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Abstract

We express some criticism about the definition of an algorithmic
sufficient statistic and, in particular, of an algorithmic minimal suffi-
cient statistic. We propose another definition, which might have better
properties.

1 Introduction

Let  be a binary string. A finite set A containing x is called an (algorithmic)
sufficient statistic of z if the sum of Kolmogorov complexity of A and the
log-cardinality of A is close to Kolmogorov complexity C(x) of x:

C(A) +log, |A| = C(x). (1)

Let A* denote a minimal length description of A and i the index of x
in the list of all elements of A arranged lexicographically. The equality (1)
means that the two part description (A*,7) of z is as concise as the minimal
length code of x.

It turns out that A is a sufficient statistic of z iff C(Alx) ~ 0 and
C(x|A) =~ log|A|. The former equality means that the information in A*
is a part of information in x. The latter equality means that x is a typical
member of A: z has no regularities that allow to describe x given A in a
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shorter way than just by specifying its log |A|-bit index in A. Thus A* con-
tains all useful information present in x and ¢ contains only an accidental
information (a noise).

Sufficient statistics may also contain a noise. For example, it happens for
x being a random string and A = {z}. Is it true that for all = there is a
sufficient statistic that contains no noise? To answer this question we can
try to use the notion of a minimal sufficient statistics defined in [3]. In this
paper we argue that (1) this notion is not well defined for some x (although
for some z the notion is well defined) and (2) even for those z for which
the notion of a minimal sufficient statistic is well defined not every minimal
sufficient statistic qualifies for “denoised version of 7. We propose another
definition of a (minimal) sufficient statistic that might have better properties.

2 Sufficient statistics

Let x be a given string of length n. The goal of algorithmic statistics is
to “explain” x. As possible explanations we consider finite sets containing
x. We call any finite A 5 = a model for z. Every model A corresponds the
statistical hypothesis “x was obtained by selecting a random element of 2”. In
which case is such hypothesis plausible? As argued in [4, 3, 5], it is plausible
if C'(z]A) = log|A| and C(A|z) =~ 0 (we prefer to avoid rigorous definitions
up to a certain point; approximate equalities should be thought as equalities
up to an additive O(logn) term). In the expressions C(z|A), C'(A|x) the set
A is understood as a finite object. More precisely, we fix any computable
bijection A — [A] between finite sets of binary strings and binary strings and
let C(z|A) = C(z|[A]), C(Alx) = C([A]|z).

As shown in [3, 5] this is equivalent to saying that C'(A)+log |A| =~ C(z).
Indeed, assume that A contains z and C'(A) < n. Then, given A the string
x can be specified by its log|A|-bit index in A. Recalling the symmetry of
information and omitting additive terms of order O(logn), we obtain

O(z) < Cz) + C(Alz) = C(A) + C(z]A) < C(A) + log |A].

Assume now that C'(z]|A) =~ log|A| and C(A|x) ~ 0. Then all inequalities
here become equalities and hence A is a sufficient statistic. Conversely, if
C(z) = C(A) + log|A| then the left hand side and the right hand side in
these inequalities coincide. Thus C(z|A) ~ log |A| and C(A|z) ~ 0.



The inequality
C(z) < C(A) +log |A] (2)

(which is true up to an additive O(logn) term) has the following meaning.
Consider the two part code (A*,7) of z, consisting of the minimal program
A* for z and log|AJ-bit index of z in the list of all elements of A arranged
lexicographically. The equality means that its total length C'(A) + log |A|
cannot exceed C'(z). If C(A) +log|A| is close to C(x), we call A a sufficient
statistic of x. To make this notion rigorous we have specify what means
“close”. In [3] this is specified as follows: fix a constant ¢ and call A a
sufficient statistic if

[(C(A) +1log [A]) = C(x)] < c. (3)

More precisely, [3] uses prefix complexity K in place of plain complexity C'.
For prefix complexity the inequality (2) holds up to a constant error term.
If we choose ¢ large enough then sufficient statistics exists, witnessed by
A = {z}. (The paper [1] suggests to set ¢ = 0 and to use C(z|n) and C(A|n)
in place of K(x) and K(A) in the definition of a sufficient statistic. For such
definition sufficient statistics might not exist.)

To avoid the discussion on how small should be ¢ let us call A 5 z a
c-sufficient statistic if (3) holds. The smaller ¢ is the more sufficient A is.
This notion is non-vacuous only for ¢ = O(logn) as the inequality (2) holds
only with logarithmic precision.

3 Minimal sufficient statistics

Naturally, we are interested in squeezing as much noise from the given string
x as possible. What does it mean? Every sufficient statistic A identifies
log|A| bits of noise in x. Thus a sufficient statistic with maximal log |A|
(and hence minimal C'(A)) identifies the maximal possible amount of noise
in . So we arrive at the notion of a minimal sufficient statistic: a sufficient
statistic with minimal C'(A) is called a minimal sufficient statistic (MSS).
Is this notion well defined? Recall that actually we have only the notion
of a c-sufficient statistic (where c is either a parameter, or a constant). That
is, we have actually defined the notion of a minimal c-sufficient statistic. Is
this a good notion? We argue that for some strings z it is not (for every c).
There are strings = for which it is impossible identify MSS in an intuitively



appealing way. For those x the complexity of the minimal c-sufficient statistic
decreases much, as c increases a little.

To present such strings we need to recall a theorem from [7]. Let S, stand
for the structure set of x:

Sz =A{(6,) [FA 3 2, C(A) <4, log|A| < j}.

This set can be identified by either of two its “border line” functions:

h.(i) = min{log |A| | A >z, C(A) <}, ¢.(j) =min{C(A) | A> =z, log|A| < j}.

The function h, is called the Kolmogorov structure function of z; for small
7 it might take infinite values due to lack of models of small complexity. In
contrast, the function g, is total for all x.

As pointed by Kolmogorov [4], the structure set S, of every string x of
length n and Kolmogorov complexity k has the following three properties
(we state the properties in terms of the function g,):

(1) 9.(0) = k 4+ O(1) (witnessed by A = {z}).
(2) g.(n) = O(logn) (witnessed by A = {0, 1}".
(3) g, in non-increasing and ¢,.(j +1) > g.(j) =1 — O(logl) for every j,1 € N.

For the proof of the last property see [5, 7]. Properties (1) and (3) imply
that i+7 > k—O(logn) for every (i, j) € S,. Sufficient statistics correspond
to those (i,7) € S, with i 4+ j &~ k. The line i + j = k is therefore called the
sufficiency line.

A result of [7, Remark IV.4] states that for every set g that satisfies (1)—
(3) there is x of length n and complexity close to k such that g, is close to
g. ! More specifically, the following holds:

Theorem 1 ([7]). Let g be any non-increasing function g : {0,...,n} — N
such that g(0) = k, g(n) = 0 and such that g(j +1) > g.(j) — | for every
3,0 € N with j+1 <n. Then there is a string x of length n and complezity
k £ e such that |g.(7) — g(4)] < e for all j < n. Here e = O(logn + C(g)),
where C(g) stands for the Kolmogorov complexity of the graph of g:

Clg) = C{U, 90 |0 <j <n}).

! Actually, [7] provides the description of possible shapes of S, in terms of the Kol-
mogorov structure function h,. We use here g, instead of h,, as in terms of g, the
description is easier-to-understand.




We are ready to present strings for which the notion of a MSS is not well
defined. Fix alarge n and let, say, k = n/2 and g(j) = max{k—jk/(k+«),0},
where @ = a(k) < k is a computable function of £ with natural values.
Then n, k, g satisfy all conditions of Theorem 1. Hence there is a string x
of length n and complexity k + O(logn) with ¢,(j) = ¢g(j) + O(logn) (note
that C(g) = O(logn)). Its structure function is shown on Fig. 1. Choose «
so that a//k is negligible (compared to k) but « is not.

C(A)

k k+apha loglA|

Figure 1: The structure function of a string for which MSS is not well defined

For very small j the graph of g, is close to the sufficiency line and for
j =k + «a it is already at a large distance a from it. As j increments by
one, the value g,(j) + 7 — C(z) increases by at most k/(k + «) + O(logn),
which is negligible. Therefore, it is not clear where the graph of g, leaves
the sufficiency line. The complexity of the minimal c-sufficient statistic is
k —kc/a+ O(klogn/a) and decreases fast as a function of c.

Thus there are strings for which it is hard to identify the complexity of
MSS. There is also another minor point regarding minimal sufficient statis-
tics. Namely, there is a string x for which the complexity of minimal suf-
ficient statistic is well defined but not all MSS qualify as denoised versions
of x. Namely, some of them have a weird structure function. What kind of
structure set we expect of a denoised string? To answer this question con-
sider the following example. Let y be a string, m a natural number and z a
string of length [(z) = m that is random relative to y. The latter means that
C(zly) > m — B for a small 3. Consider the string x = (y, z). Intuitively,
z is a noise in x. In other words, we can say that y is obtained from x by
removing m bits of noise. What is the relation between the structure set of



x and that of y?

Theorem 2. Assume that z is a string of length m with C(z|y) > m — 3.
Then for all j > m we have g,(j) = g,(j —m) and for all j < m we have
9:(j) = Cly) + m —j = g,(0) + m — j. The equalities here hold up to
O(logm + log C(y) + ) term.

C(A) C(A)
C(y)+m

C(y) Cly)[ >
log|A|

log|A|

m

Figure 2: Structure functions of y and z

Proof. In the proof we will ignore terms of order O(logm + log C(y) + 3).

The easy part is the equality ¢,(j) = C(y) +m —j for j < m. Indeed, we
have g,(m) < C(y) witnessed by A = {(y, 2’) | |2/| = m}. On the other hand,
92(0) = C(z) = C(y)+C(z|y) = C(y) +m. Thus g,(j) should have maximal
possible rate of decrease on the segment [0,m] to drop from C(y) + m to
C(y).

Another easy part is the inequality ¢,(j) < g,(j —m). Indeed, for every
model A of y with |A| < 297™ consider the model

A'=Ax{0,1}"={{y,2) |y € A, [/| =m}

of cardinality at most 27. Its complexity is at most that of |A|, which proves
9:(7) < gy(j —m).

The tricky part is the inverse inequality ¢,(j) > g,(j —m). Let A be a
model for z with |A|] < 27 and C(A) = g,(j). We need to show that there is a
model of y of cardinality at most 2/~™ and of the same (or lower) complexity.
We will prove it in a non-constructive way using a result from [7].

The first idea is to consider the projection of A: {y' | (y,2') € A}.
However this set may be as large as A itself. Reduce it as follows. Consider
the yth section of A: A, = {2 | (y,2') € A}. Define i as the natural number
such that 2° < |A,| < 2. Let A’ be the set of those y' whose y'th section
has at least 2¢ elements. Then by counting arguments we have |A'| < 2777



If ¢ > m, we are done. However, it might be not the case. To lower bound
17, we will relate it to the conditional complexity of z given y and A. Indeed,
we have C(z|A,y) < i, as z can be identified by its ordinal number in yth
section of A. Hence we know that log |A'| < j — C(z]|A,y). Now we will
improve A’ using a result of [7]:

Lemma 3 (Lemma A.4 in [7]). For every A" > y there is A" > y with
C(A") < C(A) = C(A'ly) and [log |A"|] = [log |A']].

By this lemma we get the inequality
gu(j — C(2]A4,y)) < C(A") = C(A'ly).
Note that
C(A)—C(Aly) =1(y: A) <I(y:A) =C(A) - C(Aly),
as C'(A’'|A) is negligible. Thus we have
94(j — C(z[4,y)) < C(4) — C(Aly).

We claim that by the property (3) of the structure set this inequality implies
that g,(j —m) < C(A). Indeed, as C(z|A,y) < m we have by property (3):

g9y(J —m) <m —C(z|A,y) + C(A) = C(Aly) < m + C(A) = C(z]y) = C(A).

In all the above inequalities, we need to be careful about the error term,
as they include A and thus the error term involves O(log C(A)). The set
A is either a model of y or a model of z. W..o.g. we may assume that
C(A) < C(x) + O(1). Indeed, there is no need to consider models of y or
x of larger complexity, as the models {y} and {x} have the least possible
cardinality and their complexity is at most C(z) + O(1). Since C(z) <
C(y) + O(C(zly)) < C(y) + O(k), the term O(log C(A)) is absorbed by the

general error term. U

This theorem answers our question: if y is obtained from x by removing
m bits of noise then we expect that g, satisfy Theorem 2. Now we will show
that there are strings x as in Theorem 2 for which the notion of the MSS is
well defined but the structure function of some minimal sufficient statistics
does not satisfy Theorem 2. The structure set of a finite set A of strings
is defined as that of [A]. Tt is not hard to see that if we switch to another
computable bijection A — [A] the value of gj)(j) changes by an additive
constant. Thus S4 and g4 are well defined for finite sets A.
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Theorem 4. For every k there is a string y of length 2k and Kolmogorov
complezity C(y) = k such that

L[k i<k
gy(j)_{ % —j ifk<j<2k

and hence for any z of length k and conditional complexity C(z|y) = k the
structure function of the sting x = (y, z) is the following
2k—j if j <k,
9.(J) =4 k if k< j <2k,
3k —j if 2k < j < 3k.

(See Fig. 3.) Moreover, for every such z the string x = (y, z) has a model B
of complezity C(B) = k and log-cardinality log |B| = k such that gg(j) = k
for all j < 2k. All equalities here hold up to O(logk) additive error term.

C(A) C(A)
2k

| log|A| log|A|
k 2k k 2k 3k

Figure 3: Structure functions of y and z

The structure set of = (y, z) clearly leaves the sufficiency line at the
point 5 = k. Thus k is intuitively the complexity of minimal sufficient statis-
tic and both models A =y x {0,1}* and B are minimal sufficient statistics.
The model A, as finite object, is identical to y and hence the structure func-
tion of A coincides with that of y. In contrast, the shape of the structure
set of B is intuitively incompatible with the hypothesis that B, as a finite
object, is a denoised .

Proof. We first construct y. Let U be the set of all y’s, |y| = 2k, such that
there is no set 7' 3 y of cardinality at most 2¥ and complexity less than k. The
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latter requirement is not met by less than 2% strings. Thus U is non-empty.

Let y be the lexicographical first string in U. Let B = (y x {0, 1}*) U {2’ |
C(2") < k} (we add to A all strings of complexity less than k).

We claim that C(y) < k+ O(1). Indeed, y can be found given U and k.
The set U can be found given the set of all halting programs of length less
than k, which in turn can be identified by the k-bit number N} of halting
programs of length less than k& (we run all programs of length less than k
until Nj of them halt). The same argument shows that C(B) < k + O(1).

It remains to find g, and gp. By construction, g,(k) > k and g,(0) =
C(y) < k. Thus g,(j) = k on the segment [0, k]. As g,(2k) = 0 (witnessed by
{0,1}%), g,(j) should have maximal possible rate of decrease on the segment
[0, k] to drop from k to 0.

The structure function of B is a weird one. The point is that if M is
a finite family of finite sets and B € M then K(M) > k — O(1). Indeed,
given k and M we can find a string u of complexity at least k: pick the
lexicographical first string outside the union of all sets from M. As that union
contains all strings of complexity less than k& we have C'(u) > k. Therefore,
k< C(u) <C(M)+ O(1). Thus gg(j) >k —O(1) for all j. * O

4 Desired properties of sufficient statistics and
a new definition

We have seen that there is a string = that has two very different minimal
sufficient statistics A and B. Recall the probabilistic notion of sufficient
statistic [2]. In the probabilistic setting, we are given a parameter set © and
for each 6 € © we are given a probability distribution over a set X. For every
probability distribution over © we thus obtain a probability distribution over
© x X. A function f : X — Y (where Y is any set) is called a sufficient
statistic, if for every probability distribution over ©, the random variables z
and 0 are independent conditional to f(x). That is, for all a € X, ¢ € O,

Prob[d = c|z = a] = Prob[d = ¢|f(z) = f(a)].

2One may think that there is a contradiction here. Indeed, B, being a finite object,
can be encoded by a binary string sp and therefore gp(j) for j = |sp| is logarithmically
small: gp(]sp|) <log|sp|+ O(1). The point is that it is small compared to the length of
sB, which is exponential in k.



Saying differently, + — f(z) — 6 is a Markov chain (for every probabil-
ity distribution over ©). We say that a sufficient statistic f is less than
a sufficient statistic ¢ if for some function h with probability 1 it holds
f(xz) = h(g(z)). An easy observation is that there is always a sufficient
statistic f that is less than any other sufficient statistic: f(a) is equal to the
function ¢ — Prob[f = c|x = a]. Such sufficient statistics are called mini-
mal. Any two minimal sufficient statistics have the same distribution and by
definition every minimal sufficient statistic is a function of every sufficient
statistic. Is it possible to define a notion of an algorithmic sufficient statistic
that has similar properties? More specifically, we wish it have the following
properties.

(1) If A is an (algorithmic) sufficient statistic of x and log |A| = m then
the structure function of y = A satisfies the equality of Theorem 2. In
particular, structure functions of every MSS A, B of x coincide.

(2) Assume that A is a MSS and B is a sufficient statistic of . Then
C(A|B) = 0.

As the example of Theorem 4 demonstrates, the property (1) does not
hold for the definitions of Sections 2 and 3, and we do not know whether (2)
holds. We propose here an approach towards a definition that (hopefully)
satisfies both (1) and (2). The main idea of the definition is as follows.
As observed in [6], to have the same structure sets strings z,y should be
equivalent in the following strong sense: there should be short total programs
p,q with D(p,x) = y and D(q,y) = = (where D is an optimal description
mode in the definition of conditional Kolmogorov complexity). A program p
is called total if D(p, z) converges for all z.

Let CTp(x|y) stand for the minimal length of p such that p is total and
D(p,y) = x. For the sequel we need that the conditional description mode
D have the following property. For any other description mode D’ there is a
constant ¢ such that CTp(z|y) < CTp (z|y) + ¢ for all z,y. (The existence
of such a D is straightforward.) Fixing such D we get the defintion of the
total Kolmogorov complexity CT(x|y). If both CT(z|y), CT(y|z) are small
then we will say that =,y are strongly equivalent.

Lemma 5. For all x,y we have |g,(j) —g,(j)| < 2max{CT(z|y), CT(y|x)}+
O). (If x,y are strongly equivalent then their structure sets are close.)

Proof. We will prove the inequality ¢,(j) < ¢,(j) +2CT(z|y) + O(1). The
other inequality is proved in a similar way. Let p witness CT(x|y) and let A
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witness g,(j). The set B = {D(p,y’) | v’ € A} contains = and has at most
|A] < 27 elements. Its complexity is at most C(A) + 2|p| + O(1). O

Call A a strongly sufficient statistic of = if CT(A|x) ~ 0 and C(x|A) ~
log|A|. More specifically, call a model A of z an «, f-strongly sufficient
statistic of = if CT(A|x) < o and C(z]|A) > log|A| — 8. It turns out that
strongly sufficient statistics satisfy the property (1).

Theorem 6. Assume that y is an o, G-strongly sufficient statistic of x and
log|y| = m. Then for all j > m we have g,(j) = g,(j —m) and for all
Jj < m we have g,(j) = C(y) + m — j. The equalities here hold up to a
O(log C(y) +logm + a + 3) term.

Proof. Let z stand for the index of x in the lexicographical order on y. By
Theorem 2 it suffices to show that both CT((y, z)|x) and CT(z|(y,z)) are
of order O(a) and C(z|ly) > m — 8 — O(1). Obviously, there is a total
program of constant length that maps (y, z) to . On the other hand, given
x we can find y by applying a total a-bit program and then find z. The
inequality C(z|y) > m — 5 — O(1) follows from C(z|y) < C(z]y) + O(1) and
the assumptions of the theorem. O

Let us turn now to the second desired property of algorithmic sufficient
statistics. We do not know whether (2) holds in the case when both A, B
are strongly sufficient statistics. Actually, for strongly sufficient statistics it
is more natural to require property (2) hold in a stronger form:

(27) Assume that A is a MSS and both A, B are strongly sufficient
statistics of z. Then CT(A|B) = 0.

Or, in an even stronger form:

(2”) Assume that A is a minimal strongly sufficient statistic
(MSSS) of x and B is a strongly sufficient statistic of z. Then
CT(A|B) = 0.

An interesting related question:

(3) Is it true that there is always a strongly sufficient statistic
that is a MSS?
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Of course, we should require properties (2), (2’) and (2”) hold only for
those x for which the notion of MSS or MSSS is well defined. Let us state
the properties in a formal way. To this end we introduce the notation
A, (A) = CT(Alz) + log |A| — C(x|A), which measures “the deficiency of
strong sufficiency” of a model A of z. In the case x ¢ A we let A, (A) = oco.
To avoid cumbersome notations we reduce generality and focus on strings z
whose structure set is as in Theorem 4. In this case the properties (2’) and
(3) read as follows:

(27) For all models A, B of z
CT(A|B) = O(|C(A) — k| + AL(A) + AL (B) + logk).

(3) Is it true that there is always a model A of = such that
CT(Alx) = O(logk), log |A| = k + O(logk) and C(z|A) = k +
O(logk).

It is not clear how to formulate property (2”) even in the case of strings
x satisfying Theorem 4 (the knowledge of g, does not help).

We are only able to prove (2’) in the case when both A, B are MSS. By
a result of [7], in this case C(A|B) = 0 (see Theorem 7 below). Thus our
result strengthens this result of [7] in the case when both A, B are strongly
sufficient statistics (actually we need only that A is strong).

Let us present the mentioned result of [7]. Recalling that the notion of
MSS is not well defined, the reader should not expect a simple formulation.
Let d(u,v) stand for max{C(u|v),C(v|u)} (a sort of algorithmic distance
between u and v).

Theorem 7 (Theorem V.4(iii) from [7]). Let N* stand for the number of
strings of complexity at most i. > For all A > x and i, either d(A, N") <
C(A) — 1, or there is T' > x such that log |T| + C(T) < log|A| 4+ C(A) and
C(T) < i —d(Ni, A), where all inequalities hold up to O(log(|A| + C(A)))

additive term.

Let us explain why we interpret this result as a property of minimal
sufficient statistics. Assume that the notion of a MSS is well defined for z
and ¢ is the complexity of minimal sufficient statistics. Assume that A is

3 Actually, the authors of [7] use prefix complexity in place of the plain complexity. It
is easy to verify that Theorem V.4(iii) holds for plain complexity as well.
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such a statistic. This means that C'(A) + log|A| =~ C(x), C(A) ~ i and
for every model T' of x with C(T') + log |T'| ~ C(z) we have C(T") > i or
C(T) = i. We claim that Theorem 7 implies that d(A, N%) &~ 0 (all minimal
sufficient statistics are equivalent to N and hence are equivalent to each
other). Indeed, in the first case we have d(A, N') < C(A) —i ~ 0. In the
second case there is T' 5 x with log|T| + C(T) < log|A| + C(A) = C(x)
and d(N?, A) < i — C(T). Thus T is a sufficient statistic as well and hence
C(T) > i or C(T) ~ i. Therefore, d(N*, A) ~ 0.

Theorem 8. There is a function v = O(logn) of n such that the following
holds. Assume that we are given a string x of length n, its models B, A and
natural numbers i < n and € < 6 < n. Assume that both C(B),C(A) are
at most i + ¢ and both C(B) +log|B|, C(A) + log |A| are at most C(z) + ¢.
Assume that there is no T with C(T) < i—6 and C(T)+log|T| < C(z)+c+7.
Then CT(A|B) <2 CT(Alz) + 425 + .

Let us see what this statement yields for the string x = (y, z) from Theo-
rem 4. Let ¢ = k and ¢ = 100log k, say. Then the assumptions of Theorem 8
hold for 6 = O(logk) and thus CT(A|B) < 2- CT(Alz) + O(logk) for all
100 log k-sufficient B, A of complexity at most k + 100 log k.

Proof. We claim that there is v = O(logn) such that the assumptions
of Theorem 8 imply d(B,A) < 2§ + O(logn). Indeed, we have K(A) +
log|A| = O(n). Therefore all the inequalities of Theorem 7 hold with
O(logn) precision. Thus by Theorem 7 we have d(N%, A) < e + clogn (in
the first case) or we have a T with C(T') + log|T| < i 4+ ¢ + clogn and
d(N*,;A) < i— C(T) + clogn (in the second case). Let v be larger than
clogn. The assumptions of Theorem 8 then imply that C(7") > i — ¢ and
hence d(N*, A) < 6 + clogn. Thus anyway we have d(N?, A) < § + clogn.
The same arguments apply to B and therefore d(A, B) < 2§ + O(logn).

In the course of the proof, we will neglect terms of order O(logn). They
will be absorbed by + in the final upper bound of CT(A|B) (we may increase
7)-

Let p be a total program witnessing CT(A|z). We will prove that there
are many ' € B with 2’ € p(z') = A (otherwise C(z|B) would be smaller
than assumed). We will then identify A given B in few bits by its ordinal
number among all A’ that have this property.

Let D = {2’ € B |2’ € p(a’) = A}. Obviously, D is a model of z with

C(D|B) < C(A|B) +1(p) < 26 + 1(p).
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Therefore
C(z|B) < C(D|B) +log|D| <log|D| + 26 + I(p).

On the other hand, C'(x|B) > log |B|—¢, hence log |D| > log |B|—e—20—I(p).
Consider now all A’ such that

log|{z' € B |2 € p(a') = A"} >log|B| —e— 25 —I(p).

These A’ are pairwise disjoint and each of them has at least |B|/25720+!(P)
elements of B. Thus there are at most 25129+ ®) different such A’s. Given
B and p,e,6 we are able to find the list of all A’s. The program that maps
B to the list of A’s is obviously total. Therefore there is a total program of
€ + 20 4 2I(p) bits that maps B to A and CT(A|B) < e+ 26 + 2I(p). O

Another interesting related question is whether the following holds.

(4) Merging strongly sufficient statistics: If A, B are strongly suf-
ficient statistics for x then x has a strongly sufficient statistic D
with log|D| ~ log |A| 4 log |B| — log |A N B].

It is not hard to see that (4) implies (27). Indeed, as merging A and B
cannot result in a strongly sufficient statistic larger than A we have log | B| ~
log|A N B|. Thus to prove that CT(A|B) is negligible, we can argue as in
the last part of the proof of Theorem 8.
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