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The question why and how probability theory can be applied to the real-world phenomena has

been discussed for several centuries. When the algorithmic information theory was created,

it became possible to discuss these problems in a more specific way. In particular, Li and

Vitdnyi [6], Rissanen [3], Wallace and Dowe [7] have discussed the connection between Kolmogorov

(algorithmic) complexity and minimum description length (minimum message length) principle. In

this note we try to point out a few simple observations that (we believe) are worth keeping in mind
while discussing these topics.

1. TWO-PART DESCRIPTION OF AN OBJECT

Let p be a program that enumerates some finite set A
(generates its elements; the program does not need to
terminate explicitly). Assume that all elements of A are
binary strings of length at most n. Then, for all x € A,

K (x) < K(p) +1og, |A| + O(logn). 1)

Here K (p) denotes the Kolmogorov complexity of program
p and |A| stands for the cardinality of A. There are different
versions of Kolmogorov complexity (the original one, prefix
complexity and others, see [1]), but they differ by at most
O(log n) and the difference is not important here.

The inequality (1) could be explained as follows: any
object x € A has a two-part description. The first part is (a
description of a) program p. The second part is the number
of x in the enumeration of A (the element that appears first
has number 1, the next element has number 2, etc.). The first
part requires K (p) bits. The second part requires at most
log, |A| bits. (Additional O (log n) bits are needed to form a
pair; we omit the details.)

We are interested in ‘efficient’ two-part descriptions for
which the inequality (1) is close to equality. For any string x
there are many efficient descriptions. Here are two ‘extreme’
examples:

(a) The set A consists of x only: A = {x}; the program
p that enumerates A just prints x and its complexity
is K(x). Since |A| = 1, the second term log, |A|
vanishes.

(b) Let k = K(x). Let A be the set of all strings that
have complexity at most k and length at most n. The
complexity of the program that generates this set is
O(logn) (to generate it one must know only » and k;
since k < n, only O(logn) bits are needed). On the
other hand, |A| = 0(2*), so log, |A| < k + O(1).

It is easy to mix these two examples in an arbitrary
proportion. Let s be any integer between 0 and K (x). Divide
the set A from example (b) into 2* disjoint subsets. Element

number m goes into subset Ammod2s- Then each subset A,
has complexity s + O(logn) (we need s bits to specify u)
and at most 2% elements. Therefore, the terms in the right-
hand side of (1) are s + O (log n) and k — s and this two-part
description is also efficient (in the sense explained above).

2. TWO-PART DESCRIPTIONS REVISITED

However, the situation changes completely if we require the
program p that enumerates A to stop after the last element of
A appears. In other words, now we consider the complexity
of the list of elements of A (let us call it the ‘listing
complexity’ of A and denote it by K (A)) instead of the
complexity of a program that enumerates A (‘enumerating
complexity’ of A).

The example (a) is still valid, since the complexity of
the one-element list (x) is K(x). However, the example
(b) disappears, since listing complexity of the set A =
{x: K(x) < k} is close to k, not to logk (as it was for
enumerating complexity). Indeed, assume that we know the
list of all elements of A. Then we can construct the smallest
element z not in A. By definition, z has complexity more
than k. On the other hand, its complexity cannot exceed
significantly the listing complexity of A.

For some strings x a two-part description of type (b) still
exists. For example, if x is a random (incompressible) string
of length n (K (x) = n), then we can consider the set of all
strings of length n as A. Its listing complexity is O (logn)
and logy A = n.

For other strings a two-part.description of type (b), i.e. an
efficient two-part description with small K (A), is impossible
(see [2] for an exact statement and proof). Kolmogorov
suggested calling such objects ‘non-stochastic’.

The trick used to shift the balance between two parts of the
description (move some bits from the second part to the first
one) still works. Indeed, for any set A and for any integer s
we can divide A into 2° sets of size about |A|/2°. Each of
them can be described by K (A) + s bits. So the length of the
first part of the description increases by s while the length of
the second part (log, | A|) decreases by s.
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3. EFFICIENT DESCRIPTIONS AND RANDOM
ELEMENTS

Conditional complexity K (x | y) is defined as the minimal
length of a program that transforms y to x. One can prove
that

K((x,y)) ¥ K(x) + K(y | x) )]

for any strings x and y. Here = means that both sides differ
at most by O(log(K (x) + K(y))) and (x, y) stands for a
pair composed from x and y (written using some natural
encoding of pairs).

The two-part description describes not only x € A, but
the whole pair (A, x), so

K(x) = K({A,x)) < K(|A]) +log, |A| 4+ O(logn). (3)

So A provides an efficient two-part description if both
inequalities in (3) are close to equalities, i.e. if

K(x)~K((A,x)) and K((A,x)) =~ K(A) +log, |A|.

Using equation (2), these two conditions could be
rewritten as

KA|x)=~0 and K(x|A) =log, |Al

The first condition means that A is simple when x is known;
the second means that x is a ‘random’ element of A. (The
difference log, |A| — K(x | A) is often considered as
‘randomness deficiency’ of x in A measuring how far x is
from being a random element of A.)

4. STATISTICAL INTERPRETATION

The idea of Kolmogorov’s minimum sufficient statistic is
explained in [3] as follows:

First, a ‘summarizing’ property of data may be
formalized as a subset A where the data belongs
along with other sequences sharing this property.
Hence, the property A need not specify the
sequence completely. We may now think of
programs consisting of two parts, where the first
part describes optimally the set A with the number
of bits given by the Kolmogorov complexity K (A)
and the second part merely describes x" as A
with about log|A| bits, |A| denoting the number
of elements in A. The sequence x" then gets
described in K(A) + log|A| bits. We may now
ask for a set A for which K (A) is minimal
subject to the constraint that for an increasing
length sequence x", K A) + log |A| agrees with
the Kolmogorov complexity K(x") to within a
constant not depending on n. The set A, or its
defining program, may be called Kolmogorov’s
‘minimal sufficient statistic’ for the description of
x". The bits describing A are then the ‘interesting’
bits in the program (code) while the rest, about
log |A] in number, are non-informative noise bits.

This description does not specify, however, how A should
be presented: as a (possibly non-terminating) program that
generates elements of A or as a list of all elements (‘~’
a program that generates all the elements of A and then
terminates). As we have seen, the choice of representation
is very important. Most probably Kolmogorov had in mind
the second possibility when he asked about the existence of
non-stochastic sequences.

From this point of view, the goal of a scientist observing
some binary string x as a result of an experiment is to
provide an ‘explanation’ for x. Such an explanation is a set
A that is as simple as possible (K (A) is minimal) but still is
good for x (i.e. x belongs to A and has a small ‘randomness
deficiency’ log, |A| — K(x)). Non-stochastic objects are
objects that do not allow the scientist to explain them. (One
may ask whether such objects appear in the real world.)

S. SETS AND DISTRIBUTIONS

The scheme presented above is oversimplified: normally the
‘statistical explanation’ of data string x is not only some set
A (containing x) but also some probability distribution P on
A. Tt is convenient to consider P as a distribution on the set
of all finite binary strings (all strings x such that P(x) > 0
form the set A).

The inequality (1) is replaced now by the following one:

K(x) < K(P) + (-log; P(x)) + O(logn). (4

Here P is a probability distribution on binary strings, P (x)
is the probability assigned to string x. Let us note that if P
is a uniform distribution on some set A, then (—log, P(x))
is equal to log, |A| (so we return to (1)). What is K(P)? As
before, there are two different ways to define this notion.

1. Consider a machine that has access to random bits and
may print a binary string on its output. After the string
is printed the machine terminates. Then each string x
appears as output with some probability P (x). The sum
3" P(x) over all strings x does not exceed one. This
sum may be less than one since the computation may
never stop (with some positive probability). So any
machine M of this type determines some distribution P
on binary strings (with additional ‘undefined’ element)
and the complexity of M’s program is considered as
K (P). (Different M's could define the same P; in this
case we take the simplest one.)

2. Another approach is to consider probability distribu-
tions with finite domain amd rational values. Such a
probability distribution can be encoded by a binary
string in a natural way and K (P) is the Kolmogorov
complexity of that string.

(There are several variations of these approaches. For
example, if in the first approach we require that the machine
terminates with probability one, we get a notion that is close
to the second approach. Also we may allow computable
reals in the second approach instead of rational numbers,
etc.)
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These two approaches are parallel to the two ways to
measure the complexity of the set A explained before. For
both of them the inequality (4) is valid. Any distribution
P determines a two-part description of x. The first part
describes P; the second part describes x when P is known.
When P was a uniform distribution on some set A, each
element of A was described by its number. Now we have
to use a more efficient description like the Shannon—Fano
encoding where the encoding length is close to —log p (here
p is the probability of an object).

As before, for both approaches the balance between parts
of a two-part efficient description may be shifted in one
direction (complexity may be transferred from log, P(x)
into K (P)), but for the second approach the way back is
not always possible. If K (P) is defined in the second way,
there are some ‘non-stochastic’ strings x such that there is
no two-part efficient description for x with small K (P).

The ‘randomness deficiency’ for a string x with respect to
distribution P could be defined as —log, P(x) — K(x | P);
this definition is a generalization of a definition given above.

6. LIMITATIONS: TIME BOUNDS AND
PSEUDO-RANDOMNESS

The definitions and statements given above may serve as a
basis for some philosophical speculations. For example (as
we have said) one may ask whether non-stochastic objects
exist in the real world. If yes, such an object will pose an
unsolvable problem for scientists who never could provide a
satisfactory explanation for it, etc.

One should be very careful, however, since all the
definitions above do not take into account the computational
resources needed for encoding/decoding. The following
example shows the problem that may arise. Consider a
pseudo-random number generator (for the definition see [4])
that maps, say, a 1000-bit random seed into a 1,000,000-
bit pseudo-random string p. Such a string will have small
complexity (it is equal to the complexity of the seed, i.e.
1000) so p is highly non-random. (Even the time-bounded
complexity of p is small since the pseudo-random number
generator is computationally efficient.) An efficient two-part
description of p exists: the first part is the description of the
generator, the second part is random seed.

However, imagine that somebody gives us a black box.
Inside this box there is a random generator that produces a
1000-bit random seed when the box is turned on and a chip
that implements a pseudo-random number generator. We do

not know what is inside the box, we just connect the box to
a printer, turn the box on and get a 1,000,000-bit string p
printed. Is there any chance that we can find out the efficient
two-way description of p or discover the internal structure
of the box? The current belief is that it is impossible, such a
string will seem random to us forever. So another two-part
description for p where A is the set of all binary strings of
length 1,000,000 will be considered as an efficient one and
we never will find out that it is not the case.

Therefore, complexity considerations should not be
considered as something really practical, they can only give
some hints for real applications and motivate our decisions.
Let us show one example of the latter type.

There is a general rule saying that a statistical hypothesis
P could be rejected if P assigns a small probability to a
simple set T containing the data string x (see, e.g., [5]
for examples). We can support this rule by the following
inequality: if T is a finite set of binary strings and P is a
probability distribution on binary strings, then

K(x | P) < —log, P(x) 4 log, P(T)
+ K (T') + logarithmic terms

(we omit the details). This inequality says that randomness
deficiency in x with respect to P is at least log,(1/P(T)) —
K(T) (up to logarithmic terms) so if P(T) is small and
T is simple, the randomness deficiency is large and the
hypothesis P does not ‘explain’ the data string x.
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