complexitf squares will use subgrids in a more sub-
tle way: different computations communicate with each ot therefore become parts of some global
computation. Let us explain how it is done.

9.1 Input Bits

We assume (as we have done in the constrained case) thatextichl\line carries one bit (that propagates
vertically). Therefore, tiling determines a (horizonthlinfinite sequence of bits. Our goal is to guarantee
that this sequence does not contain substrings with low Kgbrov complexity (in the same way as for

origin-constrained case).

9.2 Zonesof Responsibility

Recall that computation subgrid based on rardquares was located in the middle part of a stripe twice
wider than the squares themselves. This stripe contdihge2tical lines (and input bits) and we say that
these lines and bits are in the “zone of responsibility” a$ tubgrid. Figur€l8 showlsstripe that is the
zone of responsibility for a computational subgrid basedhenlarge square in the middle; thisstripe

is the union of its two children who arg — 1)-stripes. These stripes are zones of responsibility for two
computation subgrids based on the smaller squares.

For eachk the entire plane is divided into non-overlappikgtripes that are zones of responsibility for
subgrids based ok-squares. Each zone is divided into two children who are z@igesponsibility for
smaller subgrids; these zones are then divided into smzadiees etc. So we get a tree-like structure of
degree 2 whose vertices are computation subgrids. Eachwioashildren and one parent, except for the
smallest ones that do not have children.

9.3 Communication Between Stripes

Communication between parent and child subgrids is easyg@anze since parent and child share some
line that can be used as a meeting point for the corresporwingputations (Turing machines). Of course,
the heads of two machines need not to be at the same time ae#tengipoint, and this creates some delay.

Note that visibility of finite number of bits is enough for asyronous communication (one of the bits
can be used as “ready” flag while other are used as informatts)) and the delay(+/N) steps for each
transaction, if TM visits regularly the meeting points) captable (see below). Therefore we assume that
serial asynchronous communication between parent andiitsen is possible.

9.4 Bit Servers

It remains to explain what each subgrid computes. It run@malfel (for example, using time sharing — or
we can simulate two-head TM) two processes. The first prasesdled BitServer; the second one is called
ComplexityCheck. Let us explain first what BitServer does.

It serves requests about bits in the zone of responsibifitye subgrid where it runs. Such a request
contains bit address (relative to the start of the zone) gadithmic length and should be answered by
providing a value of the input bit with given address. Bitg®gses the most significant bit of the address to
determine to which child it should forward the remainingtpdrthe address, and then waits until this child
provides a reply (which is then sent to BitServer’s client).
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This recursion stops at the lowest rank where eacfi(df) required input bits is at’(1) distance from
the computation, so we may assume that these bits are diesttéssible.

Note that BitServer is able to provide inputs bits from thérerzone of responsibility (even outside of
the physical location of the subgrid) due to its children.

9.5 Complexity Check

BitServers are useless if nobody uses them, so we need totaeste second process, ComplexityCheck.
This process runs in each subgrid and tries to check whdibeseiquence of input bits in its zone of respon-
sibility has no substrings with small Kolmogorov complgxgas it was done for origin-constrained case).
The ComplexityCheck process gets bits from the BitServethefsame computational stripe. BitServer
interleaves requests from ComplexityCheck with exteraguests (see “Time bounds” below).

The problem is that (compared to the origin-constraine@)caagch computation stripe has limited abili-
ties: it can perform only/N-space computations to che¢kN) bits. Therefore, each stripe should rely on
higher ranks for complete check (the computation time neééalénd that some string has low Kolmogorov
complexity is not bounded by any computable function ohgfs length).

This cooperation between ranks is indeed possible if Caxitpléheck is organized in a proper way.
This process generates the list of “forbidden” string (gfsi with low complexity). Thus all ranks compute
the same list in the same order (computation terminates ithaeets time/space constraints). When a
forbidden string appears in a computation it is tested agaith substrings of the same length that are in
the responsibility zone of the involved computation strigkhis testing is performed by requiring bits from
BitServer.) If a forbidden string is found in the input segoe, then the computation halts (making the tiling
impossible).

If some string has low complexity, then it appears in the disforbidden strings and therefore the
computational stripes of sufficiently high rank will haveoeigh time first to generate it and then to check
all substrings against it.

Can we conclude now that all the substrings in the bi-infisgguence of input bits have high complexity
because they are ultimately checked in the computatioripestof all ranks? No. The problem is that the
tree-like structure of computational stripes may consistiv@ disjoint parts that never meet. (This is a
“degenerate case” discussed earlier.) But this does notuBubecause in this case each substring of the
input (in the worst case) consists of two parts that are auwbskparately. Taking the longer part, we see that
it is not forbidden and has high complexity. Therefore, g\sufficiently long) substring of input sequence
has complexity at leash wheren is its length and is some constant. We can then increabg combining
several tiles into one bigger tile.

9.6 TimeBounds

The only thing that we still have to check is that all this coomication and computation can be performed in
v/N-space (and exp/N)-time). Indeed, each bit address takes logarithmic spawktas is much smaller
than v/N-space that is available). The depth of recursion is logait. So if we assume that BitServer
interleaves internal requests (from ComplexityCheck efshme rank) with external requests, the time to
fulfill them will be still exp(£'(log)), i.e., polynomial. Note also that the slowdown induced ksfitey a
forbidden string (when it appears) against all substrimgtheé zone of responsibility is polynomial (in the
width of the zone), while the time bound is exponential. 3 sfiowdown does not prevent the generating
process from generating every forbidden string (at a higiugh rank).

This ends the proof of Theorem 1.
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10 Proof: Theorem

Proof. To prove TheoremlPl1, denadg the space used by the algorithm of Secfibn 3 that checksstensy
of a border coloring of a square. Them = sy + O(N), and sosy = O(N).

The proof of ZL2 is essentially the same as the proof of Tmedevith two additions addressing minor
issues. First, the self-stabilization counter of Secfimestarts computation very rarely, with exponential
intervals. Thus, a meaningless computation can run for @ tone before the re-initiation. It can fail to
discover low complexity of the input, and thus allow it in aga tiled square. This is easy to remedy just
by restricting the counters to (sufficiently large) polyriahvalues. Such counters are implemented by a
constant number of unary integers.

The second issue is thatmay appear near the border of lafyex N squares. Formally speaking,
Propositior 1L says nothing about finite tilings. Howeves pitoof (see[[Levin 04, Durand Levin Shen 04])
guarantees that rarikstructure can be distorted only near the border of the tibggion: for eactk there
exists somean(k) = ¢'(2%) such that the part of tiling that isi(k) tiles apart from the border, has a correct
structure at rank (i.e., for X x 2¢ squares). This can be proved by induction dvaince the argument
in [Durand Levin Shen 04] (that shows that 1-tiles are groujpgo 2-tiles in a regular way) uses only a
small neighborhood.

So the checking goes on in the internal part of the tiled red@smuare) and guarantees that the bit
sequences there have no simple substrings whose simgaitipe established fast. The problem is to bring
these complex bits to the border of the tiled region. This lmareasily done with the following trick: let
us overlap four constructions of the described type thapamyate bits along the lines with directi¢® 1),
(2,-1), (1,2), (1,—2) instead of vertical lines that we have used for bit propagatior every point on the
border at least one of these four directions brings us inrttegnal part of the tiled region (square), so the
bits on the border are also complex.

O
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11 Turing Degreesof Tilings

In this section we are concerned with Turing-degrees afgdi we provide a simple direct proof of the
following theorem.

Proposition 3 For each palette T and for every undecidable set A there exists a t-tiling T such that A is not
Turing-reducibleto T.

Corollary 2 For every palette T, there exists a T-tiling T such that T is not 0'-hard.

Proof. Let us consider the spacg of all configurations made af-tiles (both tilings and configurations with
tiling errors). This space can be considered@sand thus endowed with the product (Cantor) topology.
The sett of local rules defines a closed (compact) sulisetf .7 consisting of all tilings. This subset
is an effectively closed subset (its complement is a unioanoénumerable family of basic open sets that
correspond to violations of local rules). By our assump@og 0.

Let M be some oracle machine that uses a tiling .7 as an oracle. Letbe some input foM anda be
some output value fo¥ (i.e.,a= 0 ora= 1 if we consider machines that decide some set). Consider the
set of all oracle§ € .7 such thatM usingT produces answea on x. This set depends dvl, x anda; we
denote it byJ (M, x,a). It is easy to see that (M, x, a) is an effectively open set: we have to simuliten
input x for all possible oracles and look for all computation braxthat end with answex In this way we
generate basic open sets whose unids (i1, x,a).

If C Cc U(M,x,a), thenM produces answea on inputx for all 7-tilings. The crucial observation: if it
is the case, we can find it out eventually. Indeed, in this dasenumerable family of base open sets that
form U (M, x,a) and the enumerable family of base open sets that f6t\\C together form a covering of
compact space’. For compactness reasons, finite number of sets are enongmeiating both families,
we will discover this finite covering at some point.

Now we can prove that there is no machiehat reduces the undecidable 8db everyt-tiling. (This
statement is a weak form of our theorem.) Indeed, this mdaatscbrrect answer (we denote it Byx))
is produced for every input and every oracld € C, i.e, C C U(M,x,A(x)) for all x. But then we can
computeA(x) without oracle by looking for all such thalC c U(M,x,a). The correct valué\(x) will be
found; no other one can appear sitteM, x,a) andU (M, x,&) are disjoint whera # &'.

The next step is to use diagonal argument and fititing T such that no machine decidasisingT as
an oracle. LeM1,My,... be the enumeration of all (oracle) machines. We construetjaence

CooCioGCD...

of effectively closed sets such th@g = C, all C; are non-empty ant¥l; does not reducé to any of the
oracles inCi. Then the intersection of &l is non-empty because of compactness; every its eleféna
1-tiling (sinceCy = C) and no machine reducésto T.

Assume tha€;_1 is already constructed. There are two possibilities:

(1) If Gi_1 C U(M,x,A(x)) for all x, thenA(x) is computable for the same reason as before (where we
hadC instead ofCi_1); to computeA(x) without oracle we look foa such thaCi_; C U (M, x,a).

(2) If Gi_1 is not a subset dfl (M, x,A(x)) for somex, then choose somewith this property and let

C= Ci,]_\U (M,X,A(X))

ThenC; is non-empty, effectively closed amd does not produce correct answix) with input x and any
oracleT €G;.

Note that the construction &; is not effective (the choice of is not effective) but this is not needed:
the only thing we need is that ea€his effectively closed (though not uniformly i d

17



References

[Allauzen Durand 96] C. Allauzen and B. Durand. Appendix Ailihg problems”.
In [Borger Gradel Gurevich 96], pp. 407—420, 1996.

[Berger 66] R. Berger. The undecidability of the domino peotr. Memoirs of the American Mathematical
Society, 66, 1966.

[Borger Gradel Gurevich 96] E. Borger, E. Gradel, and Y.r&ich. The classical decision problem.
Springer-Verlag, 1996.

[Cervelle Durand 00] J. Cervelle and B. Durand. Tilings: &®stvity and regularity. IrSTACS 00, volume
1770 ofLecture Notes in Computer Science. Springer Verlag, 2000.

[Durand 99] B. Durand. Tilings and quasiperiodicifijheoretical Computer Science, 221:61-75, 1999.

[Durand Levin Shen 01] Bruno Durand, Leonid A. Levin, Aledan Shen. Complex tilings. STOC, 2001,
p. 732—739. Extended version: http://www.arxiv.org/¢c/€107008

[Durand Levin Shen 04] Bruno Durand, Leonid A. Levin, Alegian Shen. Local Rules and Global Order,
or Aperiodic Tilings' Mathematical Intelligencer, 27(1):64—68, 2004.

[Gacs 01] Peter Gacs. Reliable Cellular Automata with Setfanization.Journal of Satistical Physics
103(1/2):45-267, 2001.

[Gurevich 91] Y. Gurevich. Average case completends&€omp. and System Sci., 42:346—-398, 1991.

[Gurevich Koriakov 72] Y. Gurevich and I. Koriakov. A remaok Berger’s paper on the domino problem.
Sberian Journal of Mathematics, 13:459-463, 1972. (in Russian).

[Hanf 74] W. Hanf. Nonrecursive tilings of the plane Journal of symbolic logic, 39(2):283-285, 1974.

[Ingersent 91] K. IngersentMatching rules for quasicrystalline tilings, pp. 185-212. World Scientific,
1991.

[Levin 86] Leonid A. Levin. Average case complete proble®#M J. Comput, 15(1):285-286, Feb. 1986.

[Levin 04] Leonid A. Levin. Aperiodic Tilings: Breaking Treslational Symmetry.
The Computer Journal, 48(6):642-645, 2005. On-line: http://www.arxiv.orgod/0409024

[Li Vitanyi 97] M. Li and P. Vitanyi. An Introduction to Kolmogorov complexity and its applications.
Springer-Verlag, second edition, 1997.

[Muchnik 00] An.A. Muchnik, personal communication, 2000.
[Myers 74] D. Myers. Nonrecursive tilings of the plane.Jaurnal of symbolic logic, 39(2):286-294, 1974.
[Odifreddi 89] P. Odifreddi.Classical recursion theory. North-Holland, 1989.

[Robinson 71] R. Robinson. Undecidability and nonperidgior tilings of the plane.Inventiones Math-
ematicae, 12:177-209, 1971.

[Wang 61] H. Wang. Proving theorems by pattern recognitlom#ll System Technical J., 40:1-41, 1961.

[Wang 62] H. Wang. Dominoes and th@v-case of the decision problem. Rnoc. Symp. on Mathematical
Theory of Automata, pp. 23-55. Brooklyn Polytechnic Institute, New York, 1962

18


http://www.arxiv.org/cs.CC/0107008
http://www.arxiv.org/cs.DM/0409024

	Introduction
	The Main Results
	Proof: the Upper Bound (Theorem ??.??)
	Proof: Origin Constrained Case
	Computation Performed
	Complexity Lemma

	Proof: Self-similar Pattern
	Proof: Stripes and Grids
	Designation of k-channels
	Proof: Computational Subgrids and their Power
	Proof: Hierarchy of Computations
	Input Bits
	Zones of Responsibility
	Communication Between Stripes
	Bit Servers
	Complexity Check
	Time Bounds

	Proof: Theorem ??
	Turing Degrees of Tilings

