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Abstract

A new simple construction of an aperiodic tile set based on self-referential

(fixed point) argument is proposed.

People often say about some discovery that it appeared “ahead of time”, mean-

ing that it could be fully understood only in the context of ideas developed later.

For the topic of this note, the construction of an aperiodic tile set based on the

fixed-point (self-referential) approach, the situation is exactly the opposite. It

should have been found in 1960s when the question about aperiodic tile sets was

first asked: all the tools were quite standard and widely used at that time. How-

ever, the history had chosen a different path and many nice geometric ad hoc

constructions were developed instead (by Berger, Robinson, Penrose, Ammann

and many others, see [6]; a popular exposition of Robinson-style construction is

given in [3]). In this note we try to correct this error and present a construction

that should have been discovered first but seemed to be unnoticed for more that

forty years.
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1 The statement: aperiodic tile sets

A tile is a square with colored sides. Given a set of tiles, we want to find a tiling,

i.e., to cover the plane by (translated copies of) these tiles in such a way that colors

match (a common side of two neighbor tiles has the same color in both).1

For example, if tile set consists of two tiles (one has black lower and left side
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Figure 1: Tile set that has only periodic tilings

and white right and top sides, the other has the opposite colors), it is easy to see

that only periodic (checkerboard) tiling is possible. However, if we add some

other tiles the resulting tile set may admit also non-periodic tilings (e.g., if we add

all 16 possible tiles, any combination of edge colors becomes possible). It turns

out that there are other tile set that have only aperiodic tilings.

Formally: let C be a finite set of colors and let τ ⊂ C4 be a set of tiles; the

components of the quadruple are interpreted as upper/right/lower/left colors of a

tile. Our example tile set with two tiles is represented then as

{〈white,white, black, black〉, 〈black, black,white,white〉}.

A τ-tiling is a mapping Z2 → τ that satisfies matching conditions. Tiling U is

called periodic if it has a period, i.e., if there exists a non-zero vector T ∈ Z2 such

that U(x + T ) = U(x) for all x.

Now we can formulate the result (first proven by Berger [1]):

1Tiles appeared first in the context of domino problem posed by Hao Wang. Here is the original

formulation from [10]: “Assume we are given a finite set of square plates of the same size with

edges colored, each in a different manner. Suppose further there are infinitely many copies of

each plate (plate type). We are not permitted to rotate or reflect a plate. The question is to find

an effective procedure by which we can decide, for each given finite set of plates, whether we can

cover up the whole plane (or, equivalently, an infinite quadrant thereof) with copies of the plates

subject to the restriction that adjoining edges must have the same color.” This question (domino

problem) is closely related to the existence of aperiodic tile sets: (1) if they did not exist, domino

problem would be decidable for some simple reasons (one may look in parallel for a periodic tiling

or a finite region that cannot be tiled) and (2) the aperiodic tile sets are used in the proof of the

undecidability of domino problem. However, in this note we concentrate on aperiodic tile sets

only.
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Proposition. There exists a finite tile set τ such that τ-tilings exist but all of

them are aperiodic.

There is a useful reformulation of this result. Instead of tilings we can consider

two-dimensional infinite words in some finite alphabet A (i.e., mappings of type

Z
2 → A) and put some local constraints on them. This means that we choose

some positive integer N and look at the word through a window of size N × N.

Local constraint then says which patterns of size N ×N are allowed to appear in a

window. Now we can reformulate our Proposition as follows: there exists a local

constraint that is consistent (some infinite words satisfy it) but implies aperiodicity

(all satisfying words are aperiodic).

It is easy to see that these two formulations are equivalent. Indeed, the color

matching condition is 2 × 2 checkable. On the other hand, any local constraint

can be expressed in terms of tiles and colors if we use N × N-patterns as tiles and

(N −1)×N-patterns as colors; e.g., the right color of (N ×N)-tile is the tile except

for its left column; if it matches the left color of the right neighbor, these two tiles

overlap correctly.

2 Why theory of computation?

At first glance this proposition has nothing to do with theory of computation.

However, the question appeared in the context of the undecidability of some log-

ical decision problems, and, as we shall see, can be solved using theory of com-

putations. (A rare chance to convince “normal” mathematicians that theory of

computations is useful!)

The reason why theory of computation comes into play is that rules that de-

termine the behavior of a computation device — say, a Turing machine with one-

dimensional tape — can be transformed into local constraints for the space-time

diagram that represents computation process. So we can try to prove the proposi-

tion as follows: consider a Turing machine with a very complicated (and therefore

aperiodic) behavior and translate its rules into local constraints; then any tiling

represents a time-space diagram of a computation and therefore is aperiodic.

However, this naïve approach does not work since local constraints are satis-

fied also at the places where no computation happens (in the regions that do not

contain the head of a Turing machine) and therefore allow periodic configurations.

So a more sophisticated approach is needed.
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3 Self-similarity

The main idea of this more sophisticated approach is to construct a “self-similar”

set of tiles. Informally speaking, this means that any tiling can be uniquely split

by vertical and horizontal lines into M × M blocks that behave exactly like the

individual tiles. Then, if we see a tiling and zoom out with scale 1 : M, we get a

tiling with the same tile set.

Let us give a formal definition. Assume that a non-empty set of tiles τ and

positive integer M > 1 are fixed. A macro-tile is a square of size M × M filled

with matching tiles from τ. Let ρ be a non-empty set of macro-tiles.

Definition. We say that τ implements ρ if any τ-tiling can be uniquely split by

horizontal and vertical lines into macro-tiles from ρ.

Now we give two examples that illustrate this definition: one negative and one

positive.

Negative example: Consider a set τ that consists of one tile with all white

sides. Then there is only one macro-tile (of given size M × M). Let ρ be a one-

element set that consists of this macro-tile. Any τ-tiling (i.e., the only possible τ-

tiling) can be split into ρ-macro-tiles. However, the splitting lines are not unique,

so τ does not implements ρ.

Positive example: Let τ is a set of M2 tiles that are indexed by pairs of in-

tegers modulo M: The colors are pairs of integers modulo M arranged as shown

(i + 1, j)(i, j)

(i, j)

(i, j + 1)

Figure 2: Elements of τ (here i, j are integers modulo M)

(Fig. 2). Then there exists only one τ-tiling (up to translations), and this tiling can

be uniquely split into M × M squares whose borders have colors (0, j) and (i, 0).

Therefore, τ implements a set ρ that consists of one macro-tile (Fig. 3).

Definition. A set of tiles τ is self-similar if it implements some set of macro-

tiles ρ that is isomorphic to τ.

This means that there exist a 1-1-correspondence between τ and ρ such that

matching pairs of τ-tiles correspond exactly to matching pairs of ρ-macro-tiles.

The following statement follows directly from the definition:

Proposition. A self-similar tile set τ has only aperiodic tilings.
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0

0

0 0

M

Figure 3: The only element of ρ: border colors are pairs that contain 0

Proof. Let T be a period of some τ-tiling U. By definition U can be uniquely

split into ρ-macro-tiles. Shift by T should respect this splitting (otherwise we get

a different splitting), so T is a multiple of M. Zooming the tiling and replacing

each ρ-macro-tile by a corresponding τ-tile, we get a T/M-shift of a τ-tiling. For

the same reason T/M should be a multiple of M, then we zoom out again etc. We

conclude therefore that T is a multiple of Mk for any k, i.e., T is a zero vector.
�

Note also that any self-similar set τ has at least one tiling. Indeed, by definition

we can tile a M × M square (since macro-tiles exist). Replacing each τ-tile by a

corresponding macro-tile, we get a τ-tiling of M2×M2 square, etc. In this way we

can tile an arbitrarily large finite region, and then standard compactness argument

(König’s lemma) shows that we can tile the entire plane.

So it remains to construct a self-similar set of tiles (a set of tiles that imple-

ments itself, up to an isomorphism).

4 Fixed points and self-referential constructions

The construction of a self-similar tile set is done in two steps. First (in Section 5)

we explain how to construct (for a given tile set σ) another tile set τ that imple-

ments σ (i.e., implements a set of macro-tiles isomorphic to σ). In this construc-

tion the tile set σ is given as a program pσ that checks whether four bit strings

(representing four side colors) appear in one σ-tile. The tile set τ then guaran-

tees that each macro-tile encodes a computation where pσ is applied to these four

strings (“macro-colors”) and accepts them.

This gives us a mapping: for every σ we have τ = τ(σ) that implements σ and

depends on σ. Now we need a fixed point of this mapping where τ(σ) is isomor-

phic to σ. It is done (Section 6) by a classical self-referential trick that appeared

as liar’s paradox, Cantor’s diagonal argument, Russell’s paradox, Gödel’s (first)

incompleteness theorem, Tarsky’s theorem, undecidability of the Halting prob-

lem, Kleene’s fixed point (recursion) theorem and von Neumann’s construction of
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self-reproducing automata — in all these cases the core argument is essentially

the same.

The same trick is used also in a classical programming challenge: to write a

program that prints its own text. Of course, for every string s it is trivial to write

a program t(s) that prints s, but how do we get t(s) = s? It seems at first that

t(s) should incorporate the string s itself plus some overhead, so how t(s) can be

equal to s? However, this first impression is false. Imagine that our computational

device is a universal Turing machine U where the program is written in a special

read-only layer of the tape. (This means that the tape alphabet is a Cartesian

product of two components, and one of the components is used for the program

and is never changed by U.) Then the program can get access to its own text at

any moment, and, in particular, can copy it to the output tape.2 Now we explain

in more details how to get a self-similar tile set according to this scheme.

5 Implementing a given tile set

In this section we show how one can implement a given tile set σ, or, better to

say, how to construct a tile set τ that implements some set of macro-tiles that is

isomorphic to σ.

There are easy ways to do this. Though we cannot let τ = σ (recall that

zoom factor M should be greater than 1), we can do essentially the same for every

M > 1. Let us extend our “positive” example (with one macro-tile and M2 tiles) by

superimposing additional colors. Superimposing two sets of colors means the we

consider the Cartesian product of color sets (so each edge carries a pair of colors).

One set of colors remains the same (M2 colors for M2 pairs of integers modulo

M). Let us describe additional (superimposed) colors. Internal edges of each

macro-tile should have the same color and this color should be different for all

macro-tiles, so we allocate #σ colors for that. This gives #σ macro-tiles that can

be put into 1-1-correspondence with σ-tiles. It remains to provide correct border

colors, and this is easy to do since each tile “knows” which σ-tile it simulates (due

to the internal color). In this way we get M2#σ tiles that implement the tile set σ

with zoom factor M.

However, this (trivial) simulation is not really useful. Recall that our goal is

2Of course, this looks like cheating: we use some very special universal machine as an inter-

preter of our programs, and this makes our task easy. Teachers of programming that are seasoned

enough may recall the BASIC program

10 LIST

that indeed prints its own text. However, this trick can be generalized enough to show that a

self-printing program exists in every language.
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to get isomorphic σ and τ, and in this implementation τ-tiles have more colors

that σ-tiles (and we have more tiles, too). So we need a more creative encoding of

σ-colors that makes use of the space available: a side of a macro-tile has a “macro-

color” that is a sequence of M tile colors, and we can have a lot of macro-colors

in this way.

So let us assume that colors in σ are k-bit strings for some k. Then the tile set

is a subset S ⊂ Bk × Bk × Bk × Bk, i.e., a 4-ary predicate on the set Bk of k-bit

strings. Assume that S is presented by a program that computes Boolean value

S (x, y, z,w) given four k-bit strings x, y, z,w. Then we can construct a tile set τ as

follows.

We start again with a set of M2 tiles from our example and superimpose ad-

ditional colors but use them in a more economical way. Assuming that k ≪ M,

we allocate k places in the middle of each side of a macro-tile and allow each of

them to carry an additional color bit; then a macro-color represents a k-bit string.

Then we need to arrange the internal colors in such a way that macro-colors (k-bit

strings) x, y, z and w can appear on the four sides of a macro-tile if and only if

S (x, y, z,w) is true.

To achieve this goal, let us agree that the middle part (of size, say, M/2×M/2)

in every M × M-macro-tile is a “computation zone”. Tiling rules (for superim-

posed colors) in this zone guarantee that it represents a time-space diagram of

a computation of some (fixed) universal Turing machine. (We assume that time

goes up in a vertical direction and the tape is horizontal.) It is convenient to as-

sume that program of this machine is written on a special read-only layer of the

tape (see the discussion in Section 4).

Outside the computation zone the tiling rules guarantee that bits are transmit-

ted from the sides to the initial configuration of a computation.

We also require that this machine should accept its input before running out of

time (i.e., less than in M/2 steps), otherwise the tiling is impossible.

Note that in this description different parts of a macro-tile behave differently;

this is OK since we start from our example where each tile “knows” its position

in a macro-tile (keeps two integers modulo M). So the tiles in the “wire” zone

know that they should transmit a bit, the tiles inside the computation zone know

they should obey the local rules for time-space diagram of the computation, etc.

This construction uses only bounded number of additional colors since we

have fixed the universal Turing machine (including its alphabet and number of

states); we do not need to increase the number of colors when we increase M and

k (though k should be small compared to M to leave enough space for the wires;

we do not give an exact position of the wires but it is easy to see that if k/M is

small enough, there is enough space for them). So the construction uses O(M2)

colors (and tiles).
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Figure 4: k-macro-colors are transmitted to the computation zone where they are

checked

6 A tile set that implements itself

Now we come to the crucial point in our argument: can we arrange things in such

a way that the predicate S (i.e., the tile set it generates) is isomorphic to the set of

tiles τ used to implement it?

Assume that k = 2 log M + O(1); then macro-colors have enough space to

encode the coordinates modulo M plus superimposed colors (which require O(1)

bits for encoding).

Note that many of the rules that define τ do not depend on σ (i.e., on the pred-

icate S ). So the program for the universal Turing machine may start by checking

these rules. It should check that

• bits that represent coordinates (integers modulo M) on the four sides of a

macro-tile are related in the proper way (left and lower sides have identical

coordinates, on the right/upper side one of the coordinates increases modulo

M);

• if the macro-tile is outside computation zone and the wires, it does not carry

additional colors;

• if the macro-tile is a part of a wire, then it transmits a bit in a required

direction (of course, for this we should fix the position of the wires by some

formulas that are then checked by a program);
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• if the macro-tile is a part of the computation zone, it should obey the local

rules for the computation zone (bits of the read-only layer should propa-

gate vertically, bits that encode the content of the tape and the head of our

universal Turing machine should change as time increases according to the

behavior of this machine, etc.)

This guarantees that on the next layer macro-tiles are grouped into macro-

macro-tiles where bits are transmitted correctly to the computation zone of a

macro-macro-tile and some computation of the universal Turing machine is per-

formed in this zone. But we need more: this computation should be the same

computation that is performed on the macro-tile level (fixed point!). This is also

easy to achieve since in our model the text of a running program is available to it

(recall the we assume that the program is written in a read-only layer): the pro-

gram should check also that if a macro-tile is in the computation zone, then the

program bit it carries is correct (program knows the x-coordinate of a macro-tile,

so it can go at the corresponding place of its own tape to find out which program

bit resides in this place).

This sound like some magic, but we hope that our previous example (a pro-

gram for the UTM that prints its own text) makes this trick less magical (indeed,

reliable and reusable magic is called technology).

7 So what?

We believe that our proof is rather natural. If von Neumann lived few years more

and were asked about aperiodic tile sets, he would probably immediately give this

argument as a solution. (He was especially well prepared to it since he used very

similar self-referential tricks to construct a self-reproducing automata, see [9].) In

fact this proof somehow appeared, though not very explicitly, in P. Gács’ papers

on cellular automata [5]; the attempts to understand these papers were our starting

points.

This proof is rather flexible and can be adapted to get many results usually

associated with aperiodic tilings: undecidability of domino problem (Berger [1]),

recursive inseparability of periodic tile sets and inconsistent tile sets (Gurevich –

Koryakov [7]), enforcing substitution rules (Mozes [8]) and others (see [2, 4]).

But does it give something new?

We believe that indeed there are some applications that hardly could be achieved

by previous arguments. Let us conclude by mentioning two of them. First is

the construction of robust aperiodic tile sets. We can consider tilings with holes

(where no tiles are placed and therefore no matching rules are checked). A ro-

bust aperiodic tile set should have the following property: if the set of holes is
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“sparse enough”, then tiling still should be far from any periodic pattern (say, in

the sense of Besicovitch distance, i.e., the limsup of the fraction of mismatched

positions in a centered square as the size of the square goes to infinity). The notion

of “sparsity” should not be too restrictive here; we guarantee, for example, that a

Bernoulli random set with small enough probability p (each cell belongs to a hole

independently with probability p) is sparse.

While the first example (robust aperiodic tile sets) is rather technical (see [4]

for details), the second is more basic. Let us split all tiles in some tile set into two

classes, say, A- and B-tiles. Then we consider a fraction of A-tiles in a tiling. If

a tile set is not restrictive (allows many tilings), this fraction could vary from one

tiling to another. For classical aperiodic tilings this fraction is usually fixed: in

a big tiled region the fraction of A-tiles is close to some limit value, usually an

eigenvalue of an integer matrix (and therefore an algebraic number). The fixed-

point construction allows us to get any computable number. Here is the formal

statement: for any computable real α ∈ [0, 1] there exists a tile set τ divided into

A- and B-tiles such that for any ε > 0 there exists N such that for all n > N the

fraction of A-tiles in any τ-tiling of n × n-square is between α − ε and α + ε.
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