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Roughly speaking, Kolmogorov complexity is “com-
pressed size”. Programs like zip, gzip, etc., compress a
file (text, program, or some other data) into a presumably
shorter one. The original file can then be restored by a
“decompressing” program.

This explanation contains several inaccuracies—both
technical and more essential. Technically, instead of files
(sequences of bytes) we will consider binary strings (finite
sequences of bits, that is, of zeros and ones).

Here are the more essential points:

e We consider only decompressing programs; we do
not worry at all about compression. A decompres-
sor is any algorithm (program) that receives a bi-
nary string as an input and returns a binary string as
an output. If a decompressor D on input x termi-
nates and returns string y, we write D(x) = y and
say that x is a description of y with respect to D.
Decompressors are also called description modes.

e A description mode is not required to be total. For
some x, the computation D(x) may never terminate
and therefore produces no result. There are no con-
straints on the computation time of D.

In other words, a description mode is a partial com-
putable (=partial recursive) function from = to =, where
= stands for the set of all binary strings.



Assume that a description mode (a decompressor) D
is fixed. For a string x consider all its descriptions, that is,
all y such that D(y) is defined and equals x. The length of
the shortest string y among them is called the Kolmogorov
complexity of x with respect to D:

Kp(x) =min{ I(y) | D(y) = x}.

Here I(y) denotes the length of the string y. The sub-
script D indicates that the definition depends on the choice
of the description mode D. The minimum of the empty set
is +oo, thus Kp(x) is infinite for all the strings x outside
the range of the function D.

At first glance this definition seems to be meaningless,
as for different D we obtain quite different notions, includ-
ing ridiculous ones. For instance, if D is nowhere defined,
then Kp is infinite everywhere.

A more reasonable example: consider a decompres-
sor D that just copies its input to output, that is, D(x) = x
for all x. In this case every string is its own description
and Kp(x) = I(x).

Of course, for any given string x we can find a de-
scription mode D that is tailored to x and with respect
to which x has small complexity. Indeed, let D(A) = x.
This implies Kp(x) = 0.

It may seem that the dependence of complexity on the
choice of the decompressor makes impossible any general
theory of complexity. However, it is not the case.

A description mode is better when descriptions are
shorter. We say that a description mode (decompressor)
D, is not worse than a description mode D, if Kp,(x) <
Kp,(x) + ¢ for some constant ¢ and for all strings x.

Let us comment on the role of the constant ¢ in this def-
inition. We consider a change in the complexity bounded
by a constant as “negligible”. One could say that such a



tolerance makes the complexity notion practically useless,
as the constant ¢ can be very large. However, nobody
managed to get any reasonable theory that overcomes this
difficulty and defines complexity with better precision.

The starting point for the algorithmic information the-
ory was the following Kolmogorov — Solomonov univer-
sality theorem:

There is a description mode D that is
not worse than any other one: for every
description mode D’ there is a constant c¢
such that Kp(x) < Kp(x) + ¢ for every
string x.

A description mode D having this property is called
optimal.

An optimal description mode can be constructed as fol-
lows: D(py) = p(y) where p is a program (in some
“self-delimiting” programming language, where one can
find the end of the program while reading it from left to
right) and y is any binary string.

If p is a program for some decomressor P, and y is a
shortest description of the string x with respect to P then
py is a description of x with respect to D (though not
necessarily the shortest one) and Kp(x) < Kp(x)+I(p).

Fix some optimal description mode D and call Kp(x)
the Kolmogorov complexity of the string x. In the nota-
tion Kp(x) we drop the subscript D and write just K (x).

Could we then consider the Kolmogorov complexity
of a particular string x without having in mind a specific
optimal description mode used in the definition of K (x)?
No, since by adjusting the optimal description mode we can
make the complexity of x arbitrarily small or arbitrarily
large.



One may wonder then whether Kolmogorov complexity
has any sense at all. Comparing two optimal decompressors
based on different programming languages, we see that the
difference in complexities is bounded by a constant that is
the length of the program that is written in one of these
two languages and interprets the other one. If both lan-
guages are “natural”, we can expect this constant to be not
that huge, just several thousands or even several hundreds.
Therefore if we speak about strings whose complexity is,
say, about 10° (i.e., a text of a novel), or 10¢ (DNA string)
then the choice of the programming language is not that
important.

Some properties of Kolmogorov complexity:

e There is a constant ¢ such that K(x) < I(x)+c
for all strings x.

o For every algorithm A there exists a constant ¢
such that

K(A(x)) < K(x)+ ¢
for all x such that A(x) is defined.

e There is a constant ¢ such that K(xy) < K(x)+
2log K(x) + K(y) + ¢ for all x and y.

e Let n be an integer. Then there are less than
2" strings x such that K(x) < n.

Kolmogorov complexity of a string somehow measures
the “amount of information” in this string. Before the
algorithmic information theory, Shannon entropy was used
as a measure of information. However, it could hardly be
used for individual objects.



Assume that we want to use Shannon entropy to mea-
sure the amount of information contained in some English
text. To do this we have to find an “ensemble” of texts
and a probability distribution on this ensemble such that
the text is “typical” with respect to this distribution. This
makes sense for a short telegram, but for a long text (say,
a novel) such an ensemble is hard to imagine.

The same difficulty arises when we try to define the
amount of information in the genome of some species. If
we consider as the ensemble the set of the genomes of all
existing species (or even all species ever existed), then the
cardinality of this set is rather small (it does not exceed
21900 for sure). And if we consider all its elements as
equiprobable (which other distribution can we choose?)
then we obtain a ridiculously small value (less than 1000
bits).

So we see that in these contexts Kolmogorov complexity
looks like a more adequate tool than Shannon entropy.

Randomness. Kolmogorov complexity is a natural way
to formalize the intuitive notion of “randomness”: random
string is a string that is hard to compress. In other words,
the difference between the length of a string x and K (x)
could be considered as “randomness deficiency” of a string
X.

To get a sharp boundary line between random and non-
random objects we have to consider infinite sequences of
zeros and ones instead of strings. A reasonable definition
of randomness was given by P. Martin-Lof. Later L. Levin
and C. Schnorr found a characterization of randomness in
terms of complexity.

Noncomputability of Kolmogorov complexity func-
tion. It would be nice to be able to compute the Kol-
mogorov complexity of a given string by some algorithm.
However, it is easy to see that this is not possible. The



proof is a reformulation of the so-called “Berry’s paradox”.
This paradox considers the minimal natural number that
cannot be defined by at most fourteen English words;
this phrase has fourteen words and defines that number.

Following this idea, imagine that Kolmogorov complex-
ity is computable. Then we can test all the strings and find
the first binary string whose Kolmogorov complexity is
greater than N. By definition, its complexity is greater
than N, but this string has a short description that includes
the binary notation of N (and the total number of bits re-
quires is much less than N for large N).

Occam’s razor and Kolmogorov complexity. What
do we mean when we say that a theory is a good explana-
tion of some experimental data? Assume that we are given
some experimental data and there are several theories to
explain the data. For example, the data might be the ob-
served positions of planets in the sky. We can explain them
as Ptolemy did, with epicycles and deferents, introducing
extra corrections when needed. On the other hand, we
can use the laws of the modern mechanics. Why do we
think that the modern theory is better? A possible answer:
the modern theory can compute the positions of planets
with the same (or even better) accuracy given less param-
eters. In other words, Kepler’s achievement is a shorter
description of the experimental data.

Roughly speaking, experimenters obtain binary strings
and theorists find short descriptions for those strings (thus
proving upper bounds for their complexities); the shorter
the description is, the better is the theorist.

This approach is sometimes called “Occam’s razor” and
is attributed to the philosopher William of Ockham who
said that entities should not be multiplied beyond necessity.

Taking this approach to a (rather absurd) extreme, one
can announce the contest: participants have to provide the



shortest possible program that prints the human genome
string. (The more regularities we find in the genome, the
shorter this program would be.)

Information distance and classification. The amount
of mutual information in two strings x and y can be mea-
sured roughly as I(x : y) = K(x)+ K(y)— K(xy) (com-
mon information in x and y need not to be repeated in xy).
We cannot compute this quantity, but we can—with no jus-
tification at all—replace K by the compressed size (using
some fixed compression program, such as bzip) and then
use this value for classification of binary strings (say, DNA
sequences or text files). Some initial experiments confirm
the practical value of this approach.

Further reading. The first paper by Kolmogorov:
Kosimoropos A. H., Tpu noaxoja K oIpeAeIeHno TOHSITAS
K KOJIMYECTBO HH(popManuuk, [Ipobnemst nepedauu unghopmayuu,
1965, 1. 1, Bem. 1, c. 3-11 (English translation: Kol-
mogorov A. N., Three approaches to the quantitative def-
inition of information. Problems Inform. Transmission,
1(1):1-7, 1965.)

The most comprehensive text on the subject: Li M.,
Vitanyi P., An Introduction to Kolmogorov Complex-
ity and Its Applications, Second Edition, Springer, 1997.
(638 pp.)

A short freely available lecture notes of an introduc-
tory course: A. Shen, Algorithmic Information The-
ory and Kolmogorov Complexity, published as Technical
Report 2000-034, Uppsala universitet (available online).
See also Russian book in preparation written by V. Us-
pensky, N. Vereshchagin and A. Shen (current version
see ftp.mccme.ru/user/shen/kolmbook.ps.gz). Ex-
periments of classification using compression are described
in R. Cilibrasi, P. Vitanyi, Clustering by compression,
http://arxiv.org/abs/cs.CV/0312044.
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tolerance makes the complexity notion practically useless,
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