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Abstract
We define monotone complexity KM(x, y) of a pair of binary strings x, y in a

natural way and show that KM(x, y) may exceed the sum of the lengths of x and y
(and therefore its a priori complexity) by α log(|x| + |y|) for every α < 1 (but not
for α > 1).

We also show that decision complexity of a pair or triple of strings does not
exceed the sum of its lengths.

1 Introduction

There are different versions of Kolmogorov complexity: plain complexity (C), prefix com-
plexity (K), decision complexity (KR), monotone complexity(KM), etc. Let us recall the
definitions of plain, monotone and decision complexities in a form suitable for general-
izations.

1.1 Plain complexity

Kolmogorov complexity CF (x) of a binary string x with respect to a computable function
F (a decompressor) is defined by

CF (x) = min{|p|, F (p) = x}

There exists an optimal decompressor U such that CU is minimal up to O(1); CU is then
called (plain) Kolmogorov complexity of x.

Let us reformulate this definition in a way that is parallel to the definition of monotone
complexity. Instead of a function F let us consider its graph. A description mode is an
enumerable set W of pairs of binary strings that is a graph of a function, i.e.,

〈p, x〉 ∈ W, 〈p′, x′〉 ∈ W, p = p′ ⇒ x = x′,

If 〈p, x〉 ∈ W , then p is called a description for x with respect to W . The complexity
CW (x) of a binary string x is the length of the shortest description for x with respect
to W . There is an optimal description mode S such that for every description mode W
there exists cW such that

CS(x) 6 CW (x) + cW

for every binary string x. The corresponding function CS is the plain Kolmogorov com-
plexity.
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1.2 Monotone complexity

Monotone complexity KM(x) was defined by L. A. Levin [3] who gave a criterion of Martin-
Löf randomness in its terms: a binary sequence ω is Martin-Löf random if and only if

|x| −KM(x) < c

for some constant c and all prefixes x of sequence ω. We will use the definition of
monotone complexity in terms of binary relations. A monotone description mode is an
enumerable set W of pairs of binary strings such that:

1. if 〈p, x〉 ∈ W and p � p′, then 〈p′, x〉 ∈ W .
2. if 〈p, x〉 ∈ W and x′ � x, then 〈p, x′〉 ∈ W .
3. if 〈p, x〉 ∈ W and 〈p, x′〉 ∈ W, then x � x′ or x′ � x.
Here x � x′ means that x is a prefix of x′ (or x = x′).
If 〈p, x〉 ∈ W , then p is called a description for x with respect to W . The monotone

complexity KMW (x) of x with respect to a monotone description mode W is (again) the
length of the shortest description for x. There is an optimal monotone description mode
S such that:

KMS(x) 6 KMW (x) + cW

for every monotone description mode W and binary string x. The function KMS is
called monotone Kolmogorov complexity. It is indeed monotone: If x is a prefix of x′,
then KM(x) 6 KM(x′).

1.3 Decision complexity

Decision complexity was defines by Loveland D.W. [?]. As before we reformulate the
definition in terms of binary relations.

A decision description mode is an enumerable set W of pairs of binary strings such
that:

1. if 〈p, x〉 ∈ W and x′ � x, then 〈p, x′〉 ∈ W .
2. if 〈p, x〉 ∈ W and 〈p, x′〉 ∈ W, then x � x′ or x′ � x.
If 〈p, x〉 ∈ W , then p is called a description for the string x with respect to W . The

decision complexity KRW (x) of x is the length of the shortest description for x with
respect to W . There is an optimal desicion description mode S such that:

KRS(x) 6 KRW (x) + cW

for every decision description mode W and binary string x. KRS(x) is called decision
Kolmogorov complexity.

The notions of monotone complextity and decision complexity are naturaly generalized
to definitions of monotone complexity of a pair and decision complexity of a pair.

2 Monotone complexity of a pair.

A monotone description mode for pairs is a pair of enumerable sets W1 and W2; each of
them is the monotone description mode (as defined earlier).
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The monotone complexity KMW1,W2(x, y) of a pair of binary strings x and y is the
length of the shortest string p, such that 〈p, x〉 ∈ W1 and 〈p, y〉 ∈ W2 (i.e., p describes x
with respect to W1 and p describes y with respect to W2).

There is an optimal monotone description mode for pairs and we can define monotone
complexity of a pair, denoted by KM(x, y).

Monotone complexity of pairs has property of monotonicity: if a binary string x is
a prefix of another string x′ and y is a prefix of y′, then monotone complexity of a pair
〈x, y〉 is less then monotone complexity of a pair 〈x′, y′〉.

Monotone complexity of a pairs 〈x, x〉, 〈x,Λ〉 and 〈Λ, x〉 is equal (with up to constant)
ordinary monotone complexity KM(x) of the string x.

Ordinary monotone complexity of the string x is less then the length of the string x
with up to a constant:

KM(x) < |x|+ c

It’ easy to prove that monotone complexity of a pair 〈x, y〉 is less then sum of lengths of
strings x and y and additional weight α log(|x|+ |y|) with up to a constant and α < 1:

KM(x, y) 6 |x|+ |y|+ α log(|x|+ |y|) +O(1).

Indeed, we can use string a like description for the pair 〈x, y〉, wich is a concatenation of
prefix code for the x and string y. The result of this paper shows that this bound cann’t
be significantly improved.

Theorem. For every α < 1 and a constant c ∈ N it’s possible to find a pair of binary
strings 〈x, y〉 such that

KM(x, y) > |x|+ |y|+ α log(|x|+ |y|) + c.

Proof. Suppose the inequality

KM(x, y) 6 |x|+ |y|+ α log(|x|+ |y|) + c

holds for some α < 1 and c ∈ N and all pairs of binary strings 〈x, y〉. We will find a
contradiction in this assumtion. Let

f(n) = n+ bα log nc+ c

(f(0) will be equal c). We should lead to a contradiction the assumption that every pair
of binary strings 〈x, y〉 has description of length f(|x| + |y|). (note: if p is a description
for a string x, then every p′ such that p � p′ is also description for x). We fix some
universal monotone description mode W of pairs.

Let S is a some set of binary strings. We will say that S gets 2−k points for a pair of
binary strings 〈x, y〉 with |x|+ |y| = k if there is a string p in S such that p is a description
of the pair 〈x, y〉 with respect to monotone description mode W and the length of p is
equal f(k). We will sum such points for different pairs, but the set S can get points for
a pair 〈x, y〉 only once(if a pair 〈x, y〉 has two good descriptions p and p′ in the set S we
will only add 2−k points to the sum). We will call such sum a gain of the set S, denoted
by F (S).
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Some set S can get k + 1 points for good descriptions of pairs with sum of string’s
lengths k(each of 2k binary strings of length k can be devided in a pair of strings in k+ 1
ways). It’s the maximal value.

Let S is a set of all strings with length less or equal then f(n) for some n. By the
assumption, in the S there are descriptions for all pairs 〈x, y〉 with sum of string’s lengths
less or equal then n, |x|+ |y| 6 n. And the gain of S should be equal∑

k6n

(k + 1) ' n2/2

We will prove that it cann’t be greater then O(n1+α). This fact will lead us to a contra-
diction.

Lemma. The gain of the set of all strings with the length less or equal then f(n)
cann’t be greater then O(n1+α).

Proof. We will get upper bounds on gains of sets Sk,n for 0 6 k 6 n, where Sk,n is a
tree of binary strings, it consists of all strings with lengths less or equal then f(n), wich
have prefix x - some binary string with the length f(k). The set Sk,n can get points only
for pairs with sum of string’s lengths greater or equal then k and less or equal then n.
There are 2f(k) different subsets Sk,n with different string-roots, wich have length f(k),
but subtrees have similar structure and we will get common bound on gain.

We will get a bound on gain of subtree S0,n. It will prove the lemma. At first, we will
prove a bound on the gain of Sn,n, then on the gain of Sn−1,n, and so on. The set Sn,n
consists of only one string with the length f(n), wich can be description for n + 1 pairs
of binary strings or less. Obviosly, the gain of Sn,n is less or equal then (n+ 1)2−n points.

We will get a bound on F (Sk,n), the gain for Sk,n, by induction. Suppose that f(k +
1) = f(k) + 1, the set Sk,n contains the root of subtree Sk,n(a binary string x with length
f(k)) and two subtrees Sk+1,n. The most simple bound on F (Sk,n) is the sum of gains
of this subtrees and the root’s gain, but we should use the fact that if the root of set
Sk,n is a description for many pairs then there should be of lot of pairs wich will have
descriptions in both subtrees Sk+1,n, and we should take into acount points for each of
this pairs only once.

Let string u is a root of subtree Sk,n. There is some maximal pair of binary strings
〈x, y〉 such that u is a description of 〈x, y〉 and if u is a description of some another pair
〈x′, y′〉 then x′ � x and y′ � y, u is a description for all such pairs. Suppose there are
r pairs with sum of string’s lengths k such that the root u is a description for each of
them(obviosly, 0 6 r 6 k+1). The gain of the root for this pairs will be r2−k points. Also
there are at least r − 1 pairs with sum of string’s lengths k + 1 such that the root u is a
description for them too, this pairs have descriptions with length f(k+1) in both subtress
Sk+1,n. And we should substruct from result bound on gain a penalty max(r−1, 0)2−(k+1)

for this pairs. Also the root u will be a description for at least r − 2 pairs with sum of
string’s lengths k+2, at least r−3 pairs with sum of string’s lengths k+3 and so on. We
should take into account penalties for this pairs too. Gains and penalties shoud be taken
only for pairs with sum of string’s lenghts less or equal the n. We have the following
bound on the gain of Sk,n:

F (Sk,n) < 2F (Sk+1,n) + r2−k − (r − 1)2−(k+1)−
− (r − 2)2−(k+2) − . . .−max(1, r + k − n)2−min(k+r−1,n)
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We can simlify the expression on rights side of the inequality:

F (Sk,n) < 2F (Sk+1,n) + 2−k + (r − 1)2−k − (r − 1)2−(k+1)−
− (r − 2)2−(k+2) − . . .−max(1, r + k − n)2−min(k+r−1,n)

F (Sk,n) < 2F (Sk+1,n) + 2−k + 2−(k+1)+

+ (r − 2)2−(k+1) − (r − 2)2−(k+2) − . . .−max(1, r + k − n)2−min(k+r−1,n)

F (Sk,n) < 2F (Sk+1,n) + 2−k + 2−(k+1)+

+ (r − 2)2−(k+2) − . . .−max(1, r + k − n)2−min(k+r−1,n)

F (Sk,n) < 2F (Sk+1,n) + 2−k + 2−(k+1)+

+ 2−(k+2) + . . .+ 2−min(k+r−1,n)+1 + max(1, r + k − n)2−min(k+r−1,n)

F (Sk,n) < 2F (Sk+1,n) + 2−k + 2−(k+1) + 2−(k+2) + . . .+ 2−min(k+r−1,n)+1

+ 2−min(k+r−1,n)+1 − 2 · 2−min(k+r−1,n) + max(1, r + k − n)2−min(k+r−1,n)

At the end we will have the expression:

F (Sk,n) < 2F (Sk+1,n) + 2−k+1 + max(−1, r + k − n− 2)2−min(k+r−1,n) (1)

We have to notice that right side of the inequality has it’s maximum with r = k + 1,
and our final bound will not depend on the value of r. We have made the assumption
that f(k + 1) = f(k) + 1, in the case f(k + 1) = f(k) + 2 we will use a coefficient 4 with
F (Sk+1,n). The final bound will be:

F (Sk,n) < 2f(k+1)−f(k)F (Sk+1,n) + 2−k+1 +max(−1, 2k − n− 1)2max(−2k,−n) (2)

We multiply left and right sides of inequality on 2f(k), start with bound on the gain
of F (Sn,n) we will get bound on F (S0,n) by induction:

2f(0)F (S0,n) <
n∑
k=1

2f(k)−k+1 +
n∑
k=1

max(−1, 2k − n− 1)2f(k)−min(2k,n) (3)

Increase f(k) = k + bα log kc + c to the value k + α log k + c and delete a half of
summands from the second sum with coefficient −1:

2f(0)F (S0,n) < 2c+1

n∑
k=1

kα +
n∑

k=bn+1
2
c

(2k − n− 1)kα2k−n+c (4)

Both sums from the inequality (4) have O(n1+α) values. It proves the lemma.
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3 Decision complexity of a pair.

A decision description mode for pairs is a pair of enumerable sets W1 and W2; each of
them is a decision description mode.

The complexity KRW1,W2(x, y) of a pair of binary strings x and y is the length of the
shortest string p, such that 〈p, x〉 ∈ W1 and 〈p, y〉 ∈ W2 (i.e., p describes x with respect
to W1 and p describes y with respect to W2).

There is an optimal decision description mode for pairs and we can define decision
complexity of a pair, denoted by KR(x, y).

We can also define decision complexity of a triple in the same way, denoted by
KR(x, y, z). It’s easy to see that ordinary decision complexity of a binary string x is
less then length of x with up to a constnt.

It’s also easy to prove that decision complexity of a pair is less then the sum of string’s
lengths in this pair with up to a constant. The set W1 from our definition will be the set
of all pairs 〈p, p′〉 such that p′ is some prefix of string p. The set W2 will be the set of all
pairs 〈p, p′R〉 such that p′R is a prefix of the reversed string p. For this mode a description
of a pair 〈x, y〉 will be a string, wich is a concatenation of the string x and the reversed
string y. It’s length is equal to the sum of string’s lengths in the pair and:

KR(x, y) < |x|+ |y|+ c

In this paper we will prove the same inequality for decision complexity of a triple:

KR(x, y, z) < |x|+ |y|+ |z|+ c

We will prove that there is a set Zn(n ∈ N) from 2n different triples of binary strings
such that lengths of strings in each triple is equal to n and for every triple 〈x, y, z〉 with
sum of string’s length n( |x|+ |y|+ |z| = n) there is a triple 〈x′, y′, z′〉 in the set Zn such
that x � x′, y � y′ and z � z′. The construction will be made for all n.

Actually we will find a setAn = {ani,j} from 3n different binary vectors in n-dimensional
linear space F n

2 indexed by two indexes: i and j(i ∈ {1, .., n}, j ∈ {1, 2, 3}). For every
subset B of An from n vectors wich has the following property: if it contains some vector
ani,j then it contains all vectors ani′,j with i′ 6 i, the subset B will be a linear independent
set of vectors.

Suppose we have such subsets of vectors An. There are 2n different linear binary
functions on space F n

2 . For each linear function f we constract a triple of binary strings
〈x, y, z〉 from the set An: the string x will be a concatenation of n bits {f(an1,1), .., f(ann,1)},
the string y will be a concatenation of n bits {f(an1,2), .., f(ann,2)}, the string z will be a
concatenation of {f(an1,3), .., f(ann,3)}. We will construct 2n different triples of binary
strings. It’s easy to see that the set of this triples will have all properties of the set Zn
described above. If we construct set of vectors An we will construct the set of triples Zn
too.

Lemma. There is a set An = {ani,j} from 3n different binary vectors in n-dimensional
linear space F n

2 indexed by two indexes i and j(i ∈ {1, .., n}, j ∈ {1, 2, 3}) such that
for every subset B of An from n vectors wich has the following property: if B contains
some vector ani,j then it contains all vectors ani′,j with i′ 6 i, the subset B is the linear
independent set of vectors.
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Proof. We will construct sets An in different dimensions by induction. It’s easy
to construct sets A1, A2 and A3. We will prove that if we can construct the set Ak for
dimension k then it’s possible to construct the set Ak+3 too.

At first notice that we can described desired sets B by maximal values of index i
of their vectors with another index j = 1, j = 2, j = 3, it can be described by three
numbers. We will say that a set B has maximal indexes {p, q, r} if it’s the union of the
sets {ak+3

1,1 , .., a
k+3
p,1 }, {ak+3

1,2 , .., a
k+3
q,2 }, {ak+3

1,3 , .., a
k+3
r,3 }, some of numbers in the triple {p, q, r}

could be equal 0, and we are interested only in sets B with p+ q + r = k + 3.
Let a set {x1, ..., xk} be a basis for linear space F k

2 . Vectors from the set Ak = {aki,j}
are linear combinations of vectors {x1, ..., xk}. Let a set {x1, ..., xk, a, b, c} be a basis for
linear space F k+3

2 . We will think that F k
2 is a subbspace of F k+3

2 and vectors from Ak
belong to the space F k+3

2 too. We are ready to construct the set Ak+3 = {ak+3
i,j }:

ak+3
1,1 = a ak+3

1,2 = b ak+3
1,3 = c

ak+3
i+1,1 = aki,1 + δi,1c ak+3

i+1,2 = aki,2 + δi,2a ak+3
i+1,1 = aki,1 + δi,3b

ak+3
k+2,1 = b+ c ak+3

k+2,2 = a+ c ak+3
k+2,3 = a+ b

ak+3
k+3,1 = c ak+3

k+3,2 = a ak+3
k+3,3 = b

where index i belongs to the set {1, .., k} and coefficients δi,j are binary. We will explain
how to choose coefficients δi,j later. At first we will check that the property of linear
independency holds for a part of desired sets B. It’s easy to see that the following sets
of vectors will be linear independent, and it doesn’t depend on the choise of coefficients
δi,j:

1. 3 sets with maximal indexes: {k + 3, 0, 0}, {0, k + 3, 0}, {0, 0, k + 3}.
2. 6 sets with maximal indexes: {k + 2, 1, 0}, {1, k + 2, 0}, {1, 0, k + 2}, {k + 2, 0, 1},

{0, k + 2, 1}, {0, 1, k + 2}.
3. All sets B are lenear independent wich contain all three vectors ak+3

1,1 , a
k+3
1,2 , a

k+3
1,3 (all

maximal indexes greater then 0).
We should also check other sets B: sets B wich don’t contain vectors with j = 1, sets

B wich don’t contain vectors with j = 2, sets B wich don’t contain vectors with j = 3.
We will choose coefficients {δi,1} such that all setsB with maximal indexes {p, q, 0}(p >

0, q > 0) will be linear independent sets. We should not take into account coefficients δi,2,
because there is a vector ak+3

1,1 = a in this sets B. We will think that coefs δi,2 are equal 0
on this step. Suppose the set B is a set with maximal indexes {2, k + 1, 0}. It has k + 1
vectors with index i greater then 1. If coef δ1,1 is equal 0, then this vectors aren’t linear
independent set by induction, vector ak1,1 is some linear combination of vectors {aki,2}. We
will set δ1,1 to 1 and the set B will be linear independent set. We take into account this
choise then we will choose another coefs {δi,1}. Look at the next set B with maximal
indexes {3, k, 0}. There are two cases : the subset of vectors wich have index i greater
then 1 can be linear independent or not. If it’s linear independent then we will set coef
{δ2,1} to 0, in the other case it will be equal 1. Step by step we will determine all coefs
{δi,1}. In the same way we will also choose sets of coefs {δi,2} and {δi,3}. And all desired
sets B will be linear independent.
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[1] Li M., Vitányi P., An Introduction to Kolmogorov Complexity and Its Applications,
Second Edition, Springer, 1997. (638 pp.)

[2] A. Shen, Algorithmic Information Theory and Kolmogorov Complexity. Lecture notes
of an introductory course. Uppsala University Technical Report 2000-034.

[3] . ., , , 1973, . 212, . 3, . 548-550. Levin L.A., On the notion of a random sequence,
Soviet Math. Dokl., 14:1413-1416, 1973.
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