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Formal definitions

C — a finite set of colors

T C C* — a set of tiles (Wang tiles)
tile t = (t.left, t.right, t.up, t.down)

configurations: mappings Z?> — T

tilings: configuration that satisfy matching rules
C(i,j).right = C(i +1,j).left
C(i,j).up= C(i,j + 1).down
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Periodic tilings

A tiling C is periodic if it has some period T:
Clx+T) = C(x)
for all x.
Four possibilities for a tile set:
» no tilings;
» only periodic tilings;
» both periodic and aperiodic tilings;

» only aperiodic tilings;



Aperiodic tile sets



Aperiodic tile sets

Theorem (Berger, 1966): there exists a tile set
that has tilings but only aperiodic ones



Aperiodic tile sets

Theorem (Berger, 1966): there exists a tile set
that has tilings but only aperiodic ones
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(Robinson tile set)
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Penrose tiling
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Ollinger tiling
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Berger's theorem and theory of computation

» the question was asked by Hao Wang when he
studied decision problems

» Berger's construction became an important tool
to prove undecidability of many algorithmic
problems

» Aperiodic tiling can be constructed using
self-referential argument widely used in logic and
computation theory (Kleene's fixed point
theorem)
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History

» Hao Wang (1961) asked whether aperiodic
tilings exist in connection with domino problem;

» Alternative history: the self-referential aperiodic tile set should have
been invented by von Neumann, inventor of self-reproducing
automata (1952), but he died in 1957 and his work on cellular
automata was published only in 1966
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History

» Hao Wang (1961) asked whether aperiodic

tilings exist in connection with domino problem;
>

» Berger (1966) proved the existence of aperiodic
tile sets and used this construction to prove the
undecidability of the domino problem;

» Robinson tiling (1971)
» Penrose tiling (1974)
>

» Ollinger tiling (2007)
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Self-similar tile sets

Fix a integer zoom factor M > 1.

Let 7 be a tile set. A 7-macro-tileisa M x M
square correctly tiled by 7-tiles.

Let p be a set of 7-macro-tiles. We say that 7
implements p if any 7-tiling can be uniquely split by
a grid into p-macro-tiles

Tile set 7 is self-similar if it implements some set of
macro-tiles p that is isomorphic to 7

(Isomorphism: 1-1-correspondence that preserves
matching rules)
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Berger's theorem and self-similar tile sets

Berger theorem follows from two statements:
A. Any tiling by a self-similar tile set is aperiodic

B. There exists a self-similar tile set.
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Proof of A

Let 7 be a self-similar tile set with zoom factor M
Let U be 7-tiling

Let T be a period of U

U can be splitted into macro-tiles; T-shift preserves
this splitting (uniqueness) and therefore T is a
multiple of M

Zoom out: T /M is a period of a tiling by a tile set
isomorphic to 7

T /M is a multiple of M etc.



Self-referential tile set

» For a given tile set 0 we construct a tile set 7
that implements o

» This gives a mapping 0 — 7(0)

» It remains to find a fixed point:

7(0o) is isomorphic to o



The structure of a macro-tile that implements itself
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Applications

» tile sets with variable zoom factor

» strongly aperiodic tile sets (each shift changes
99% positions)

» robust aperiodic tile sets (isolated or sparse
holes can be patched)

» simple proof of the unidecidability of the domino
problem

» simple construction of a tile set that has only
complex tilings

» tile set with any computable density



