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Abstract. A few years ago a nice criterion of Martin-Löf randomness in terms of plain (neither
prefix nor monotone) Kolmogorov complexity was found (among many other results, it is published
in [4]). In fact Martin-Löf came rather close to the formulation of this criterion around 1970 (see [3]
and [6], p. 98). We provide a simple proof of this criterion that uses only elementary arguments very
close to the original proof of Levin–Schnorr criterion of randomness (1973) in terms of monotone
complexity ([2, 5]).

Keywords: Martin-Löf randomness, Kolmogorov complexity

Address for correspondence: Address for correspondence goes here



2 L. Bienvenu, W. Merkle, A. Shen / A simple proof of Miller-Yu theorem

Theorem 1. A. Let f : N → N be a total computable function such that
∑

2−f(n) < ∞. Then for every
random sequence ω there exists a constant c such that

C(ω1 . . . ωn|n) ≥ n− f(n)− c

for all n.
B. There exists a total computable function f : N → N such that

∑
2−f(n) < ∞ and for every

non-random sequence ω and for every c there exists n such that

C(ω1 . . . ωn|n) < n− f(n)− c

(We consider binary sequences ω1ω2 . . .; the randomness means Martin-Löf randomness with respect
to the uniform distribution on Cantor space Ω.)

Theorem 1 implies that for some computable function f (with
∑

2−f(n) < ∞) the condition

C(ω1 . . . ωn|n) ≥ n− f(n)−O(1)

is necessary and sufficient for ω being random.

Proof:

A. For a given c let us consider a set Uc of all strings x such that

C(x|n) < n− f(n)− c,

where n is the length of x (denoted by l(x) in the sequel). It is enumerable. The total measure of all
corresponding intervals Ωx is less than 2−c

∑
2−f(n). (Here Ωx stands for the set of all sequences that

have prefix x.) Indeed, Uc contains at most 2n−f(n)−c sequences of length n, and the total measure of
corresponding intervals is 2−c2−f(n).

Therefore, if ω has prefix in every Uc, then ω is not random.
B. A universal randomness test is an algorithm that generates for every c = 1, 2, 3, . . . a sequence of

strings
x(c, 0), x(c, 1), x(c, 2) . . .

such that for every c the total measure of all intervals x(c, i) (for i = 0, 1, 2 . . .) [i.e., the sum
∑

i 2
−l(x(c,i))]

does not exceed 2−2c, and for every nonrandom sequence ω and every c one of the strings x(c, i) is a
prefix of ω.

Note that for technical reasons it is convenient to use bound 2−2c. We may also assume without
loss of generality that: (1) x is total, i.e., x(c, i) is defined for all c and i; (2) the intervals are listed in
non-decreasing length order, i.e., that l(x(c, 0)) ≤ l(x(c, 1)) ≤ l(x(c, 2)) ≤ . . . for any c. Indeed, to
achieve (1), we may add infinitely many “dummy” intervals with small total measure; to achieve (2), we
may split any interval into many small intervals without changing the total measure or the subset of Ω
that is covered.

Then for each c and n we have finitely many strings of length n in the sequence x(c, ·), and there is
an algorithm that produces the list of all these strings given c and n. Let m(c, n) be the total measure of
corresponding intervals (i.e., 2−n times the number of strings). So we have∑

n

m(c, n) ≤ 2−2c
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for every c.
Now consider the function f defined by the equation

2−f(n) =
∑

c

2cm(c, n).

Since each m(c, n) and even the sum
∑

n m(c, n) does not exceed 2−2c, the right hand side is a com-
putably convergent computable series and f is a computable real-valued function. (In the statement we
require f to be integer-valued, but this evidently does not matter, since we can replace f by its integer-
valued approximation.) Let us check that f is the function we have looked for. First,∑

2−f(n) =
∑
n,c

2cm(c, n) ≤
∑

c

2−2c ≤ 1.

On the other hand, any string of length n in the sequence x(c, ·) is uniquely and computably deter-
mined by c and the ordinal number of this string among 2nm(c, n) of them. Therefore, its Kolmogorov
complexity does not exceed

2 log c + log(2nm(c, n)) + O(1) ≤ 2 log c + n− f(n)− c + O(1).

(since the sum
∑

c 2cm(c, n) does not exceed 2−f(n), the same is true for each term). Recall that every
nonrandom sequence has prefix among those strings for every c (and some n); since c − 2 log c can be
arbitrarily large, we get the statement B.

ut

Remark 1. One may wish to improve the statement B by replacing the conditional complexity by the
unconditional one. (A similar replacement for A makes it weaker.) To get the same bound for uncon-
ditional complexity, we need to estimate the number strings of length at most n in the sequence x(c, ·).
The same bound would work if we knew that the number of strings of length less than n in this sequence
does not exceed the number of strings of length n if the latter is not zero. This also can be easily achieved
by splitting intervals (replacing some string u by all its continuations of a given greater length).

Remark 2. One can use similar ideas to get a characterization of randomness in terms of time-bounded
Kolmogorov complexity, see [1] for details.
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