Chapter 8
Low-degree Tests

Katalin Friedl*

Abstract

We bound the Hamming distance of a multivariate function
from the space of polynomials of max-degree < k in terms of
its distances from functions that are polynomials of degree
< k in one of their variables. The latter quantities can be es-
timated easily by statistical tests. The result conceptualizes
an algorithm analysis of M. Szegedy and incorporates im-
provements based on a result of S. Arora and S. Safra. The
bound results in a query-efficient BFL/FGLSS-type max-
degree test, an ingredient of transparent proofs. We also
describe another variant of the BFL max-degree test which
works over smaller domains. The analysis of this version fol-
lows the ideas of [12] and uses a combinatorial isoperimetric
inequality.

1 Introduction

Testing that a multivariate function, given by an array
of its values, is approximately a low-degree polynomial,
plays a central role in a series of papers on interactive
and transparent proofs ([5], [6], [12], [13], [3], [2],
[9], [17]). The objective is to accept the array if it
represents a low-degree polynomial, and reject it with
large probability if it is not close (in Hamming distance)
to some low-degree polynomial. The decision should be
based on a small number of randomized queries to the
array.

Low-degree tests come in two brands: maz-degree
tests and total-degree tests. While max-degree tests
have been considered over arbitrary finite subsets of a
field, the known total-degree tests require the domain
to be the entire (necessarily finite) field. Considering
arbitrary subsets of a field allows the use of the field of
rationals, as was required in [5] and [6].
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For low-degree tests, two minimization goals have
been considered: minimization of the size of the domain
over which the test works, and minimization of the
number of queries required by the test. The former is
directly related to the length of the transparent proof,
the latter to the number of spot-checks needed to verify
the transparent proof.

The first low-degree test appears in the paper
of Babai, Fortnow, and Lund [5] which proves that
multiple prover interactive protocols have the power
of nondeterministic exponential time. All subsequent
max-degree tests are variants of that test. There
are, however, differences in the analysis. The BFL-
test [5] was analysed via a combinatorial 1soperimetric
tnequality. A stronger isoperimetric inequality is used
by Feige, Goldwasser, Lovasz, Safra, and Szegedy [12].
A variant of that analysis was used to achieve optimal
domain size in [7], as required by the transparent proofs
of Babai, Fortnow, Levin, and Szegedy [6].

More recent papers of Arora and Safra [3], Arora,
Lund, Motwani, Sudan, and Szegedy [2] have used total-
degree tests which are more efficient in terms of the
number of queries and ultimately also matched the
domain size of the best max-degree tests (cf. Sudan
[21]).

Nevertheless, we believe that further clarification of
max-degree tests is a worthwhile task. In particular,
the fact that these tests do not require the domain to
be the entire field may have future applications. A re-
examination of certain max-degree tests is the subject
of the present paper.

An early version of [12] included an unpublished
analysis of the max-degree test by Szegedy (which is
different from the analysis that eventually appeared in
[12]). That analysis has been the starting point of our
work.

By separating out the mathematical contents of
that analysis, we are able to give a more transparent
analysis, as well as incorporate further improvements.

The main results are two inequalities providing
explicit upper bounds on the Hamming distance of an
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that are polynomials of degree < k in one of their
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variables. The latter quantities can be estimated easily
by statistical tests. The first of the two bounds holds
even for small domains. Using a recent result of Arora
and Safra [3] instead of a trivial estimate gives an order
of magnitude improvement in the main term and an
improved error term, but this argument seems to require
larger domain size (Q(nk3)).

The analysis of the FGLSS max-degree test [12]
will now be an immediate consequence. By the first
result, O(nk?) queries to the values of f suffice to give
error probability less than 1/2, assuming domain size
Q(n?k?). The second result implies that O(nk) queries
suffice, assuming domain size Q(n2k + nk3).

For completeness, we also include an unpublished
variant of the BFL max-degree test given in [7] which
achieves the smallest domain sizes (domain size > 4nk+
2) and requires O(n?k?) queries when the domain size
is O(nk).

For comparison, we mention some results for total-
degree tests (total degree < d). There are methods
requiring O(d?) queries over domains of size Q(nd) or
O(d) queries over domains of size Q(nd?) ([19], [21], [14],
(2])-

2 Main results

DEFINITION 2.1. Let F be a field and I C F a finate
subset of F.
A polynomial of n variables over F 1s a max-degree-k
polynomaal sf 1is degree with respect to each variable 1s
not greater than k.
A function f : I — F 1s called a maz-degree-k
polynomaal, i1f 1t has a maz-degree-k eziension to F™.

Let P(n, k) be the set of max-degree-k polynomials
of n variables over I and P,(n,k) be those I" — F
functions that are polynomials of degree < k with
respect to the ith variable (ie. f has an extension
to F" with this property). Then clearly P(n,k) =
N, Pi(n, k).

DEFINITION 2.2. The distance (normalized Ham-
mang distance) of two functions, f,g: " — F 1s

d(f,9) = Probzer~(f(z) # 9(z)).

(The probability 1s wnth respect to the uniform distribu-
tion over I".)

The goal is to estimate how far a function is from
being a max-degree-k polynomial assuming it is close
to a degree-k univariate polynomial in the i-th variable
(for any fixed value of the other variables) for each i.
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THEOREM 2.1. For any function f : I — F and
for any k

(21) d(f, P(n,k)) <
6(k+1))_ d(f, P(n, k) + 2

i=1

_nk_
Nk

This estimate is vacuously true for domains of size
1] < 9n?k?, (the error term is at least 1), but it gives a
meaningful bound for |I| = Q(n2k?) and this case will
be used in the analysis of the algorithm.

For larger domains (2(nk3)), both the main term
and the error term can be reduced.

THEOREM 2.2. For any function f : I — F and
for any k with |I| > 18nk3,

(2.2) d(f,P(n,k)) <

n n\/,;
12) " d(f, P.(n, k) + 3m.

1=1

3 Max-degree test

Both theorems lead to an analysis of the parameters of
the FGLSS max-degree test.

DEFINITION 3.1. We say that @ maz-degree-k test
15 e-reliable if
(1) the test always accepts if f 1s a maz-degree-k
polynomal,

(n) +f d(f, P(n,k)) > ¢ then the probabihity of accep-
tance 1s < 1/2.

By selecting an element of a finite set S “at random”
we mean a random variable, uniformly distributed over
S.

The algorithm consists of repeating the following
Line-test m times.

Line-test

e Fix elements a,,...ax4; € I.
¢ Choose i at random from {1,...,n}.
¢ Pick independent random elements u;, ..., u, € I.

o Check if the restriction of f to the k + 2 points

(ul, .- .,u.-_1,u,,u.+1, .. .,u,,),

(W1, Uiy, 0y, U4, 0,), 1< <E41;

determines a degree-k polynomial (as a univariate
function of variable z;). If not, reject.
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For the analysis assume that we have an estimate for the
distance of the function f from the set of max-degree-k
polynomials in the form

33)  df, P(n,b) <0 Y d(f, Rn,B) + A

i=1

for some a and A.

Let d(f, P(n,k)) > . The probability that in
a round when i was chosen f is rejected is at least
d(f, P(n,k)). Therefore the probability that f does
not pass one round with a random i is at least

Zl d(f) P(n) k))/n 2> (8 - A)/(an)

Number of steps and number of random bits
used. If the function is given by an array of its
values (with random access) then the number of queries
is m(k + 2) = O(akn/c) and O(akn/c) arithmetic
operations are performed in F'.

The number of random bits used is a key resource.
Successive improvements of the transparent proof tech-
nique and its applications to characterizing NP and
proving intractability of approximate discrete optima
(5], 121, [3], [2], [9]) critically depended on reducing
this number.

One round uses logn + nlog|I] = O(nlog|I|)
random bits. Repeating this m times would require
O(mnlog|I|) random bits. However, as pointed out
in [12], it suffices to select the tuples (i,z;,...,z,) €
{1,...,n} x I pairwise independently. Up to n|I|"
pairwise independent tuples can be generated from only
two fully independent ones ([18], [16], cf. [1], [11])
thus the number of random bits needed is still only
O(nlogllI]).

COROLLARY 3.1. Assume |I| > 16n2k2/e?. Set
m = O(nk/¢). Then an m-fold pairunse independent
repetition of the Line-lest constituies an e-reliable maz-
degree-k test which makes O(nk?/c) queries and uses
O(nlogn) random bits.

Proof. By Theorem 2.1, in inequality (3.3) the
parameters are @ = 3(k + 1) and A = 2nk/\/|I|. The
condition on |I| implies that A < /2. )

COROLLARY 3.2. Assume |I| > 18nk? and |I| >
32n2k/e2. Set m = O(n/c). Then an m-fold pasrwsse
independent repetition of the Line-test constitules an ¢-
reliable maz-degree-k test which makes O(nk/c) queries
and uses O(nlogn) random bits.

Proof. By Theorem 2.2 in inequality (3.3) the pa-

rameters are @ = 12 and A = 3nvk/\/|I]. The condi-
tion on |I| implies that A < g/2. o
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4 Distance estimates

A result of J. T. Schwartz [20] and R.E. Zippel [23] gives
a tool to estimate the distance of two polynomials:

LEMMA 4.1. (SCHWARTZ, ZIPPEL)
Let g(z1,...,2,) be a nonzero polynomial over a field
F. Let d denote its total degrec. For any finite subset
I CF, ifa; € I are chosen independently uniformly at
random then Prob(g(ay,...,a,) =0) < d/|I|.

It follows that the distance of any two polynomials,
9,h € P(n,k)islarge: if g # h then d(g,h) > 1—kn/|I|.
Consequently for any function f, if g is a polynomial
from P(n, k) such that d(f, g) < (1—kn/|1|)/2 then g is
the (unique) closest polynomial to f and d(f, P(n,k)) =
d(f,g). We call the distance d(f, P(n, k)) the degree-k
error of f.

The next question we consider is the connection
between the degree-k error of an n-variate function and
its restrictions. Clearly

(44)  d(f,P(n,k)) >

ﬁ 3 d(fleree, P(n—1,E)).

cel

Equality means that, when g € P(n, k) denotes a closest
max-degree-k polynomial to f, the restriction of ¢ to
any of the hyperplanes z; = ¢, ¢ € I gives a closest
polynomial on that hyperplane to the restriction of f.

When f is not just any function but it is a poly-
nomial of degree < k in its first variable then we can
say more. As we shall see, in this case strict inequality
implies that for most hyperplanes z; = c the distance
there is large (consequently d(f, P(n, k)) is also large);
on the other hand if equality holds and d(f, P(n, k)) is
not too large then the distance on most hyperplanes is
close to d(f, P(n, k)).

For the rest of this section let f € Py(n,k). Let
g € P(n, k) be a closest polynomial to f, d(f, P(n, k)) =
d(f,g). We call a point z € I"™ good with respect to ¢
if f(z) = g(z) and bad otherwise. By hines sn the i*h
direction we shall mean lines parallel to the z, axis, i.e.
sets of the following type

{(ug,..., 41, 2,0,,...,u,) | 2 €T}

for fixed uy,...,u, € I. (There are |I|*~! lines in each
of the n directions.) A line is called bad if somewhere
on that line f and g disagree. By the “proportion of
bad lines in the first direction” we mean the proportion
of bad lines among the lines in the first direction. Let
a denote this proportion. Note that what counts as a
bad point or bad line depends on g.

LEMMA 4.2. If the proportion of bad lines in the
first direction with respect to some ¢ € P(n,k) 1s
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a < 1/3 then g 1s the unique element of P(n, k) closest
to f and equahty holds in (4.4).

Proof. Clearly
d(f,9)<a

and
(VC E I) d(f|$1=61 glll=c) S «.

The assumption that &« < 1/3 implies that g is the
closest max-degree-k polynomial to f and also, g|,,=. is
the closest max-degree-k polynomial to f|.,=. for any
cel, so

d(f, P(n, k)) = d(f,9) =
'l%l' E d(flz'1=c) g|1‘1=c) =

cel

T 2 d(fles—e, Pln = 1,B)).

cel
[m]

The following two lemmas will imply that when
there is strict inequality in (4.4) then the degree-k errors
on most of the hyperplanes z; = ¢ are large.

LEMMA 4.3. Let f € Pi(n,k) and |I| > 3nk.
Assume that for some 7 < 1/(3k + 3),

{c€ I'd(floy=c, P(n—1,k)) <7} 2k + L.

Then the proportion of bad lines in the first direction 1s
a<r(k+1).

Proof. Let d(fz,=c,, P(n — 1,k)) < 7 for some
€1,---,¢k+1 € I and let g, € P(n —1, k) denote a closest
max-degree-k polynomial to f|;,=., (on the hyperplane
1 =¢), ie. d(fzy=c,, P(n —1,k)) = d(fz,=c,,9:)- Let
g be the degree-k extension of the g, to the entire I™.
Then g € P(n,k). We shall show that g is the closest
element of P(n,k) to f.

Both f and g are polynomials of degree at most
k on any line in the first direction. On a bad line in
the first direction they differ everywhere except at most
k places. Clearly a is an upper bound for d(f,g) and
also for d(f|z,=c, glz,=c) for any ¢ € I, since the points
where f and g are different are covered by the bad lines.

If a line intersects each of the k + 1 hyperplanes
Z; = ¢, in a good point then f and g agree on the whole
line. On any of these hyperplanes the proportion of the
points which are not good is at most 7, therefore the
proportion of bad lines is < 7(k + 1) < 1/3. Now since
d(f,9) < a <1/3 < (1-k/|1])/2, Lemma 4.1 implies
that g is the unique closest element of P(n,k), and so
a<r(k+1). (n]
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LEMMA 4.4. (ARORA, SAFRA) Let f € Pi(n,k)
and |I| > 18nk3. Assume that for some 7 < 1/6

e € I1d(flzy=c, P(n— 1,k)) < 7}| 2 2%

Then the proportion of bad lines 1n the first direction s
a<2rT.

COROLLARY 4.1. Let f € Pi(n,k) and |I| > 3nk.
If

d(f, P(n, k)) > ﬁzdmw,mn— 1,£))

then
2

d(f,P(n,k)) > Q(T-{-T)-

If |I| > 18nk® then

d(f, P(n, k) > ;

Proof. When strict inequality holds in (4.4) then by
Lemmas 4.3 and 4.2,

{c € T| d(flzy=c, P(n — 1,k)) < 1/(3k+ 3)}| <k + 1.
Therefore

k 1 2
d(f, P(n,k e =) > 2
(f, P(n, ))>( |I|) 3k+3 - 9k+9

The second claim follows similarly from Lemmas 4.4 and
4.2. (m]

Even if equality holds in (4.4) we can say something
about the distances d(f|;,=c, P(n — 1,k)). Not just
that their average is exactly d(f, P(n,k)) but for most
¢ €I, d(f|z,=c, P(n—1, k) cannot be much smaller then
d(f, P(n,k)).

LEMMA 4.5. Let f € Py(n,k) and assume that
equality holds in (4.4). Then for0 < p< 1

(4.5) He € I'| d(flz,=c, P(n—1,k)) <
d(f, P(n, k)) — W} < ko/(sl1]).

Proof. The proportion of bad lines in the first
direction, « is an upper bound for d(f, P(n,k)) and
d(flzy=c, P(n — 1,k)) for any ¢ € I. These distances
differ from o because there can be good points on the
bad lines. On a line in the first direction both f and
g are polynomials of degree at most k, so if they are
different they agree in at most k points. Therefore the
total number of good points on bad lines is < ka|I|*~!.

]
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5 Proofs of the theorems and

The proofs of the two theorems are the same, the
difference is whether Lemma 4.3 or Lemma 4.4 is applied
during the proof. To be able to prove the two theorems
together here is a parameterized form of the lemmas:

d(f', P(n,k)) < d(f'|zy=c,, P(n — 1, k)) + 4

is true with p/7 exceptions.
Similarly for any 1 < ¢ < n—1 if (5.6) holds for the

Let f € Pi(n k). Then for some ¢ and 7 either

(5.6) I{c €I|d(flsy=c, P(n—1,k)) <7} <t

or with u = Vkr/\/3|1|

(5'7) |{C €l d(fln—-c’ P(n— 1,k) >
d(f,P(n,k)) — p) < p/T

This will imply that for any function f
2 < 7
. <= \7¢ _
(5.8) d(f,P(n,k)) < - 'E=1 d(f, P(n,k)) + 2nT

Obse

rve that the values 7 = 1/(3k + 3), t = k,
p¥  k/\/9(k + 1)|I| guaranteed by Lemma 4.3, results

function f**1|;,=c,, =z then

rd(f, P(n,k)) <7<
d(f'+1 |31=C1y 3T =C4, T 41=Co 41 P(n - ' - 1) k))

except for a fraction < t/|I| of the c,41 € I. If (5.7) is
true then by the triangle inequality

d(.f' |3‘1=¢1, T =Cyy P(n - i: k)) <

d(f'|1'1=¢1, ,1’.=C.:f'+llzg=c1, ,r.:c.)+
d(f‘+1|,,-1=c,, .z.=c.»P("—i, k))

and

d(fH’lsz:cl, z.=e, P(n—i,k)) < p+
d(f'+1|31=cl, yT1=Cs, Ty 41=Cs 41 P(n - i - l: k))

in Theorem 2.1. From values 7 = 1/6, t = 2k — 1, holds except for a fraction p/7 of the ¢,41 € I. This

#vk/\/18|I| (Lemma 4.4) we obtain Theorem 2.2.

So what is left is to prove inequality (5.8) from (5.7)
and (5.6).

Let f* € Pi(n, k) be closest to f, i.e.
d(f, f*) = d(f, Pi(n, k)).

The proof goes by induction showing the following

CramM. For 1 < i < n and for any (cy,...,¢) € I,
except a fraction of (imax{u/7,t/|I|}) the following

holds:

(5.9) Td(f,P(n,k)) <ip+d(f, f)+
1-1
Z d(fJ |1‘1=61, WZ3=Cy fj+1 |=1=c1, ,r,:c,) +
1=1

d(flz;:h, ,3;=¢;1P(n_ink))-

Proof of Clayrm We proceed by induction on i.
For the function f! either (5.6) or (5.7) holds. In
the first case

rd(f, P(n,k)) < 7 < d(f|zy=c,, P(1n — 1, k))

except for a fraction < t/|I| of the ¢; € I. In the second
case by the triangle inequality

d(f, P(n, k) < d(f, ')+ d(f', P(n, k)

proves the Claim. a

For both of our settings, t/|I] < p/T.
The exceptions in the Claim are a fraction of
(nmax{u/7,t/|I|}) < np/T of the (c1,...,ca) € I".
For a fixed (ci,...,¢n) € I" consider either inequality
(5.9) or for the exceptions the inequality where the right
hand side of (5.9) is increased by 7 (these modified in-
equalities always hold, since the left hand side is at most
7). Now take the average of these inequalities over all
possible choices of (c1,...,¢,) € I". This gives

Td(f,P(n,k)) < 2np+d(f,f')+

n-1
Z d(f, 1.
1=1

Apply the triangle inequality
d(f, 1) < d(f, F) +d(f, F*)
in the sum for 1 < j < n— 1. Then (5.8) follows. 0

As it was shown after (5.8) this finishes the proofs
of Theorem 2.1 and 2.2. O

6 Small domains

The following variant of the BFL max-degree test is
described in [7].
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Full-line-test
e Choose i at random from {1,...,n}.

e Pick a random line ¢ in direction i.

e Check if the restriction of f to £ determines a
degree-k polynomial (as a univariate function of
variable z,). If not, reject.

THEOREM 6.1. Assume |I| > 4nk + 2. Set m =

O(n(k + 1/€)). Then an m-fold pasrusse independent
repetitron of the Full-line-test constitutes an c-reliable
maz-degree-k test which makes O(|I|n(k+1/¢)) quertes
and uses O(nlogn) random bits.
Note that for the minimum domain size |I| = 4nk + 2,
the number of queries is O(n?k? + n2k/¢). This seems
to be the only known max-degree test allowing domain
size linear in k, as required for transparent proofs of
nearly linear size [6].

Theorem 6.1 is a corollary to the following result.
Let W denote the set of lines £ (in any direction) such
that f restricted to £ is not a polynomial of degree
< k. Call the elements of W wrong lines. Let § =
[W|/(n|I]"~') denote the proportion of wrong lines.

THEOREM 6.2. ([7]) For any function f : I — F
and for any k wath |I| > 4nk + 2 either
(a) the proportion of wrong lines 1s

1
P> k3D
(b) or

d(f, P(n,k)) < np.

The proof follows the ideas of [12] and is based on a
combinatorial isoperimetric inequality, appearing in [8].
For completeness, we include the proof.
Let G (V, E) be a graph and BC V.
Let 6(B) denote the set of edges {v,w} € E such
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In our application, the graph G to be considered
is the Hamming-graph on I™: its vertex set is I" and
two points are adjacent if their Hamming distance is 1
(differ in a single coordinate). The degree of each vertex
is r = n(|I] — 1); the diameter is diam(G) = n.

LEMMA 6.1. Let |I| > 4nk + 2. If d(f, P(n,k)) <
1/2 then d(f, P(n,k)) < np.

Proof. By assumption, d(f,g) < 1/2 for some g €
P(n,k). Let B = {z € I"; f(z) # g¢(z)}; call the
elements of B bad points.

Let us call a line £ deceptive if the restriction f, is a
polynomial of degree < k in the corresponding variable,
but fle # gle. Let D denote the set of deceptive lines.
First we observe that any deceptive line contains at least
|| — k bad points (since two univariate polynomials of
degree < k cannot agree at more than k places). It
follows that

(6.11) n|B| > [W|+ (lI| - k)| D].
Indeed, in any direction i (1 < i < n), each wrong line
contains at least one bad point, and any deceptive line
contains at least |/|—k bad points. Adding these counts
up for all 7, we counted each bad point at most n times.
Let us now count the edges of G leaving B. Each
such edge determines a line which is either wrong or
deceptive. A line cannot contribute more than |1|2/4 to
6(B); and a deceptive line contributes at most k(|I|— k)
(since on such a line, all but at most k points are bad).
To sum up, we have

16(B)] < (I11?/4)W| + k(11| — B)| D).

Combining this with the isoperimetric inequality 6.10
with r = n(|I| - 1) and diam(G) = n, we obtain

(1= D)IBI/2 < (I11*/4)IW| + k(|1] - k)| D].

Expressing (|I| — k)| D| from inequality (6.11), we infer

(1 - DIBI/2 < (11?/4)W| + k(n| B| - |W]).

that v€ B, w ¢ B.
A graph is edge-transitive if all edges are equivalent
under automorphisms (self-isomorphisms).
PROPOSITION 6.1. ([8]) LetG be a connected edge-

transitive graph and B C V a nonempty subset such that
|B| < |V|/2. Then

(6.10) 16(B)I/IB| > r/(2d1am(G)),

where diam(G) denotes the diameter of G and r 1s the
minimum degree.

(We remark that the result holds even with r denoting
the harmonic mean of the minimum and the maximum
degrees of G.)

Rearranging and taking |I| > 4nk + 2 into account, we
obtain

1118l < (2(11|-1)~4nk)|B| < (I11*-4k)|W| < |I12|W].

Dividing the two extreme sides by |I|**!, we obtain

B
18] < np.

d(fvP(nvk))= W =

o

The following Lemma, combined with the previous
one, will complete the proof of the Theorem.
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LEMMA 6.2. Let |I| > 4nk +2. If d(f, P(n,k)) >

1/(3(k + 1)) then B> (1 — k/|I))*/(3n(k + 1)).

n=1is clear. Let now n > 2.

Case 1. Assume that for all but < k values of ¢ € I,

d(flza-B(n — 1, k)) 3/(3(k + 1)).

By the inductive hypothesis, the proportion of wrong
lines in each of these hyperplanes is > (1 —
E/|I))"~1/(3(n — 1)(k 4 1)). Adding these up we ob-
tain

[Il-k n—1 (—k/|I)"" _(Q-k/)"

B2

|| n 3n—1)(k+1) 3n(k+1)°
as desired.
Case 2. There exist k + 1 distinct values

€1,..-,Ck41 € I such that
d(flza=e,, P(n —1,k)) < 1/(3(k +1)).

Let g,(21,...,2Zn—1) € P(n — 1,k) realizing the Ham-
ming distance d(f|zn = ¢,, P(n —1,k)). These (n —1)-
variate polynomials determine a unique polynomial g €
P(n, k) such that g, = g|; .
Let B _C I"! dno ¢ the set of bad points for
flza=c,- Let W, denote the set of wrong lines (for f)
in the n**-direction.

If [Wa| > |1]*=1/(3(k + 1)) then
B > [Wal/(n]I]*~1) > 1/(3n(k + 1))

and we are done. On the other hand, if If |W,,| <
[1]*=1/(3(k + 1)) then we claim that

d(f,g9) < 1/2.

Indeed, let again B = {z € I"; f(z) # g(z)} (bad
points). Now if z is bad then either z € ¢ for some
LeW,or z=(y,c) for some y € U;:ll B,. Now,

| U £1=11IWa| < |11/(3(k +1)).
lew,

Moreover, |B,| < |I|~1/(3(k+1)) for each j, so each B,
accounts for at most |I|*/(3(k+ 1)) bad points. Adding
this all up, we obtain

IBI/ITI” < 1/3+ 1/(3(k + 1)) < 1/2.

By Lemma 6.1, we infer that

1 1 1
B> ;d(f,P("a k)) > A3EF D)

Proof of Theorem 6.2.
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If d(f,P(n, k) < 1/2,

conclusion (b) follows by Lemma 6.1. If d(f, P(n, k)) >
Proof. We proceed by induction on n; the case 1/2 then certainly d(f, P(n,k)) > 1/(3(k + 1)) and we

conclude by Lemma 6.2 that
B2 (1—k/|1)"/(3n(k + 1)) > 1/(4n(k + 1))
(using the condition that |I| > 4nk). O

7 Open problems

The main question is how to reduce simultaneously the
size of the domain and the number of queries in the
max-degree test.

Observe, that for example a better estimate for
the distance of f from the max-degree-k polynomials
in the form (3.3) can help. An improvement in the
error term A would allow one to use smaller domain
in the algorithm. A smaller constant @ would reduce
the number of rounds, i.e. the number of queries. We
do not even know if a formula of type (3.3) may hold
with A = 0.
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