HDorh. Akax. Hayxk CCCP Soviet Math. Dokl.
Tom 276 (1984), N2 3 Vol. 29 (1984), No. 3

ALGORITHMIC VARIANTS OF THE NOTION OF ENTROPY
UDC 517.11

A. KH. SHEN’

This note presents a general scheme for obtaining various algorithmic variants of the
notion of entropy. The scheme uses the notion of fo-space in the sense of Ershov [1], and it
uses the interpretation of logical operations as operations over problems in the sense of
Kolmogorov [2]. Special cases of this scheme turn out to be simple and conditional
Kolmogorov entropies [3], [4], decision entropy, monotone and prefix entropies [4]-[6],
and also the entropy of computable functions, which is equal to the logarithm of the
minimum number for an optimal numbering in the sense of Schnorr ([4], p- 151). Also
from the point of view of this scheme we consider the notion of a priori probability [5], [6].

1. The notion of f;-space. This notion was introduced by Ershov. Let us give a definition
convenient for our purposes. The triple { X, X, <), where ( X, <) is an ordered set and
Xy C X, 1s called an fy-space provided: 1) X contains a least element 1 , which belongs to
Xo; 2) any two elements of X, that have a common majorant in X have a least upper
bound in X which belongs to X,; and 3) if x, y € X and x ¢ », then there exists x, € X,
such that x, < x and x, £ y. Elements of X will be called objects of ( X, X,, < ). The
object L will be called the indeterminate, and the elements of X, will be called finite
objects or f-objects. Objects x and y having a common majorant will be called concordant.

Let us call the set I C X, an ideal if it is nonempty, and whenever an f-object z belongs
to I, then so does every f-object less than z, and, for any two concordant objects x, y € I,
sup(x, y) is also in I. We call the fj-space complete if each ideal is equal to a set
I, = {xy € Xy|x, < x} for some object x. In the sequel we consider only complete
fo-spaces.

Let us describe a few operations over f,-spaces. The product of two fo-spaces ( X, X,, < »
and (Y, Y;, <,) is the space { X X Y, X, X Y,, <, X <,) (the product of the orders is
defined componentwise). The sum of fy-spaces { X, X,, <,) and (Y, Y,, <,), where X
and Y are disjoint, is defined as (X U YU {1}, X,U Y,U{L}, <), where L is an
element not appearing in either X or Y, and where < is such that 1 < x and L <y for
each x € X and y € Y, the order within X and within Y is preserved, and no element of X
is comparable with any element of Y. The space of continuous functions from { X, Xy, <)
to (Y, Y,, <) consists of the everywhere defined functions from X to Y, continuous with
respect to the natural topology of f,-spaces, in which the base open sets are taken to be the
sets consisting of all objects greater than a given f-object. The order on the functions is
pointwise: f < g « (Vx € X)(f(x) < g(x)). The finite objects in the function space are
the functions of the form

Fegro(X) = if x4 < x then y, else L
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for all f-objects x, € X, and y, € Y,, and also the least upper bounds of concordant tthite
collections of such functions. The operations described above when applied to complete
spaces yield complete spaces.

Let { X, X,, <) be an fy-space, and let » be an integer numbering of X, such that the
sets {(m, n)|v(m) < v(n)} and {{m, n)|p(m) concordant with v(n)} are decidable, and
such that there exists a computable function f: N2 —» N for which »(f(m, n)) =
sup(v(m), v(n)) whenever v(m) and »(n) are concordant. In this case, we shall call the
quadruple { X, X,, < , ») an effective fy-space. If X and Y are effective f;-spaces, then on
the product X X Y, on the sum X + Y, and on the space of continuous functions
C(X,Y), a structure of effective f-space may be introduced in a natural way.

Let us give some examples of f,-spaces that are used in the sequel. We denote by N | the
space whose objects are the natural numbers and the symbol L . All objects are finite, the
object L is less than the others, and the natural numbers are not pairwise comparable. We
denote by  the space whose objects are all finite and infinite sequences of the digits 0 and
1. The f-objects are the finite sequences, and x < y signifies that x appears at the
beginning of y. We denote by = the space of partial functions from N into {0,1}. The
f-objects are the functions with finite domain, and x < y signifies that y extends x. Upon
replacing {0, 1} by N we obtain a space which we denote by F. In each of these spaces the
structure of an effective f-space is introduced in a natural way. All are complete. In the
sequel, complete effective f-spaces will simply be called spaces, for brevity.

An object x in the space { X, X,, <, v) is computable if the set {n|r(n) < x} is
enumerable. For any space X there exists a computable object from C(N,, X), which
forms the set of all computable objects of X.

A function / which associates natural numbers to f-objects of a space will be called a
volume if n — I(v(n)) is computable and /(x;) < I(x,) whenever x; < x,. The basic
examples of volumes for us are the following: on N, we define a volume such that
/(L) = 0 and I(n) = (integral part of log,(1 + n)) + 1, on @ the volume is to coincide
with length, and on = the volume of x is equal to the number of elements in the domain of
definition of the function x.

2. Problems and their entropy. Let X be a space, and let 4 be a set of objects of X. We
shall call any pair { X, 4) a problem. X is the space of the problem, and objects from A are
solutions to the problem { X, A). We interpret it as the problem of determining, from
among objects belonging to X, that object entering the set 4. We shall call the problem
monotone if x € A and x < y imply y € 4, and solvable if in A there exists a computable
object. Let X and Y be spaces, and let / be a volume on X. By a mode of description of
objects of Y with the help of objects of X, we shall mean any computable object of
C(X, Y). Let there be given a mode of description f € C(X, Y) and a problem a = (Y, A)
in the space Y. The number

¢

K (a) = K,((Y, 4)) = inf{1(x,)|x, a finite object in X, f(x,) € 4}

is called the complexity of the problem a with respect to the mode of description f. We shall
say that the mode of description f€ C(X,Y) is more effective than the mode of
description g € C(X, Y) if there exists a C such that for any problem a = (Y, 4) in the
space Y the inequality K ;(a) < K, (a) + C holds. The mode of description f € C(X,Y)is
called optimal if it is more effective than any other mode of description in C(X, Y). Let us
call a space X with volume / regular if for every space Y there exists an optimal mode of
description in C( X, Y).
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THEOREM 1. The space X with volume | is greater if and only if there exists a mode of
description f € C(X, X X N, ) for which

(Vn € N)EC)(Vxy € X)) (K, ({ XX N, {(x0,n)})) < I(x,) + C).

From this theorem it follows that the spaces N, @, and = are regular.

Let the space X with volume / be regular. For any space Y we choose an optimal mode
of description f € C(X, Y), and we define the entropy K y(a) of a in Y with respect to X
to be the complexity of a with respect to f. Thus for a given space Y, the entropy of a
problem in this space is determined to within an additive bound.

THEOREM 2. Let X be a regular space with volume, let Y be an arbitrary space, and let a be
a problem in Y. Then the entropy K ,(a) is finite if and only if a is solvable.

Let (X,,/;) and (X,,/,) be regular spaces with volume, and let f be a monotone
increasing function satisfying a Lipschitz condition.

THEOREM 3. The following properties are equivalent:
1) For any space Y there exists a C such that for any problem o = (Y, A)

KX,,/I(O‘) <f(sz,/2(a)) + C.
2) There exists a C such that for any finite object x, € X,
KX1,11(<X2’ {x21)) <f(l,(x,)) + C.

The theorem remains valid if in condition 1) “for any monotone problem” is substituted
for “for any problem”, and in 2) “( X, T x2>, where I, = {x € X,|x > x,}” is substituted
for “( X, {x,})”. Let us call the conditions so obtained 1’) and 2'). If conditions 1) and
2’) are satisfied by the function f(n) = n, then we shall say that X; is no worse than X,; if
they are satisfied by f(n) = n + Clog,n for some C, then we shall say that X, is almost no
worse than X,.

THEOREM 4. The relations N | @ Q « E are valid, where X —» Y signifies that X is no
worse than Y,and X @ Y signifies that X is almost no worse than Y. No other correlations
are valid (with the exception of = - N |, which Jollows from the stated relations).

Let us define logical operations on problems. Let a = { X, 4) and g = (Y, B) be two
problems. We define a A B= (XX Y,AXB),aVB=(X+Y, AUB) (X and Y
are assumed disjoint), and « > 8 = (C(X,Y), { f|f(4) B}). We shall call the prob-
lem F = (P, @), where P contains a single finite object, false.

The entropy K y(a D B) of the problem a D 8 will be called the conditional entropy of B
with respect to the known a. We designate it K ( Bla).

Let ®(p,,...,p,) be a propositional formula containing the signs A, vV, D, and F
(falsity). If in place of p,,...,p, we substitute the problems a; = { X, A),...,
a,=(X, A,), then the problem ®(ay,...,a,) will arise. The space of this problem is
determined by the spaces Xj,..., X, and does not depend on the A4,; let us designate this
space as ®(X,,...,X,).

THEOREM 5. Let ®( p,,...,p,) be deducible in the intuitionistic propositional calculus, and
let X,,...,X, be spaces.

Then there exists a computable object in the space ®(Xi,...,X,) which is the solution of
the problem ®({ Xy, 4,),...,{X,, A,)) forany A, C X. !
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THEOREM 6. Let ®( py,...,p,) 2 Y(P1s---,P,) be a formula deducible in the intuitionistic
propositional calculus, let X,,. .., X, be spaces, and let X be a regular space with volume.

Then there exists a C such that for any of the problems ay,...,a, in spaces Xi,. .., X, the
inequality K x(¥(ay,...,a,)) < Kx(®(ay,... ,a,)) + Cisvalid.

This theorem implies the inequalities K y(a) < Ky(a A B) + 0(1), Kx(a|B) < Kx(a)
+ 0Q1), Kx(B) < Kx(a A (a D B))+ O(1) and many others.

Let us consider the set Q of all formulas which satisfy the statement of Theorem 5. Let
Q be a superintuitionistic logic.

THEOREM 7. The logic Q does not coincide with either the intuitionistic logic nor the
classical logic. It also differs from Medvedev’s logic of finitary problems [7}.

THEOREM 8. a) K Nl(( N,.{n} >) = (complexity of n in the sense of [3]) + O(1).

b) Kn ({9, T.)) = (complexity of the solution of the sequence x in the sense of [5]) + O(1).

¢) Kq({ N, ,{n})) = (prefix entropy of n in the sense of [6]) + O(1).

d) Ko({ 9, T,)) = (monotone entropy of the sequence x in the sense of [6]) + O(1).

e) KN ,{n}) > (N,, {m})) = (conditional complexity of m relative to n in the
sense of [3]) + O(1).

HK N(( F,{f} >) = (logarithm of the number of the computable function f for an optimal
numbering, in the sense of [4], p. 151) + O(1).

We recall that T, designates the set { y|x < y}.

Let X be an arbitrary space, and f € C(2, X) a mode of description. With each
problem a = ( X, A), where A4 is a Borel subset of X (with respect to the topology), we
shall compare the number P;(a) = measure(w-infinite sequence of digits 0 and 1|f(w) €
A), which is called the decision probability of the problem a under the mode of description
f. Among all the modes of description there exists one which is optimal, for which P;(a) is
maximal to within a multiplicative constant: for every other method g, there may be found
a C > 0 such that P;(a) 3 CP,(a) for all problems & in X. Having selected and fixed an
optimal mode f, let us call P;(a) the a priori probability of the problem a and denote it by
P(a). With X = N, the a priori probability of the problem (N, {n}) coincides with
that introduced in [6], p. 26 (to within a bounded factor, isolated from zero). With X = Q
the a priori probability of the problem ( Q, I‘x> coincides with that introduced in [5], p. 49
(semi-measure M in Theorem 4.1).

Let P be a measure defined on the Borel subsets of X. Let us call the measure
enumerable if the set {(n,r) € N x Q|r < P(T,,))} is enumerable. (Here » is the
numbering appearing in the definition of effective space.) An a priori probability is an
enumerable measure. !

THEOREM 9. If every pair of finite concordant objects of the space X satisfies x <y or
y < x, then the a priori probability on X is a maximal (to within a multiplicative constant)
enumerable measure. The condition imposed on the space X is essential: in the space Z the a
priori probability is not a maximal enumerable measure.

THEOREM 10. a) -log, P(a) < Kq(a) + O(1), O(1) depends only upon the space of a.
b) The inverse inequality Ko(a) < -log, P(a) + O(1) fails for problems of the form
(E,T,).
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C) There exists a regular space M with volume | for which K m(@) = —log, P(a) + O(1)
for all problems of type { X, T, where X is an arbitrary space (upon which the bound for
O(1) depends), and x is any finite object in X.

d) There does not exist a regular space for which the relation in c) holds for all monotone
problems in every space X.
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