
Desriptive omplexity of omputable sequenesBruno Durand?, Alexander Shen??, and Nikolai Vereshagin? ? ?Abstrat. Our goal is to study the omplexity of in�nite binary reur-sive sequenes. We introdue several measures of the quantity of infor-mation they ontain. Some measures are based on size of programs thatgenerate the sequene, the others are based on the Kolmogorov omplex-ity of its �nite pre�xes. The relations between these omplexity measuresare established. The most surprising among them are obtained using aspei� two-players game.1 IntrodutionThe notion of Kolmogorov entropy (=omplexity) for �nite binary strings was in-trodued in the 60ies independently by Solomono�, Kolmogorov and Chaitin [7,4, 1℄. There are di�erent versions (plain Kolmogorov entropy, pre�x entropy, et.see [8℄ for the details) that di�er from eah other not more than by an additiveterm logarithmi in the length of the argument. In the sequel we are using plainKolmogorov entropy K(xjy) as de�ned in [4℄, but similar results an be obtainedfor pre�x omplexity.When an in�nite 0-1-sequene is given, we may study the entropy (=om-plexity) of its �nite pre�xes. If pre�xes have high omplexity, the sequene israndom (see [5℄ for details and referenes); if pre�xes have low omplexity, thesequene is omputable. In the sequel, we study the latter type.Let K(x), K(xjy) denote the plain Kolmogorov entropy (omplexity) of abinary string x and the onditional Kolmogorov entropy (omplexity) of x wheny (some other binary string) is known. That is, K(x) is the length of the shortestprogram p that prints x; K(xjy) is the length of the shortest program that printsx given y as input. (For details see [5℄ or [9℄.)Let !1:n denote �rst n bits (= n-pre�x) of the sequene !.Let us reall the following riteria of omputability of ! in terms of entropyof its �nite pre�xes.(a) ! is omputable if and only if K(!1:njn) = O(1). This result is attributed in[6℄ to A.R. Meyer (see also [9, 5℄).(b) ! is omputable if and only if K(!1:n) < K(n) +O(1) [2℄.? LIP, Eole Normale Sup�erieure de Lyon, 46 All�ee d'Italie, 69364 Lyon Cedex 07,Frane. E-mail: Bruno.Durand�ens-lyon.fr?? Institute of Problems of Information Transmission, Mosow, Russia. E-mail:shen�mme.ru? ? ? Dept. of Mathematial Logi and Theory of Algorithms, Mosow State University,Vorobjevy Gory, Mosow 119899, Russia. E-mail: ver�meh.math.msu.su. The workwas done while visiting LIP, Eole Normale Sup�erieure of Lyon.



() ! is omputable if and only if K(!1:n) < log2 n+O(1)[2℄.These results provide riteria of the omputability of in�nite sequenes. Forexample, (a) an be reformulated as follows: sequene ! is omputable if andonly if M(!) is �nite, whereM(!) = maxn K(!1:njn) = maxn minp fl(p) j p(n) = !1:ng:(l(p) stands for the length of program p; p(n) denotes its output on n).Therefore, M(!) an be onsidered as a omplexity measure for !: M(!) is�nite i� ! is omputable.Another straightforward approah is to de�ne entropy (omplexity) of a se-quene ! as the length of the shortest program omputing !:K(!) = minfl(p) j 8n p(n) = !1:ng;(and by de�nition K(!) =1 if ! is not omputable.)The di�erene between K(!) andM(!) an be explained as follows:M(!) �m means that for every n there is a program pn of size at most m that omputes!1:n given n; this program may depend on n. On the other hand, K(!) � mmeans that there is a one suh program that works for all n. Thus,M(!) � K(!)for all !, and one an expet that M(!) may be signi�antly less than K(!).(Note that the known proofs of (a) give no bounds of K(!) in terms of M(!).)Indeed, theorem 3 shows that there is no omputable bound for K(!) interms ofM(!): for any omputable funtion �(m) there exist omputable in�nitesequenes !0; !1; !2 : : : suh that M(!m) � m + O(1) and K(!m) � �(m) �O(1).The situation hanges surprisingly when we ompare \almost all" versions ofK(!) and M(!) de�ned in the following way:K1(!) = minfl(p) j 81n p(n) = !1:ngM1(!) = lim supn K(!1:njn) = minfm j 81n9p (l(p) � m and p(n) = !1:n)g;(81n stands for \for all but �nitely many n"). It is easy to see that M1(!) is�nite only for omputable sequenes. Indeed, if M1(!) is �nite, then M(!) isalso �nite, and the omputability of ! is implied by Meyer's theorem.Surprisingly, it turns out that K1(!) � 2M1(!) +O(1) (theorem 5) so thedi�erene between K1 and M1 is not so large as between K and M . We stressthat this result is rather strange beause a multipliative onstant 2 appears,and has no intuitive meaning taking into aount that all the six omplexitymeasures (\entropies") mentioned above are \well alibrated" in the followingsense: there are �(2m) sequenes whose entropy does not exeed m. {In thegeneral theory of Kolmogorov omplexity, additive onstants often appear, butnot multipliative ones. As theorem 6 shows, this bound is tight.It is interesting also to ompare K1 and M1 with K and M , as well aswith relativized versions of K. For any orale A one may onsider a relativized



Kolmogorov omplexity KA allowing programs to aess the orale. ThenKA(!)is de�ned in a natural way. By K 0(!) [or K 00(!)℄ we mean KA(!) where A = 00[or 000℄. The results of this omparison are shown by a diagram (Fig. 1).
K00(!)? ? ?K0(!) � �� �K1(!)M1(!) K(!)M(!)Fig. 1. Relations between di�erent omplexity measures for in�nite sequenesArrows go from the bigger quantity to the smaller one (up to O(1)-term, asusual). Bold arrows indiate inequalities that are immediate onsequenes of thede�nitions. Other arrows are provided by Theorem 1 (K 0(!) � K1(!) +O(1))and Theorem 4 (K 00(!) �M1(!) +O(1)).As we have said, K1(!) � 2M1(!) +O(1), so K1 and M1 di�er only bya bounded fator. If we ignore suh a di�erene, we get a simpli�ed diagramK 00(!) � K 0(!) � K1(!);M1(!) �M(!) � K(!)where X  Y means that X = O(Y ).On the last diagram no arrow ould be inverted. Indeed, K 00(!) is �nite whileK 0(!) is in�nite for a sequene ! that is 000-omputable but not 00-omputable.Therefore the �rst arrow annot be inverted. The seond one annot be invertedfor similar reasons: K 0(!) is �nite while K1(!) and M1(!) are in�nite fora sequene that is 00-omputable but not omputable. Theorem 2 shows thatK1(!) and M1(!) ould be small while M(!) is large. Finally, Theorem 3shows that M(!) ould be small while K(!) is large.These diagrams and the statements we made about them do not tell uswhether the inequalities K1(!) � M(!) + O(1) and K 0(!) � M1(!) + O(1)are true. The �rst one is not true, as Theorem 6 implies. We don't know whetherthe seond one is true.Other open questions: (1) is it possible to reverse the seond arrow (K 0(!) K1(f);M1(f)) for omputable sequenes? (2) what an be said about similarnotions for �nite strings? in partiular, is lim supnK(xjn) equal to K0(x) +O(1)or not?12 Theorems and proofsTheorem 1. K 0(!) < K1(!) +O(1).1 It was shown reently by the third author that lim supnK(xjn) = K0(x) +O(1).



Proof. Let p(n) = !1:n for almost all n. The following program q (with aessto 00) omputes !1:n given n: For k = n; n + 1; : : : �nd out (using 00) whether(a) p(k) is de�ned and is a binary string of length k; (b) p(m) is onsistent withp(k) for all m > k; onsisteny means that either [p(m) has length m and haspre�x p(k)℄ or [p(m) is unde�ned℄. As soon as k satisfying both (a) and (b) isfound, print the �rst n bits of p(k).Obviously, q(n) = !1:n for all n and the bit length of q is O(1) longer thanthat of p. 2Theorem 2. For any omputable funtion �(m) there exist in�nite sequenes!0; !1; : : : suh that M(!m) � �(m) while K1(!m) � m+O(1).Proof. Let xm be the lexiographially �rst string x of length �(m) suh thatK(xj�(m)) � �(m). (Suh a string exists sine the number of programs of lengthless than k is less than 2k.)Now let !m = xm0000 : : : . By de�nition, M(!m) � K(xmj�(m)) � �(m).On the other hand, K1(!m) � m+O(1). Indeed, the set fx j K(xjl(x)) < l(x)gis enumerable. Consider the program pm that having input n performs n steps ofenumeration of this set. Then the program pm �nds the �rst string xnm of lengthm that was not enountered, and outputs �rst n bits of the sequene xnm0000 : : : .If n is large enough then xnm = xm and p outputs !m1:n. It remains to note thatthe length of pm is logm+O(1). 2Theorem 3. For any omputable funtion �(m) there exist in�nite sequenes!0; !1; : : : suh that K(!m) � �(m) while M(!m) � m+O(1).Proof. Let  be a onstant (to be spei�ed later). The set E = fhx; ki j K(x) <�(k) + g is enumerable. Consider the proess of its enumeration. Let s(m) bethe time (step number) when all pairs of type hx;mi with a given m have beenappeared in E. Now let !m = 0s(m)1111 : : : .Let us prove that K(!m) > �(m)�O(1). Assume that p(n) = !m1:n for all n.Given p we an �nd the �rst 1 in !m and hene s(m). Thus K(s(m)) � K(!m)+O(1). On the other hand, given s(m) we an �nd the (lexiographially) �rststring xm of entropy �(m) or more, therefore, �(m) � K(xm) � K(s(m))+O(1).Hene �(m) � K(!m) +O(1).Let us prove now that M(!m) � m + O(1). Let the program q on input noutput n zeros. Then q(n) = !m1:n for all n � s(m).Consider the program pm that on input n does n steps of enumeration of theset E, �nds the number s(m;n) of the last step among them when a new pairof type hx;mi with a given m has been appeared, and then outputs the �rst nbits of the sequene 0s(m;n)1111111:::. If n � s(m), then pm outputs the orretpre�x of !m.Thus, for any n, either pm or q (given n) outputs !m1:n. It remains to notethat the length of pm is logm+O(1). 2These theorems 2 and 3 an be reinfored using a tehnique presented in [3℄:they are true for any omputable in�nite family of distint sequenes !0; !1; : : :



(the family itself should be omputable). Anyways these pathologial ases arerare: the di�erene between K(x) and K 00(x) an be huge but this onerns onlyan exponentially small portion of strings x of a given size.Theorem 4. K 00(!) < M1(!) +O(1):Proof. Let m = M1(!) + 1. Consider the set T = fx j K(xjl(x)) < mg. Byde�nition, all suÆiently long pre�xes of ! belong to T . The set T is enumerable.For eah n there are at most 2m strings of length n in T . A string x 2 T is alled\good" if there is a sequene � suh that x is a pre�x of � and all pre�xes of �longer than x belong to T (in other words, if x lies on the in�nite path in T ). Itis easy to see that K�onig's lemma allows to express the statement \x is good"as 89-statement. Therefore, the set T of all good strings is 000-deidable.This set an be represented as an union of non-overlapping in�nite paths:onsider all the strings in order of inreasing length; if a string in T is foundthat is not already inluded in one of the paths, take a path that starts with it(if there are many of them, hoose the lexiographially �rst, i.e., turn to theleft when possible). The number of di�erent paths does not exeed 2m. Thisdeomposition proess is 000-e�etive, i.e., there is an 000-algorithm that gives k-bit pre�x of path number i for given k and i. Appending i (onsidered as m-bitstring) to that algorithm, we get a 000-program that gives k-bit pre�xes of i-thpath for all k (this program needs also m to onstrut T and T , but m is givenimpliitly as the length of i). Sine one of the paths goes along !, we onludethat K 00(f) � m+O(1) =M1(!) +O(1). 2The next two theorems provide the onnetion between K1 and M1.Theorem 5. K1(!) < 2M1(!) +O(1).Theorem 6. There is a sequene !m of in�nite strings suh that M(!m) �m+O(1) and K1(!m) � 2m (hene M1(!m);M(!m) = m+O(1), K1(!m) =2m+O(1)).Proof. (The original proof of theorem 5 was simpli�ed signi�antly by An.A.Mu-hnik.) First, let us de�ne a game that is relevant to both theorems 5 and 6 andmay be interesting in its own right.Let k; l be integer parameters. The (k; l)-game is played by two players alledthe Man (M) and the Nature (N). On its moves, N builds a binary rooted tree.More spei�ally, during its move N adds a binary string to a �nite set T (initallyempty). On his moves, M may olor ertain binary strings using olors from theset f1; 2; : : : ; lg (several olors may be attahed to the same string; attahedolors annot be removed later).The game stops after a �nite number of moves if(1) T is not a tree (that is, there are x 2 T and y 62 T suh that y is a pre�x ofx); in this ase M wins, or



(2) for some n the number of strings of length n in T (the number of nodeshaving depth n) exeeds k; in this ase M also wins, or(3) there are two di�erent strings of the same length olored by the same olor;in this ase N wins.Otherwise the game lasts inde�nitely long, and the winner is determined asfollows. Let T be the ultimate tree (formed by all strings inluded in T at allsteps). An in�nite 0-1-sequene is alled an in�nite branh of T if !1:n 2 T forall n.M wins if for any in�nite branh � there exists a olor  suh that all but�nitely many nodes of � are olored by  (and, may be, by other olors). Other-wise N wins.(One may give the following interpretation to this game. The tree built byNature is the tree of all breeds of animals, and nodes at height n are breedsexisting at time n. The oloring is giving names to breeds. Thus Man is requiredto give stable names to all eternal breeds.)We will use also a modi�ed version of this game where the rule (1) is omittedand the de�nition of an in�nite branh is hanged as follows: sequene ! is anin�nite branh if all but �nitely many pre�xes of ! are in T . (Obviously, themodi�ed game is more diÆult for M than the original one.)The following two lemmas play a key role in the proof of theorems 5 and 6.Lemma 1. For any k, there is a omputable winning strategy for M in themodi�ed (k; k2)-game (the winning algorithm has k as an input).Lemma 2. N has a omputable winning strategy in the (k; l)-game if l < k2=4.Before proving these lemmas, let us �nish the proof of theorems 5 and 6 usingthem.Theorem 5 requires us to prove that K1(!) < 2M1(!) +O(1).Fix !. Let T = fx j K(xjl(x)) � M1(!)g. Then for any n the set T hasno more than k = 2M1(!)+1 strings of length n. Aording to our assumption,!1:n 2 T for all but �nitely many n. Thus ! is an in�nite branh in T . Considernow the following strategy for N in modi�ed (k; k2)-game: N just enumerates T(ignoring M's replies). M an defeat this strategy using his omputable strategythat exists aording to lemma 1.Sine both M and N are using omputable strategies, the set C = fhx; pi jnode x gets olor p at some stageg is enumerable. As M wins, there is a olor pthat is attahed to !1:n for all suÆiently large n. Eah olor an be onsideredas binary string of length 2(M1(!) + 1), sine there are at most k2 olors.The following algorithm omputes !1:n given n and p. First �nd the valuek = 2M1(!)+1 = 2l(p)=2. Seond, enumerate C until a pair hx; pi appears withl(x) = n, i.e., until some node x having depth n gets olor p. Then return x. Forall suÆiently large n this algorithm will return !1:n (sine the in�nite branh! has olor p assigned).The program q to ompute !1:n given n for almost all n onsists of the abovealgorithm with the string p appended. Thus, the length of q is 2M(!) + O(1),and the theorem 5 (modulo lemma 1) is proved.



Now let us derive theorem 6 from lemma 2. We need to prove that there existin�nite sequenes !0; !1; : : : suh that M(!m) � m+O(1) and K1(!m) � 2m.For any �xed m onsider the following strategy for M. He enumerates alltriples hp; n; xi suh that p(n) = x; if it turns out that l(x) = n and l(p) < 2m,he assigns olor p to string x. This strategy may be performed by an algorithmhaving m as an input.Let k = 2m+1, l = 22m � 1. Sine l < k2=4, the lemma 2 guarantees that Nould defeat this strategy using its own omputable strategy. Therefore, thereexists an algorithm A that given m generates a tree Tm whih has an in�nitebranh ! that is not properly olored, i.e., there is no p of length less than 2msuh that p(n) = !1:n for almost all n. In other words, K1(!) � 2m.On the other hand, M(!) � m + O(1). Indeed, let n be a natural number.Let us desribe a program of size m + O(1) that omputes !1:n. Consider analgorithm B that for a given string q of length m + 1 and for any n uses A togenerate Tm and waits until q nodes (here q is identi�ed with its ordinal numberamong all strings of length m+1) at height n appear. Then B outputs the nodethat appeared last. Sine !1:n 2 Tm, for some q the output will be equal to!1:n. The string q appended to B onstitutes a program to ompute !1:n givenn. This program has size m+O(1).Theorem 6 is proved (modulo lemma 2)Now we have to prove lemmas 1 and 2.Reall that lemma 1 says that for any k, there is a omputable winningstrategy for M in the modi�ed (k; k2)-game (the winning algorithm has k as aninput).Proof. (Using An.Muhnik's argument.) Let M use k2 olors indexed by pairs(a; b), where a and b are natural numbers in range 1: :k. Let us explain how theolor (a; b) is assigned. (Di�erent olors are assigned independently.) Observingthe growing set T , M looks for all pairs of strings u and v suh that:(a) u has number a if we ount all the (already appeared) strings in T in thelexiographi order;(b) v has number b if we ount all the (already appeared) strings in T in thereverse lexiographi order;() u is a pre�x of v.After suh a pair of strings is found, any pre�x of u gets olor (a; b) unless someother string of the same length already has this olor (and M is prohibited touse (a; b) again on that level). Then M looks for another pair of strings u and vwith the same properties, et.We need to prove that this strategy guarantees that any in�nite branh willbe olored uniformly starting at some point. Let T be the set of all strings thatN gives (at all steps). Let ! be an in�nite branh, so !1::n 2 T for all suÆientlylarge n. For these n let an denote the lexiographi number of !1::n in the set Tnof all strings of length n that are in T , and let bn denote the inverse lexiographinumber of !1::n in Tn. Let a = lim sup an and b = lim sup bn. We laim that forsuÆiently large n the string !1::n will have olor (a; b).



Indeed, onsider a pair (u; v) that satis�es the onditions listed above. Letus prove �rst that for suÆiently long sequenes only pre�xes of ! have haneto get olored with olor (a; b). Indeed, for large enough n we have an � a, sosuÆiently long strings u are \on the right of !" or are pre�xes of !. (\On theright of ! means that u follows the pre�x of ! having the same length, in thelexiographi order.) For the same reasons all suÆiently long strings v are onthe left of ! or are pre�xes of !. Therefore, the only hane for u to be a pre�xof v (if both are long enough) is when both u and v are pre�xes of !. Therefore,no other long strings (exept pre�xes of !) ould get olor (a; b).Aording to the de�nition of a and b there are in�nitely many n suh thatan = a and in�nitely many m suh that bm = b. Choose a pair of suh n and m;assume that n � m. The strings u = !1::n and v = !1::m will be disovered afterall strings of length n and m appear in the enumeration of T sine they will haveorret ordinal numbers. And all pre�xes of u will get olor (a; b) unless someother vertex of the same length already has this olor. (And this is possibly onlyfor short strings, as we have seen). Sine u may be arbitrarily long, all suÆientlylong pre�xes of ! will get olor (a; b). Lemma 1 is proved.Lemma 2 says that N has a omputable winning strategy in (k; l)-game ofl < k2=4.Proof. Let m = k=2. First we introdue some terminology. We onsider �nitetrees T with m distinguished leaves at the height equal to height of the tree.Those distinguished leaves are alled tops of the tree. The m paths from the rootto m tops are alled trunks of the tree. All the nodes that belong to the trunksare alled trunk nodes ; other are alled side nodes.We all a tree T 0 an extension of a tree T if (a) T � T 0; (b) T 0 does notontain new verties on the levels that exist in T (i.e., any string is T 0 � T islonger than any string in T ); () all trunks of T 0 ontinue those of T (that is,jth trunk of T 0 ontinues jth trunk of T for all j � m).First N builds any tree T0 of width m that has m trunks. Then N ontinuesall the m trunks of T0 (for example, by adding, for any top v, nodes v0, v00,and so on) and waits until M starts to olor nodes on the trunks (otherwise helooses). More spei�ally, N waits until there exists h1 suh that the nodes atheight h1 on all m trunks are olored. We all those nodes speial ones. Theolors of speial nodes are be pairwise di�erent, as the speial nodes are at thesame height (otherwise M looses). Let h2 be the height of trunks when M olorsthe last speial node (h2 � h1).N has just fored M to use m di�erent olors and has onstruted a �nite treeof width m. However, we wish (for the next iteration) that the nodes olored inm di�erent olors do not belong to trunks at the expense of inreasing the widthof the tree by 1. This is done as follows. One N has fored M to olor m speialnodes at the same height h1, it hooses one the trunks and uts it (this meansthat N will not ontinue that trunk). Then N takes the father of the speial nodeon that trunk and starts from the father another trunk instead of the ut trunk.The nodes lying on the ut trunk from the height h1 to h2 beome side nodes.



Thus at least one side node is olored. Call that node a distinguished node. Afterthat N still grows m trunks in parallel (ontinuing m�1 non-ut trunks and thetrunk having a branh with the distinguished node) until M olors m nodes onm trunks at a new height h3 > h2.Call those nodes the new speial nodes. Now N hooses a trunk whose newspeial node is olored in a olor di�erent from the olor of the distinguishednode, uts it and starts a new trunk from its node at height h3 � 1. We thusobtain the seond side node olored in a olor di�erent from the olor of thedistiguished node. Call that side node also a distiguished node. Thus we havetwo distinduished side nodes having di�erent olors.This proess is repeated m times. Eah time N uts a trunk whose speialnode is olored in a olor di�erent from the olors of the existing distiguishednodes (suh a speial node exists while the number of distinguished nodes isless than m). After m repetitions we have a tree of width m + 1 that has mdistinguished side nodes olored in m di�erent olors.The desribed strategy will be denoted by S1. Its starting point may be anytree T with m trunks. It either terminates and onstruts an extension T 0 of Tsuh that T 0 � T is olored in m di�erent olors, or wins. The set T 0 � T haswidth m+ 1.Now let us desribe the indution step. Assume X is a subset of a tree T .Let olors(X) [sideolors(X)℄ denote the set of olors of all nodes [all side nodes℄in X .Assume we have a strategy Si (i < m) for N with the following properties.Starting from any tree T with m trunks it onstruts a �nite extension T 0 of Tsuh that the di�erene T 0 � T has width m+ i and j sideolors(T 0 � T )j � im.Our goal is to de�ne a strategy Si+1 satisfying the same onditions (forinreased value of i). We de�ne �rst an auxilliary strategy ~Si+1 that, startingfrom any tree T withm trunks, onstruts a �nite extension T 0 of T suh that thedi�erene T 0�T has widthm+i, j olors(T 0�T )j � (i+1)m, and j sideolors(T 0�T )j � im (or ~Si+1 wins).The strategy ~Si+1 given a tree T works as follows. Apply Si starting fromT . Wait until Si terminates. Let T1 be the ontinuation of T onstruted bySi. Then j sideolors(T1 � T )j � im. Apply Si starting from T1. Wait until Sionstruts a ontinuation T2 of T1 with j sideolors(T2 � T1)j � im. Applying Simany times, we get T1; T2; T3; : : :. Wait until there exist j and s suh that j � sand all the nodes along all the trunks inside Tj �Tj�1 at step s are olored andeah trunk has its own olor (if no suh j and s exist, the startegy ~Si+1 neverterminates and wins). Let T 0 = Ts. The tree Ts has im di�erent olors on sidenodes in Tj � Tj�1 and m new olors on nodes on m trunks.Now we are able to de�ne the strategy Si+1. Starting from a tree T it works asfollows. Apply ~Si+1 starting from T . Wait until it terminates. Let T1 denote theresulting tree. The set olors(T1 � T ) has at least (i+ 1)m olors. The problem,however, is that some of them may be used for trunk nodes only. In this asehoose a trunk of T1 that has a node olored in a olor  2 olors(T1 � T ) �sideolors(T1 � T ). Let j be the number of that trunk. We add to T1 a new
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