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Abstract. There are several sorts of Kolmogorov complexity, better to say several
Kolmogorov complexities: decision complexity, simple complexity, prefix complex-
ity, monotonic complexity,a priori complexity. The last three can and the first two
cannot be used for defining randomness of an infinite binary sequence. All those five
versions of Kolmogorov complexity were considered, from a unified point of view,
in a paper by the first author which appeared in Watanabe’s book [23]. Upper and
lower bounds for those complexities and also for their differences were announced
in that paper without proofs. (Some of those bounds are mentioned in Section 4.4.5
of [16].) The purpose of this paper (which can be read independently of [23]) is to
give proofs for the bounds from [23].

The terminology used in this paper is somehow nonstandard: we call “Kol-
mogorov entropy” what is usually called “Kolmogorov complexity.” This is a
Moscow tradition suggested by Kolmogorov himself. By this tradition the term
“complexity” relates toany mode of description and “entropy” is the complexity
related to anoptimalmode (i.e., to a mode that, roughly speaking, gives theshortest
descriptions).
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1. Introduction

This paper collects various definitions of algorithmic complexity (entropy) and infor-
mation about their relations. All those definitions and facts were given in [23] without
proofs; here the proofs are given. Many of these proofs are well known; nevertheless,
all the proofs are collected here for the reader’s convenience and adapted to the uniform
terminology.

The paper is organized as follows. We start (Section2) with the classification of four
entropies (two possibilities for objects combined with two possibilities for descriptions)
which goes back to [21] and is explained in Sections 1.2 and 1.3 of [23].

Then in Section3 we look at a different classification of entropies which goes back
to [15] and establish the connections between these two classifications mentioned in
Section 1.6 of [23].

Finally, in Section4 we establish some connections between different entropies
mentioned in Sections 2.1 and 2.2 of [23].

2. Objects and Descriptions

Any of the four definitions of entropy given in this section follows the same pattern. First,
an appropriate notion of “description mode,” or “mode of description,” is introduced.
Each of the four definitions requires a specific class of description modes. Any description
mode is a binary relationE on4 (the set of all binary words). If〈x, y〉 ∈ E, thenx is
called adescriptionof y. When a modeE is fixed, acomplexityof a binary wordy is
defined as the length of its shortest description, i.e.,

KE(y) = min{|x| | 〈x, y〉 ∈ E},
where |x| denotes the length ofx. Different modes of description lead to different
complexity functionsKE; the basic Solomonoff–Kolmogorov theorem (valid for all
four entropies of this section) states that among all the functions related to the relevant
class of modes there is a minimal one (up to an additive constant). In other words, in
the class of modes there is anoptimaldescription modeE such that, for any description
modeF of the same class,

KE(y) ≤ KF (y)+ C

for some constantC and for all wordsy. Finally, entropyis defined asKE for some
optimal description modeE.

Now we use this general scheme for four different cases.

2.1. Simple Kolmogorov Entropy

When defining simple Kolmogorov entropy, amode of description(“simple description
mode”) is a binary relationE ⊂ 4×4 such that, for everyx, y1, y2 in 4,

〈x, y1〉 ∈ E ∧ 〈x, y2〉 ∈ E ⇒ y1 = y2.

In other terms, a mode of description is a (partial) function from4 into4. Enumerable
(i.e., recursively enumerable) modes of descriptions correspond to computable functions;
we restrict ourselves to enumerable modes only.
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When a modeE is fixed, thecomplexityof a binary wordy is defined as the length
of its shortest description, i.e.,

KE(y) = min{|x| | 〈x, y〉 ∈ E}.
Different modes of description lead to different complexity functionsKE; the basic
Solomonoff–Kolmogorov theorem states that among all these functions a minimal one
(up to an additive constant) exists. In other words, there is anoptimaldescription mode
E such that, for any description modeF ,

KE(y) ≤ KF (y)+ C

for some constantC and for all wordsy.
To construct an optimal mode of description, assume thatU (m, n) is a universal

computable function (i.e., the family{Um}, whereUm(x) = U (m, x), contains all com-
putable functions, including partial ones, from4 to 4). By z we denote the wordz
where each letter is repeated twice. An optimal mode of description may be constructed
as follows:

E = {〈p01q, r 〉|U (p,q) = r }.
Now we fix some optimal description modeE and call the corresponding complexity

function KE(y) simple Kolmogorov entropy. It is denotedK S(y) in what follows, and
the description modes as defined in this section are called “K S-description modes” or
“simple description modes.”

This definition of simple Kolmogorov entropy appears in Section 1.2 of [23] where
the name “(=,=)-entropy” or “N-entropy” is used. Essentially the same definition is
given in Section 1.3 of [23]. Indeed, the ordering on the bunchB is trivial (only equal
objects are comparable), therefore conditions 1 and 2 [23, p. 89] are always satisfied.
Condition 3 means thatE is a graph of a function, and acceptable modes of descriptions
are graphs of computable functions. Therefore, “bunch definition” of [23] coincides with
the one given above (and with the original Kolmogorov definition from [12]).

2.2. Decision Entropy

For the case of decision entropy a description mode (“decision description mode”) is
defined as a (recursively enumerable) setE ⊂ 4× 4 satisfying the following require-
ments:

(a) If 〈x, y1〉 ∈ E and〈x, y2〉 ∈ E, then one of the wordsy1 andy2 is a prefix of
another one.

(b) If 〈x, y〉 ∈ E, then〈x, y′〉 ∈ E for all prefixesy′ of y.

It is easy to see that, for any fixedx, all y’s such that〈x, y〉 ∈ E are prefixes of some
(finite or computable infinite) binary string. So the mode of description may be naturally
considered as a mappinge of 4 into the set of all finite or computable infinite binary
strings, and〈x, y〉 ∈ E means “y is an initial segment ofe(x).”

Then decision complexity with respect to a given modeE is defined as before, and
again the optimal description modeE exists. The corresponding complexity function
KE(y) is calleddecision entropyand is denoted byK D(y).
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Again the Solomonoff–Kolmogorov theorem is valid for this case. The construction
of the optimal description mode follows. Assume thatU (p,q, n) (wherep, q are binary
words andn is a natural number) is a computable function with 0–1 values universal for
the class of all computable functions4× N→ {0, 1}. Then the set

{〈 p̄01q, r 〉| r i = U (p,q, i ) for all i not exceeding|r |}
(by ri we denote thei th bit of r ) is an optimal description mode. (This description mode
follows the original construction of decision entropy, see [17] or [26].)

The above-mentioned requirements (a) and (b) (given as in Section 1.3 of [23], for
X = B, Y = T) seem natural if we think of a description mode as a computable mapping
in the sense of the Scott–Ershov domain theory (see [21]). However, requirement (b) may
in fact be omitted (as in Section 1.2 of [23]). Then we get a broader class of description
modes and, theoretically speaking, may get a smaller entropy. However, for any binary
relationE satisfying requirement (a) we may consider its extensionE′:

E′ = {〈x, y〉|y is a prefix of somey′ such that〈x, y′〉 ∈ E}.
It is easy to check that this extension is enumerable ifE is, thatE′ satisfies both require-
ments (a) and (b), and that the corresponding complexity function does not exceed the
complexity function corresponding toE.

The decision entropy is called(=, γ )-entropy, orN4-entropy in Section 1.2 of [23].

2.3. Monotonic Entropy

Here by the description mode (“monotonic description mode”) we mean a (recursively
enumerable) setE ⊂ 4 × 4 satisfying the following requirements (see Section 1.3 of
[23]):

(a) If 〈x, y〉 ∈ E, then〈x, y′〉 ∈ E for all prefixesy′ of y.
(b) If 〈x, y〉 ∈ E, then〈x′, y〉 ∈ E for all x′ havingx as a prefix.
(c) If 〈x, y′〉 ∈ E and〈x, y′′〉 ∈ E, then one of the wordsy′, y′′ is a prefix of another

one.

Then the complexity (for a given mode) is defined in the usual way, as the length of the
shortest description.

The optimal description mode does exist; corresponding complexity is calledmono-
tonic entropyand is denoted byK M(y)

Here to prove the existence of an optimal description mode is slightly more difficult
than in the previous cases. The reason is that we should construct the “universal com-
putable mapping” for the family of all “computable monotone mappings” from4 into
4. This is explained in the general case (for semantic domains, orf0-spaces) in [21]; a
very detailed description of what happens for the case of monotonic entropy is given in
Sections 3.1 and 3.2 of [24].

Again, the requirements for the description mode may be weakened. Namely, we
may require only (as in Section 1.2 of [23]) that if

〈x1, y1〉 ∈ E and 〈x2, y2〉 ∈ E

and one of the wordsx1, x2 is a prefix of another one, then one of the wordsy1 andy2

is a prefix of another one.
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It is easy to check that this requirement is a consequence of requirements (a)–(c)
above (we may replacex1 andx2 by the longest of them), but not vice versa. However,
if E satisfies the latter requirement, then its extensionE′ defined as

E′ = {〈x, y〉 | there arex′ ≤ x andy′ ≥ y such that〈x′, y′〉 ∈ E}
(here p ≤ q means that a binary wordp is a prefix of a binary wordq) satisfies
requirements (a)–(c). Using this extension, it is easy to check that both versions of
monotonic entropy definition lead to functions which differ only by a bounded additive
term.

Monotonic entropy is called(γ, γ )-entropy, or44-entropy, in Section 1.2 of [23].

2.4. Prefix Entropy

Here the requirements for the description mode (“prefix description mode”) are as follows
(see Section 1.3 of [23]):

(a) If 〈x, y〉 ∈ E, then〈x′, y〉 ∈ E for anyx′ such thatx is a prefix ofx′.
(b) If 〈x, y1〉 ∈ E and〈x, y2〉 ∈ E, theny1 = y2.

(As everywhere,E is supposed to be recursively enumerable.) They can be replaced by
the weaker requirement (see Section 1.2 of [23]): if 〈x1, y1〉 ∈ E and〈x2, y2〉 ∈ E and
x1 is a prefix ofx2, theny1 = y2. This requirement, though being weaker, leads to the
same entropy. Indeed, if someE satisfies this requirement, then its extension

E′ = {〈x, y〉|〈x′, y〉 ∈ E for somex′ being a prefix ofE}
satisfies both requirements (a) and (b) and gives the same complexity function.

The existence of an optimal description mode may be proved by enumerating all
description modes (in other terms, all “computable mappings” from4 toN). Its existence
follows from the general facts about semantic domains (see [21]) and can also be proved
directly. We omit this proof because the existence of an optimal mode is a by-product of
the coincidence of the definition given above and the encoding-free definition (see the
next section).

The complexity with respect to an optimal description mode in the sense of this
section is calledprefix entropyand is denoted byK P(x).

2.5. Historical Remarks

The different versions of entropy described above (as well as some other versions) were
invented independently by different people. If we attribute those versions according to
the first publication date, the list would be as follows:

• Simple entropyK S: 1965, Kolmogorov [12, Section 3]; and (even earlier but in
some nebulous form) 1964, Solomonoff [22].
• Decision entropyK D: 1969, Loveland [17].
• A priori entropyK A (see below): 1973, Levin (see [26, no. 3.3] and [13]).
• Monotonic entropyK M : 1973, Levin [13].
• Prefix entropyK P: 1974, Levin [14], see also [8].
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Some other historical remarks:

• In 1966 Chaitin published his paper [2], where a complexity measure was defined
in terms of Turing machine parameters. This definition, however, does not provide
the optimal complexity measure, which appeared in a subsequent paper published
in 1969 [3]. (According to [16], p. 86, those papers were submitted in October
1965 and November 1965, respectively.) In a publication of 1975 Chaitin also
reinvented the prefix entropy (see [4]). See also [5] and [6].

In [7] Chaitin writes: “I have been the main intellectual driving force behind
both AIT1 and AIT2.” As to AIT1 and AIT2, in [7] there is a declaration that
Algorithmic Information Theory “appeared in two installments,” andAIT1, AIT2

stand for those installments. Here is the opinion of one of the leading experts
in the field: “Chaitin has done more than others to popularize some aspects of
algorithmic information theory. The benefits of this activity are offset by his
somewhat narrow interests〈. . .〉 and the way he ascribes all major achievements
to himself” [10].
• In 1964 Markov, Jr. [18], proposed a complexity measure similar to decision

entropy. It was based on so-called “normal algorithms.” However, his definition
did not provide an optimal complexity measure.
• Monotonic entropy was defined (in its present form) in Levin’s paper [13] together

with the characterization of randomness in terms of that entropy. At the same time
Schnorr [19] independently provided a similar characterization, but his notion of
entropy (“process complexity” according to Schnorr) was slightly different. Later
Schnorr [20] discarded his notion and used the same notion of monotonic entropy
as given in Levin’s paper.

The complete account of the history of different notions related to Kolmogorov
complexity may be found in the recently published monograph [16].

3. Encoding-Free Definitions

3.1. Simple Kolmogorov Entropy

The simple Kolmogorov entropy can be characterized as a minimal (up to a constant)
enumerable from above functionf : 4→ N ∪ {∞} satisfying the following condition
(which, in an equivalent form, is called(CB) in Section 1.5 of [23]):

• There is at most 2n different y such thatf (y) = n.

(A function f : 4→ N∪{∞} is calledenumerable from aboveif the set of all pairs
〈x, n〉 such thatn > f (x) is recursively enumerable.)

Remark. If we replace 2n by C · 2n (see condition (C′) in Section 1.5 of [23]) we get
the same (up to a constant) entropy:C ·2n = 2n+logC, therefore this factorC corresponds
to an additive constant in the exponent. We may also replace “f (y) = n” by “ f (y) ≤ n”;
if there is at most 2n objectsy such thatf (y) = n, then the number of objectsy such
that f (y) ≤ n does not exceed 1+ 2+ · · · + 2n < 2 · 2n.



Relations Between Varieties of Kolmogorov Complexities 277

To prove this characterization of simple Kolmogorov entropy (as defined in Sec-
tion 2.1) we should prove that:

• A simple Kolmogorov entropy functionK S(x) satisfies this condition.
• For any enumerable from above functionf satisfying this condition a simple

description modeE can be constructed such that the complexity function corre-
sponding toE exceedsf by not more than a constant.

The first claim is trivial: different objects have different descriptions, and objectsy
such thatK S(y) = n have descriptions of lengthn. Therefore, the number of thosey’s
does not exceed the total number of descriptions having lengthn, i.e., 2n.

The second claim is also simple. We reserve words of lengthn to be descriptions
of objectsy such that f (y) < n. The total number of these objects does not exceed
1+ 2+ · · · + 2n−1 < 2n, therefore we cannot exhaust all reserved words. The function
f is by assumption enumerable from above. Thus, the set of all pairs〈y, n〉 such that
f (y) < n is enumerable. When a new pair〈y, n〉appears during the enumeration process,
we allocate one of the unused wordse of lengthn to be a description ofy. The setE of
all pairs〈e, y〉 generated in this way is enumerable;E is a function graph (because each
emay be allocated only once), therefore,E is a simple description mode. Evidently, the
corresponding complexity function does not exceedf + 1.

A by-product of this argument is the existence of a minimal (up to an additive
constant) enumerable from above function satisfying our condition.

3.2. Decision Entropy

To get the characterization of decision entropyK D we should look for the minimal (up
to a constant) functionf : 4→ N∪ {∞} which is enumerable from above and satisfies
the following condition:

• If M is a finite set of incomparable words (there is no word inM which is a
prefix of another word inM) andM ⊂ f −1(n), then the cardinality ofM does
not exceed 2n.

(The equivalent condition is called(CT) in [23]). As in the previous section, to prove
this characterization we should prove that:

• A decision entropy functionK D(x) satisfies this condition.
• For any enumerable from above functionf satisfying this condition, a decision

description modeE can be constructed such that the complexity function corre-
sponding toE exceedsf by not more than a constant.

We start with the first claim. Assume thatM is prefix-free (no word inM is a prefix
of another one inM) set of words having decision entropyn. That means that all these
words have descriptions of lengthn. All these descriptions must be different (otherwise
the conditions for the description mode are violated). Thus, the number of descriptions
(and the cardinality ofM) does not exceed 2n.

Now consider the second claim. As well as in the previous section we reserve words
of lengthn to be descriptions of objectsy such thatf (y) < n. Now the total number of
objectsy such thatf (y) = n is not limited; however, any subset of pairwise incomparable
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y’s such thatf (y) = n has cardinality not greater that 2n (two words arecomparable
if one of them is a prefix of another one). Therefore, any set of pairwise incomparable
objects with f -values less thann contains no more than 1+2+· · ·+2n−1 < 2n objects.
The function f is by assumption enumerable from above. Thus, the set of all pairs〈y, n〉
such that f (y) < n is enumerable. Assume that a new pair〈y, n〉 appears during the
enumeration process. For each already allocated descriptione we look at the longest
objectz(e) in the set of all objects havinge as a description. (All other objects in this
set will be prefixes of the longest one.) If any of these objectsz(e) is comparable with
y, then the correspondinge is declared to be a description ofy. If not, we allocate a
new description fory. (There is a free description because allz(e) together withy are
incomparable and therefore the number of usede’s is less than 2n.) The set of all pairs
〈e, y〉 generated in this way is an enumerable decision description mode (i.e., satisfies
the conditions of Section2.2). Evidently, the corresponding complexity function does
not exceedf + 1.

3.3. A Priori Entropy

In the case of monotonic entropy, situations differs: monotonic entropy has no exact
characterization of the same type as in Section3.1 and3.2. However, it is connected
closely with another complexity measure, calleda priori probability. We reproduce its
original definition from Section 3 of [26], where it is called a “universal semicomputable
measure.” (This notion is discussed in details in Chapter V of [24].)

A semimeasure(in this section!) is a functionm defined on4with nonnegative real
values satisfying the following conditions:

• m(3) = 1 (here3 denotes an empty word).
• m(x0)+m(x1) ≤ m(x) for any wordx.

A semimeasure is calledenumerable from belowif the set of all pairs〈x, r 〉 such thatr
is a rational number less thanm(x) is enumerable. There is a maximal (up to a constant
factor) enumerable from below semimeasureM(x) calleda priori probability (see [24]).
Its logarithm is calleda priori entropyand is denoted byK A.

Another definition ofa priori entropy is given in Section 1.5 of [23]. Namely,a
priori entropy is defined there under the name of6T-entropy as a minimal enumerable
from above functionf : 4→ N ∪ {∞} such that

(6T)
∑
y∈M

2− f (y) ≤ 1 for any finite prefix-free set M ⊂ 4

(“prefix-free” means that no word inM is a prefix of another word inM).
We explain shortly why these two definitions are equivalent. The main role is played

by the following two facts:

• If m(x) is a semimeasure, thenf (k) = [minimalk such that 2−k < m(x)] satisfies
the condition (6T).
• If a function f satisfies the condition (6T), then the functionm(x) defined as

max
∑

x∈D 2− f (x), where maximum is taken over all finite prefix-free setsD such
thatx is a prefix of each word inD, is a semimeasure. (Technically speaking, we
should also change the value ofm on3 and assume thatm(3) = 1.)
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These facts establish an approximate (up to a factor of 2) correspondence between
semimeasures and functions satisfying the condition6Twhich preserves enumerability
and allows us to prove the coincidence mentioned above.

There is one more assertion concerning the definition ofa priori entropy using the
(6T) condition. It is called “Muchnik’s theorem” on p. 93 of [23]. It can be stated as
follows. Assume that functionϕ is defined on binary words and allϕ(x) are real numbers
between 0 and 1. We consider any binary wordx as a vertex in a complete binary tree
andϕ(x) as its label. Assume that, for eachC, we can find a finite set of pairwise
incomparable words with the sum of labels exceedingC. Then an infinite set of pairwise
incomparable words with an infinite sum of labels exists.

The scheme of the proof is as follows. For each binary wordx (each vertex of the
tree) consider all setsD of pairwise incomparable words havingx as a prefix. For each
D compute the sum of all labels of vertices fromD and take a supremum over allD’s;
this supremum (finite or infinite) depends onx. We call a vertexbad if that supremum
is infinite. By assumption, the tree root is bad. We should find an infinite set of pairwise
incomparable words with an infinite sum of labels. Bad vertices form a subtree in the
full binary tree; this subtree has no leaves (ifx is bad, at least one of the wordsx0 and
x1 is bad). Now we consider two cases:

• There is a bad vertexx such that its bad descendants form a path (any two bad
descendants ofx are comparable).
• For any bad vertexx there are two incomparable bad descendants ofx.

In both cases it is possible to find the required infinite set of vertices with an infinite sum
of labels.

3.4. Prefix Entropy

The prefix entropy with its encoding-free definition given in this section is probably the
most technically interesting among all the four entropies. It is discussed in detail in [25];
however, an English translation of this paper has not been published yet, so we try to
give a self-contained description of what happened in this case.

We start with the another definition of a semimeasure. The corresponding notion
differs from the notion of semimeasure used in the previous section. The underlying
reason for this difference is that in the previous section binary words were considered
as vertices of a binary tree; now this structure is ignored and all the word are “placed on
the same level,” so4 is treated not as a tree but as a “bunch.”

In this section asemimeasureis a (total) functionmdefined on the set4 of all binary
words with nonnegative real values such that

∑
x m(x) ≤ 1.

A semimeasurem is calledenumerable from belowif the set of all pairs〈x, r 〉 such
thatr is a rational number less thanm(x) is enumerable.

Enumerable from below semimeasures correspond to probabilistic machines which
have no input but have an output where a binary word may appear (after it appears, the
machine terminates). Namely:

• If M is a probabilistic machine of this type, the functionPs
M(y) = the probability

of the event “machineM stops with outputy” is a semimeasure enumerable from
below.
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• For any semimeasurem enumerable from below a probabilistic machineM can
be constructed such thatm(x) = Ps

M(x) for all x.

The first claim is almost evident. Indeed, the sum
∑

x Ps
M(x) is the probability of the event

“machineM stops” and therefore does not exceed 1. FunctionPs
M is also enumerable

from below: trying to emulate the computation process ofM for all possible random
bits, we get more and more cases where the output is known and therefore may generate
the lower bounds forPs

M(x).
Now we proceed to the second claim. We give only a sketch of a proof. Assume that

a semimeasurem(x) enumerable from below is given and we are looking at the process
of enumeration of all rational lower bounds for allm(x). Assume thatmk(x) is a current
lower bound form(x) at thekth step. We may assume that for eachk the valuemk(x)
differs from 0 only for finitely manyx’s, that mk(x) increases whenk increases and
converges tom(x). Our probabilistic space is the set of all infinite 0–1 sequences. At
stepk we allocate the part of it having measuremk(x) to the outputx; this part increases
whenk andmk(x) increase. (End of sketch.)

There is an enumerable from below semimeasureM(x) which is maximal in the
following sense: for any enumerable from below semimeasurem(x) there is a constant
c such thatm(x) ≤ e · M(x) for all wordsx.

This fact can be proved as follows: enumerate all probabilistic machines and con-
struct a “universal” machine which chooses a natural numberi at random (probabilities
pi to choosei are assumed to be positive) and then simulates thei th machine. Ifmi is a
semimeasure corresponding to thei th machine andM is a semimeasure corresponding
to the universal machine, thenM(x) ≥ pi ·mi (x). Therefore,M is maximal.

Semimeasures are connected with functionsf : 4 → N ∪ {∞} satisfying the fol-
lowing condition:

(6B)
∑

x

2− f (x) ≤ 1.

Namely:

• If f is a function satisfying condition (6B), thenm(x) = 2− f (x) is a semimeasure.
• If m is a semimeasure, then the functionf (x) = minimalk such that 2−k < m(x)

satisfies condition (6B).

Therefore we can go back and forth between semimeasures and functions satisfying
condition (6B) and for the round-trip we pay at most factor 2 (or additive constant 1).
It is easy to see that enumerable from below semimeasures correspond to enumerable
from above functions. Therefore, the existence of a maximal enumerable from below
semimeasureM(x) implies the existence of a minimal enumerable from above func-
tion satisfying (6B) and this function coincides with− log2 M(x) up to an additive
constant.

It turns out that the minimal function from the preceding paragraph (or loga-
rithm of the maximal semimeasure) coincides with prefix entropy. So prefix entropy
may be defined as aminimal enumerable from above function f satisfying condition
(6B).
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To prove this coincidence we should prove two assertions:

• For any prefix description modeE the corresponding complexity function ComplE

satisfies condition (6B) and is recursively enumerable from above.
• If a recursively enumerable from above functionf satisfies condition (6B), then a

prefix description modeE exists such that the corresponding complexity function
ComplE exceedsf not more than by a constant.

The first assertion is almost trivial. IfM = {m1, . . . ,mk} is a finite set of words and
e1, . . . ,ek are their descriptions, thenei are pairwise incomparable. Therefore, the cor-
responding intervals in the Cantor space (of all infinite 0–1 sequences) do not overlap
and the total measure

∑
2−ei does not exceed 1. Therefore, condition (6B) is fulfilled.

The main role in the proof of the second assertion is played by the following con-
struction. Consider the segment [0, 1] divided into two equal parts [0, 1

2] and [12, 1],
each part is divided into two equal parts, etc. At levelk we have 2k parts of length 2−k

each. Assume that we get a sequence of natural numbersn1, n2, . . . and each number
s of this sequence is considered as a request to allocate a segment of levels (one of
the 2s segments of length 2−s). The segments allocated by different requests should not
overlap.

Of course, this goal may be achieved only if
∑

i 2−ni ≤ 1. It turns out that this
condition is not only necessary but also sufficient. The simple allocation algorithm
maintains the following invariant relation: all free space is represented as a union of
nonoverlapping segments which belong to different levels (two segments of the same
length should not appear in this union). The following allocation algorithm maintains
this relation: if a segment of the required length is present in this union, allocate it; if
not, take the smallest segment in the union whose length is sufficient and cut it into half
+ quarter+ · · · until a segment of required length appears.

This construction allows us to finish the proof of the second assertion. Assume that
f is an enumerable from above function satisfying condition (6B). Consider the setSof
all pairs〈x, k〉 such thatk > f (x). The setS is enumerable. If we add up all 2−k for all
pairs〈x, k〉 ∈ S, the sum does not exceed 1. Indeed, when we group all pairs〈x, k〉 ∈ S
with the samex we get

2− f (x)−1+ 2− f (x)−2+ 2− f (x)−3+ · · · ≤ 2− f (x),

and the sum
∑

x 2− f (x) does not exceed 1.
Now each pair〈x, k〉 ∈ S will be considered as a request to allocate a segment of

length 2−k. These requests can be fulfilled (see the discussion above). Segments of level
k may be indexed byk-bit 0–1 words in a natural way; allocating the segment with index
e according to the request〈x, k〉 ∈ S, we declaree to be a description of the objectx.
The allocated segments do not overlap, therefore the descriptions of different objects are
incomparable and the requirement of Section2.4 (in its weakened form) is fulfilled. It
is easy to see also that the minimal length of a description of an objectx is f (x) + 1;
therefore, the complexity function exceedsf by not more than 1.

This argument also implies that there is an optimal description mode (i.e., a descrip-
tion mode corresponding to the minimal functionf which in its turn corresponds to a
maximal semimeasure).
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4. Inequalities between Entropies

4.1. Entropies Pentagon

Four entropies form a diamond:
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It is easy to see that restrictions for description modes become weaker when we go
down along the sides of this parallelogram: each prefix description mode is a monotonic
description mode and at the same time a simple description mode, etc. Weaker restrictions
correspond to broader classes of description modes, so the entropy (defined as a minimum
taken over all description modes) may only decrease. We shall see later that entropies
do decrease when we go down.

So we get a picture where vertices correspond to entropies and edges correspond to
inequalities between entropies. The entropyK A (a priori entropy) may be added to this
picture:
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Indeed,

• decision entropy does not exceeda priori entropy;
• a priori entropy does not exceed monotonic entropy.

We check that:
First, decision entropy may be defined as a smallest function satisfying the condition

of Section3.2. That condition is weaker than the similar condition fora priori entropy
in Section3.3—therefore, decision entropy does not exceeda priori entropy.

Second, we should prove thata priori entropy does not exceed monotonic entropy.
This is explained in detail in [24], see Section 5.3; here we give only a short comment.
Assume that we have an optimal monotonic description modeE. A semimeasurem(z)
can be defined as follows. Consider the setPz of all infinite sequencesω =ω0ω1 . . . such
thatE contains a pair〈x, y〉 such thatx is a prefix ofω andz is a prefix ofy. Definem(z)
as a uniform Bernoulli measure of the setPz. It is easy to see thatm is a semimeasure in
the sense of Section3.3and thatm(z) ≥ 2−K M(z), whereK M is a complexity function
corresponding to description modeE.

In fact both inequalities mentioned above are strict: the difference between decision
entropy anda priori entropy (as well as betweena priori entropy and monotonic entropy)
is unbounded, see below.

4.2. Entropies and Lengths

Any of the entropiesK S(x), K M(x), K A(x), K D(x) does not exceed|x| + C for
some constantC. (Indeed, we may consider a description modeE = {〈x, x〉 | x ∈ 4}.)
This upper bound cannot be improved significantly; we haveK D(x) ≥ |x| for infinitely
manyx’s. (K D is the smallest of the four entropies mentioned, so it is also true for other
entropies.) Indeed, consider all the wordsy of a given lengthn. They are incomparable,
therefore theirK D descriptions should be different. If all these descriptions have length
smaller thann, the total number of descriptions does not exceed

1+ 2+ 4+ 8+ · · · + 2n−1 = 2n − 1< 2n

—too few to provide descriptions for alln-bit words.
For prefix entropy the situation is more difficult. Consider the following divergent

series (all logarithms are binary; we ignore the difficulties with log 0, 1/ log 1, etc.):∑ 1

n
,

∑ 1

n logn
,

∑ 1

n logn log logn
· · · .

At the same time the series∑ 1

n1+ε ,
∑ 1

n(logn)1+ε
,

∑ 1

n logn(log logn)1+ε
· · · ,

converge. Let us see how these series provide upper and lower bounds for prefixK P (see
inequalities (2) and (3) on p. 99 in [23]). Enumerate all binary words in the lexicographic
order (empty, 0, 1, 00, 01, 10, 11, etc.) and identify each word with its number. The series∑ 1

n1+ε
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converges. Therefore functionn 7→ 1/n1+ε is a semimeasure (in the sense of Section3.4)
when multiplied by some constant (to make the sum not exceed 1). Therefore, the
prefix entropy ofn (i.e., prefix entropy of binary word numbern) does not exceed
(1+ ε) logn + O(1). So K P(x) does not exceed(1+ ε)|x| + O(1). The convergent
series∑ 1

n(logn)1+ε
,
∑ 1

n logn(log logn)1+ε
· · ·

provide the upper bounds

K P(x) ≤ |x| + (1+ ε) log |x|, K P(x) ≤ |x| + log |x| + (1+ ε) log log|x|,
etc.

Now for the lower bounds. All of them areweaklower bounds, i.e., lower bounds
valid for infinitely many arguments but not necessarily for all the arguments. Assume,
for instance, that the (weak) lower bound

K P(y) ≥ |y| + log |y| for infinitely manyy’s

is not valid. Then for ally (except a finite number ofy’s) we have

K P(y) < |y| + log |y|
and, therefore,

2−K P(y) > 2−(|y|+log |y|).

Summing over ally’s, we see that the left-hand side series converge (see Section3.4);
therefore, the right-hand side series should converge also. However, recalling that a
binary wordy is identified with its numbern (which is of the same order as 2|y|) we
recognize the series∑ 1

n logn

in the right-hand side.
Similar arguments can be used to prove stronger lower bounds:

K P(y) ≥ |y| + log |y| + log log|y|,
K P(y) ≥ |y| + log |y| + log log|y| + log log log|y|,

etc. (valid for infinitely manyy’s).
The upper bound forK P(x) can be explained also in a more explicit way. The

description mode “each binary word is a description of itself” is valid for simple Kol-
mogorov entropy (or monotonic entropy, or decision entropy) but is not valid for prefix
entropy (i.e.,K P), because the description mode in this case should be prefix-free: the
descriptions of different objects should not be prefixes of each other. We can obtain a
prefix-free description if we consider the word

binary representation of|x|01x
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as a description ofx. Herez denotes the wordz where each letter is repeated twice. This
encoding is prefix-free, because the position of the 01-group is determined uniquely, and
therefore we may reconstruct the length ofx. This encoding leads to an upper bound

K P(x) ≤ |x| + 2 log|x| + O(1)

and we can repeat the trick: the encoding

b.r. of
∣∣b.r. of |x| ∣∣ 01(b.r. of |x|)x

(b.r. stands for “binary representation”) leads to an upper bound

K P(x) ≤ |x| + log |x| + 2 log log|x| + O(1).

This trick can be iterated.

4.3. Differences Between Entropies

The similar (though a little more subtle) considerations allow us to establish bounds for
differences of entropies (stated in Section 2.2 of [23]).

4.3.1. K P− K D: Upper Bound. We start with the boundK P(y)− K D(y). Assume
that

∑
qn in one of the convergent series mentioned above. We should prove that

K P(y) ≤ K D(y)+ log |y| + (− logq|y|)+ O(1)

or, in other words (recall the encoding-free definition ofK P in Section3.4), that the
series∑

2−K D(y) · 1

|y| · q|y|

converges. We classify ally according to two integer parameters: its lengthn and its
K D-entropyk. It is easy to see that the number ofy’s of lengthn and entropyk does
not exceed 2k; each of them contributes

2−k · 1

n
· qn

to the sum; so alln-k elements contribute at most

1

n
· qn

(for anyk). Now we sum overn andk; summing overk we consider onlyk not exceeding
n+O(1) (becauseK D(y) ≤ |y|+O(1)), therefore, summing overk means multiplying
by n+O(1) and the sum does not exceedO(1) ·qn. It remains to recall that

∑
qn <∞.

4.3.2. K P − K D: Lower Bound. The corresponding lower bound states that if
∑

qn

is one of the divergent series mentioned above, then

K P(y) > K D(y)+ log |y| + (− logq|y|)+ O(1).

for infinitely manyn.
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To prove it, it is enough to prove that the series∑
2−K D(y) · 1

|y| · q|y|

diverges. Consider the decision description mode wherex is a description of all words
x10. . .0. Consider the setAn,k of all words of lengthn having this form for somex
of lengthk (assuming thatk < n). All words from An,k have decision complexity not
exceedingk; the total number of words inAn,k is 2k. They contribute to the sum at least

2k · 2−k · 1

n
· qn = qn

n
;

summing overk first, we get the sum
∑

qn = +∞.

4.3.3. K S− K A, K S− K M : Upper Bounds. Now we consider another difference
(see paragraph (2) on p. 100 of [23]) and prove that

K S(y)− K A(y) ≤ log |y| + O(1)

(all logarithms are binary logarithms). In other words, we should prove that

K S(y) ≤ K A(y)+ log |y| + O(1).

According to the encoding-free definition ofK S (Section3.1) it is enough to show that
the set

Y = {y|K A(y)+ log |y| < n}
containsO(2n) elements: #Y = O(2n). The setY is prefix-closed (all prefixes of an
element ofY belong toY too); in other words,Y is a subtree of the complete binary
tree. We consider the setY′ of all leaves of this subtree, i.e., all maximal elements ofY
(having no continuations inY). Each element ofY is a prefix of some maximal element,
and it is easy to see that

#Y ≤
∑
y∈Y′
|y|

(each elementy has|y| prefixes). For any elementy ∈ Y′ we have

K A(y)+ log |y| < n,

or

K A(y) < n− log |y|,
or

2−K A(y) >
|y|
2n
.

All elementsy ∈ Y′ are incomparable, therefore∑
y∈Y′

2−K A(y) < O(1)
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and, consequently,∑
y∈Y′

|y|
2n

< O(1)

and we get the upper bound for
∑ |y| that we need.

4.3.4. K S− K A, K S− K M : Lower Bounds. To obtain the matching (weak) lower
bound, consider the sequence 0n (n zeros). We have

K A(0n) = O(1), K M(0n) = O(1), and K S(0n) = K S(n)+ O(1)

(we identifyn and thenth binary word as before). It remains to prove thatK S(n) ≥ log2 n
for infinitely manyn which could be done by an easy counting argument (see above).

4.3.5. K A− K S, K M − K S, K P− K S: Upper Bounds. Next differences (see para-
graph (3) on p. 100 of [23]) areK M(y)−K S(y) andK A(y)−K S(y). The upper bounds
follow from the following upper bound forK P(y) − K S(y) (mentioned on p. 101 of
[23]): assume that

∑
qn is any of the convergent series considered above; then

K P(y) ≤ K S(y)+ (− logq|y|).

According to the encoding-free definition ofK P (Section3.4), we should prove that∑
2−K S(y)q|y| <∞.

We consider all terms withK S(y) = k; the number of such terms is about 2k, each term
is 2−kq|y|. We may replaceq|y| by qk becauseqi is monotone and becausek = K S(y)
does not exceed|y| (up to a constant, as usual). Then we get the sum

∑
qk which is

finite by our assumption.

4.3.6. K A− K S, K M − K S, K P − K S: Lower Bounds. To get the complementary
lower bound forK A(y) − K S(y) we start with the bound forK P(y) − K S(y) (it is
easier, becauseK A ≤ K P). Assume that

∑
qi is any of the divergent series mentioned

above. We prove that

K P(y)− K S(y) ≥ − logq|y|

for infinitely manyy. Indeed,K S(y) ≤ |y| (we ignoreO(1) terms) and, as we have seen
before,

K P(y) ≥ |y| + logq|y|

for infinitely manyy. Now we show how to transform a lower bound forK P−K S into a
lower bound forK A−K S. For any binary wordx consider the binary wordt (x) = x̂01.
All words t (x) are incomparable. It is easy to show thatK M(t (x)) = K A(t (x)) =
K P(t (x)) (up to O(1) terms). Indeed, these wordst (x) form a “bunch embedded into
a tree” (see Section3.4). It is also easy to see thatK S(t (x)) = K S(x). Now the lower
bound forK P − K Scan be rewritten as

K A(t (y))− K S(t (y)) ≥ − logq|t (y)|

and it remains to mention thatt (y) is only twice as long asx so it does not matter whether
we haveq|t (y)| or qy under the logarithm.
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4.3.7. K M − K D, K A− K D: Upper Bounds. Now we prove the upper bound for
K M(y)−K D(y) (and therefore forK A(y)−K D(y)). When definingK D(y)we used
an optimal description modeG which may be considered as a “computable mapping”
of typeN→ 4 in the sense of the Scott–Ershov domain theory (here4 is a tree, i.e., a
domain where binary words are ordered by a relation “to be a prefix,” andN is a bunch,
i.e., a domain where all binary words lie on the same level). Now an optimal prefix
description modeF (corresponding to the prefix entropyK P) may also be considered
as a “computable mapping” of type4→ N. So we get a diagram

4
F→ N G→ 4

with two description modes. Their compositionH is a mapping of type4→ 4 and is
a monotone description mode, or, if you do not like references to domain theory, just
consider a set

H = {〈x, z〉 | ∃y(〈x, y〉 ∈ F and〈y, z〉 ∈ G}.
Therefore, theK M-entropy of somey ∈ 4 does not exceed theK P-entropy of the
shortestG-descriptionz of an objecty:

K M(y) ≤ K P(z)+ O(1) and |z| = K D(y).

Now the inequality for the prefix entropy, e.g.,

K P(z) ≤ |z| + log |z| + (1+ ε) log log|z| + O(1),

can be applied to get

K M(y) ≤ |z| + log |z| + (1+ ε) log log|z| + O(1)

= K D(y)+ log K D(y)+ (1+ ε) log logK D(y)+ O(1)

≤ K D(y)+ log |y| + (1+ ε) log log|y| + O(1)

(the last step uses thatK D(y) does not exceed|y|). More elaborate inequalities for prefix
entropy may be used in the same way, and we get

K M(y) ≤ K D(y)+ log |y| + log log|y| + (1+ ε) log log log|y| + O(1),

K M(y) ≤ K D(y)+ log |y| + log log|y| + log log log|y|
+ (1+ ε) log log log log|y| + O(1),

etc.

Remark. Replacing in the diagram above, the rightmost space4 byNwe get the upper
bound for the differenceK P(y)− K S(y) that we have already proved.

4.3.8. K M − K D, K A− K D: Lower Bounds. The lower bound forK A− K D (and
therefore forK M−K D) can be obtained from the lower bound forK P−K Smentioned
above. Indeed,

K P(y)− K S(y) = K A(t (y))− K D(t (y))+ O(1)
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(heret is an embedding of the bunch into a tree explained above). In this way we obtain
(weak) lower bounds like

K A(y) > K D(y)+ log |y|,
K A(y) > K D(y)+ log |y| + log log|y|,

etc.

4.3.9. K S−K D: Upper Bound. Assume that a decision description modeF is used to
defineK D. Construct a simple description modeG as follows: ifx is anF-description
of y, then

binary representation of|y|01x

is aG-description ofy. Therefore,

K S(y) ≤ K D(y)+ 2 log|y| + O(1).

Iterating the trick (using the binary representation of the length of the binary represen-
tation of y, etc.) we get stronger inequalities of that sort:

K S(y) ≤ K D(y)+ log |y| + 2 log log|y| + O(1),

K S(y) ≤ K D(y)+ log |y| + log log|y| + 2 log log log|y| + O(1),

etc.

4.3.10. K S− K D: Lower Bound. We prove that

K S(y) ≥ K D(y)+ log |y| + log log|y|
for infinitely manyy’s (the proof of the lower bound with more logarithms is similar).
As usual, assume that it isnot valid, i.e., that

K S(y) < K D(y)+ log |y| + log log|y|
for almost ally. We takey’s of the formx10j−1 and get

K S(x10j−1) < |x| + log(|x| + j )+ log log(|x| + j ).

Now we should count all pairs〈x, j 〉 where the right-hand side does not exceed some
n and see that the number of such pairs isnot O(2n). (This would be a contradiction,
because different pairs correspond to different words.) We restrict ourselves tox and j
such that

|x| ≤ n and n ≤ j ≤ 2n

n2
.

In this case we may replace log(|x| + j ) by log j (ignoring an additive constant) and
obtain a sum

2n/n2∑
j=n

#{x| log j + log log j + |x| ≤ n} ≈
2n/n2∑
j=n

2n−log j−log log j ≈ 2n
∫ 2n/n2

n

d j

j log j
;

the integral tends to infinity whenn→∞.
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4.3.11. K P−K A, K P−K M : Upper Bounds. Assume thatqn is one of the convergent
series considered above. We prove that

K P(y) ≤ K A(y)+ (− log2 q|y|).

According to the encoding-free definition ofK P (Section3.4), it is enough to prove that

2−K A(y)+log2 q|y| = q|y|2−K A(y)

is finite. Indeed, if we consider the sum over ally’s of a given lengthn, we getqn ·O(1)
(thesey’s are incomparable), and the series

∑
qn is convergent.

The upper bound forK P − K M follows from the upper bound forK P − K A
becauseK M is bigger thatK A.

4.3.12. K P−K A, K P−K M : Lower Bounds. The (weak) lower bound forK P−K A
is a consequence of the lower bound forK P − K M which in its turn is a consequence
of the lower bound forK P(y) − |y| becauseK M(y) ≤ |y| + O(1). The lower bound
for K P(y)− |y| is established in Section4.2.

4.3.13. K M − K A: Upper and Lower Bounds. This difference is of special interest.
The very fact that these entropies differ by more than a bounded additive term is dis-
appointing. This fact was discovered by G´acs [9]. (The Hungarian surname “G´acs” is
pronounced approximately as English “garch.”) In his paper he considered sequences of
natural numbers instead of binary words, and the bounds become much weaker if we
restrict ourselves to binary words. As he writes: “Therefore for binary strings, the lower
bound obtainable from the proof of Theorem 1.1 is only the inverse of some version
of Ackermann’s function” [9, p. 75]. As is known, Ackermann’s function is a function
with natural arguments and values growing faster than any primitive recursive function.
Its inverse f −1 (defined asf −1(a) = min{z: f (z) ≥ a}), therefore grows extremely
slowly. Gász’s proof is rather technical. Here is a quotation from [11]:

Formulation . For any functionϕ( ) let us defineh( j, t, ϕ) by the following
recursion:

h(0, t, ϕ) = t,

h( j + 1, t, ϕ) = ϕ(h( j, t, ϕ)).

Thus,h( j, t, ϕ) is essentially thej -fold iteration ofϕ. Now we define

tk(i, r ) = d2r (2−k−2 log i + 8)e,
f k(0, r ) = r,

f k(i + 1, r ) = h(tk(i, r ), dlog tk(i, r )e, λs fk(i, s)).

Let

L(k) = 22k+7
, F(k) = L(k) log f k(L(k), 3).

Then, for large enoughn, there is a binary stringx of length≤ n with

K M(x)− K A(x) ≥ F−1(n)/2.
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(In the last line notation is changed because G´acs uses another notation: hisKm is our
K M , his K M is our K A.)

As to upper bounds, the authors know nothing except the trivial consequences of
bounds forK M−K D or K P−K A. The gap between upper and lower bounds, therefore,
is rather big, and it may be interesting to find tighter bounds.

Acknowledgments

The authors thank N. K. Vereshchagin who explained some of the upper and lower bounds proofs to them
and J. Tromp who read the papers very thoroughly and made helpful comments and suggestions; however,
the authors should be blamed for all errors and omissions. The authors thank CWI (Amsterdam) and LaBRI
(Bordeaux) for hospitality.

References

[1] C. Calude,Information and Randomness. An Algorithmic Perspective. Springer-Verlag, Auckland, in
press.

[2] G. J. Chaitin, On the length of programs for computing finite binary sequences,J. Assoc. Comput.
Mach., 13 (1966), 547–569.

[3] G. J. Chaitin, On the length of programs for computing finite binary sequences: statistical considerations,
J. Assoc. Comput. Mach., 16 (1969), 145–159.

[4] G. J. Chaitin, A theory of program size formally identical to information theory,J. Assoc. Comput.
Mach., 22 (1975), 329–340.

[5] G. J. Chaitin,Algorithmic Information Theory, Cambridge University Press, Cambridge, 1987.
[6] G. J. Chaitin,Information,Randomness and Incompleteness.Papers on Algorithmic Information Theory,

World Scientific, Singapore, 1987; expanded second edition in 1992.
[7] G. J. Chaitin, Foreword to [1].
[8] P. Gács, On the symmetry of algorithmic information,Soviet Math. Dokl., 15 (1974), 1477–1480.

(Translated from the Russian version.)
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