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Abstract

We express some criticism about the definition of an algorithmic
sufficient statistic and, in particular, of an algorithmic minimal suffi-
cient statistic. We propose another definition, which might have better
properties.

1 Introduction

Let x be a binary string. A finite set A containing x is called an (algorithmic)
sufficient statistic of x if the sum of Kolmogorov complexity of A and the
log-cardinality of A is close to Kolmogorov complexity C(x) of x:

C(A) + log2 |A| ≈ C(x). (1)

Let A∗ denote a minimal length description of A and i the index of x
in the list of all elements of A arranged lexicographically. The equality (1)
means that the two part description (A∗, i) of x is as concise as the minimal
length code of x.

It turns out that A is a sufficient statistic of x iff C(A|x) ≈ 0 and
C(x|A) ≈ log |A|. The former equality means that the information in A∗

is a part of information in x. The latter equality means that x is a typical
member of A: x has no regularities that allow to describe x given A in a
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shorter way than just by specifying its log |A|-bit index in A. Thus A∗ con-
tains all useful information present in x and i contains only an accidental
information (a noise).

Sufficient statistics may also contain a noise. For example, it happens for
x being a random string and A = {x}. Is it true that for all x there is a
sufficient statistic that contains no noise? To answer this question we can
try to use the notion of a minimal sufficient statistics defined in [3]. In this
paper we argue that (1) this notion is not well defined for some x (although
for some x the notion is well defined) and (2) even for those x for which
the notion of a minimal sufficient statistic is well defined not every minimal
sufficient statistic qualifies for “denoised version of x”. We propose another
definition of a (minimal) sufficient statistic that might have better properties.

2 Sufficient statistics

Let x be a given string of length n. The goal of algorithmic statistics is
to “explain” x. As possible explanations we consider finite sets containing
x. We call any finite A ∋ x a model for x. Every model A corresponds the
statistical hypothesis “x was obtained by selecting a random element of x”. In
which case is such hypothesis plausible? As argued in [4, 3, 5], it is plausible
if C(x|A) ≈ log |A| and C(A|x) ≈ 0 (we prefer to avoid rigorous definitions
up to a certain point; approximate equalities should be thought as equalities
up to an additive O(log n) term). In the expressions C(x|A), C(A|x) the set
A is understood as a finite object. More precisely, we fix any computable
bijection A 7→ [A] between finite sets of binary strings and binary strings and
let C(x|A) = C(x|[A]), C(A|x) = C([A]|x).

As shown in [3, 5] this is equivalent to saying that C(A)+log |A| ≈ C(x).
Indeed, assume that A contains x and C(A) ≤ n. Then, given A the string
x can be specified by its log |A|-bit index in A. Recalling the symmetry of
information and omitting additive terms of order O(log n), we obtain

C(x) ≤ C(x) + C(A|x) = C(A) + C(x|A) ≤ C(A) + log |A|.

Assume now that C(x|A) ≈ log |A| and C(A|x) ≈ 0. Then all inequalities
here become equalities and hence A is a sufficient statistic. Conversely, if
C(x) ≈ C(A) + log |A| then the left hand side and the right hand side in
these inequalities coincide. Thus C(x|A) ≈ log |A| and C(A|x) ≈ 0.

2



The inequality
C(x) ≤ C(A) + log |A| (2)

(which is true up to an additive O(log n) term) has the following meaning.
Consider the two part code (A∗, i) of x, consisting of the minimal program
A∗ for x and log |A|-bit index of x in the list of all elements of A arranged
lexicographically. The equality means that its total length C(A) + log |A|
cannot exceed C(x). If C(A) + log |A| is close to C(x), we call A a sufficient
statistic of x. To make this notion rigorous we have specify what means
“close”. In [3] this is specified as follows: fix a constant c and call A a
sufficient statistic if

|(C(A) + log |A|) − C(x)| ≤ c. (3)

More precisely, [3] uses prefix complexity K in place of plain complexity C.
For prefix complexity the inequality (2) holds up to a constant error term.
If we choose c large enough then sufficient statistics exists, witnessed by
A = {x}. (The paper [1] suggests to set c = 0 and to use C(x|n) and C(A|n)
in place of K(x) and K(A) in the definition of a sufficient statistic. For such
definition sufficient statistics might not exist.)

To avoid the discussion on how small should be c let us call A ∋ x a
c-sufficient statistic if (3) holds. The smaller c is the more sufficient A is.
This notion is non-vacuous only for c = O(log n) as the inequality (2) holds
only with logarithmic precision.

3 Minimal sufficient statistics

Naturally, we are interested in squeezing as much noise from the given string
x as possible. What does it mean? Every sufficient statistic A identifies
log |A| bits of noise in x. Thus a sufficient statistic with maximal log |A|
(and hence minimal C(A)) identifies the maximal possible amount of noise
in x. So we arrive at the notion of a minimal sufficient statistic: a sufficient
statistic with minimal C(A) is called a minimal sufficient statistic (MSS).

Is this notion well defined? Recall that actually we have only the notion
of a c-sufficient statistic (where c is either a parameter, or a constant). That
is, we have actually defined the notion of a minimal c-sufficient statistic. Is
this a good notion? We argue that for some strings x it is not (for every c).
There are strings x for which it is impossible identify MSS in an intuitively
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appealing way. For those x the complexity of the minimal c-sufficient statistic
decreases much, as c increases a little.

To present such strings we need to recall a theorem from [7]. Let Sx stand
for the structure set of x:

Sx = {(i, j) | ∃A ∋ x, C(A) ≤ i, log |A| ≤ j}.

This set can be identified by either of two its “border line” functions:

hx(i) = min{log |A| | A ∋ x, C(A) ≤ i}, gx(j) = min{C(A) | A ∋ x, log |A| ≤ j}.

The function hx is called the Kolmogorov structure function of x; for small
i it might take infinite values due to lack of models of small complexity. In
contrast, the function gx is total for all x.

As pointed by Kolmogorov [4], the structure set Sx of every string x of
length n and Kolmogorov complexity k has the following three properties
(we state the properties in terms of the function gx):
(1) gx(0) = k + O(1) (witnessed by A = {x}).
(2) gx(n) = O(log n) (witnessed by A = {0, 1}n.
(3) gx in non-increasing and gx(j + l) ≥ gx(j)− l−O(log l) for every j, l ∈ N.

For the proof of the last property see [5, 7]. Properties (1) and (3) imply
that i+ j ≥ k−O(log n) for every (i, j) ∈ Sx. Sufficient statistics correspond
to those (i, j) ∈ Sx with i + j ≈ k. The line i + j = k is therefore called the
sufficiency line.

A result of [7, Remark IV.4] states that for every set g that satisfies (1)–
(3) there is x of length n and complexity close to k such that gx is close to
g. 1 More specifically, the following holds:

Theorem 1 ([7]). Let g be any non-increasing function g : {0, . . . , n} → N

such that g(0) = k, g(n) = 0 and such that g(j + l) ≥ gx(j) − l for every
j, l ∈ N with j + l ≤ n. Then there is a string x of length n and complexity
k ± ε such that |gx(j) − g(j)| ≤ ε for all j ≤ n. Here ε = O(log n + C(g)),
where C(g) stands for the Kolmogorov complexity of the graph of g:

C(g) = C({〈j, g(j)〉 | 0 ≤ j ≤ n}).

1Actually, [7] provides the description of possible shapes of Sx in terms of the Kol-
mogorov structure function hx. We use here gx instead of hx, as in terms of gx the
description is easier-to-understand.
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We are ready to present strings for which the notion of a MSS is not well
defined. Fix a large n and let, say, k = n/2 and g(j) = max{k−jk/(k+α), 0},
where α = α(k) ≤ k is a computable function of k with natural values.
Then n, k, g satisfy all conditions of Theorem 1. Hence there is a string x
of length n and complexity k + O(logn) with gx(j) = g(j) + O(log n) (note
that C(g) = O(log n)). Its structure function is shown on Fig. 1. Choose α
so that α/k is negligible (compared to k) but α is not.

log|A|k+alphak

k

C(A)

Figure 1: The structure function of a string for which MSS is not well defined

For very small j the graph of gx is close to the sufficiency line and for
j = k + α it is already at a large distance α from it. As j increments by
one, the value gx(j) + j − C(x) increases by at most k/(k + α) + O(logn),
which is negligible. Therefore, it is not clear where the graph of gx leaves
the sufficiency line. The complexity of the minimal c-sufficient statistic is
k − kc/α + O(k log n/α) and decreases fast as a function of c.

Thus there are strings for which it is hard to identify the complexity of
MSS. There is also another minor point regarding minimal sufficient statis-
tics. Namely, there is a string x for which the complexity of minimal suf-
ficient statistic is well defined but not all MSS qualify as denoised versions
of x. Namely, some of them have a weird structure function. What kind of
structure set we expect of a denoised string? To answer this question con-
sider the following example. Let y be a string, m a natural number and z a
string of length l(z) = m that is random relative to y. The latter means that
C(z|y) ≥ m − β for a small β. Consider the string x = 〈y, z〉. Intuitively,
z is a noise in x. In other words, we can say that y is obtained from x by
removing m bits of noise. What is the relation between the structure set of
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x and that of y?

Theorem 2. Assume that z is a string of length m with C(z|y) ≥ m − β.
Then for all j ≥ m we have gx(j) = gy(j − m) and for all j ≤ m we have
gx(j) = C(y) + m − j = gy(0) + m − j. The equalities here hold up to
O(log m + log C(y) + β) term.

C(y)

log|A|

C(A) C(A)

m

C(y)+m

C(y)

log|A|

Figure 2: Structure functions of y and x

Proof. In the proof we will ignore terms of order O(logm + log C(y) + β).
The easy part is the equality gx(j) = C(y)+m− j for j ≤ m. Indeed, we

have gx(m) ≤ C(y) witnessed by A = {〈y, z′〉 | |z′| = m}. On the other hand,
gx(0) = C(x) = C(y)+C(z|y) = C(y)+m. Thus gx(j) should have maximal
possible rate of decrease on the segment [0, m] to drop from C(y) + m to
C(y).

Another easy part is the inequality gx(j) ≤ gy(j − m). Indeed, for every
model A of y with |A| ≤ 2j−m consider the model

A′ = A × {0, 1}m = {〈y′, z′〉 | y′ ∈ A, |z′| = m}

of cardinality at most 2j. Its complexity is at most that of |A|, which proves
gx(j) ≤ gy(j − m).

The tricky part is the inverse inequality gx(j) ≥ gy(j − m). Let A be a
model for x with |A| ≤ 2j and C(A) = gy(j). We need to show that there is a
model of y of cardinality at most 2j−m and of the same (or lower) complexity.
We will prove it in a non-constructive way using a result from [7].

The first idea is to consider the projection of A: {y′ | 〈y′, z′〉 ∈ A}.
However this set may be as large as A itself. Reduce it as follows. Consider
the yth section of A: Ay = {z′ | 〈y, z′〉 ∈ A}. Define i as the natural number
such that 2i ≤ |Ay| < 2i+1. Let A′ be the set of those y′ whose y′th section
has at least 2i elements. Then by counting arguments we have |A′| ≤ 2j−i.
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If i ≥ m, we are done. However, it might be not the case. To lower bound
i, we will relate it to the conditional complexity of z given y and A. Indeed,
we have C(z|A, y) ≤ i, as z can be identified by its ordinal number in yth
section of A. Hence we know that log |A′| ≤ j − C(z|A, y). Now we will
improve A′ using a result of [7]:

Lemma 3 (Lemma A.4 in [7]). For every A′ ∋ y there is A′′ ∋ y with
C(A′′) ≤ C(A′) − C(A′|y) and ⌊log |A′′|⌋ = ⌊log |A′|⌋.

By this lemma we get the inequality

gy(j − C(z|A, y)) ≤ C(A′) − C(A′|y).

Note that

C(A′) − C(A′|y) = I(y : A′) ≤ I(y : A) = C(A) − C(A|y),

as C(A′|A) is negligible. Thus we have

gy(j − C(z|A, y)) ≤ C(A) − C(A|y).

We claim that by the property (3) of the structure set this inequality implies
that gy(j − m) ≤ C(A). Indeed, as C(z|A, y) ≤ m we have by property (3):

gy(j −m) ≤ m−C(z|A, y) + C(A)−C(A|y) ≤ m + C(A)−C(z|y) = C(A).

In all the above inequalities, we need to be careful about the error term,
as they include A and thus the error term involves O(log C(A)). The set
A is either a model of y or a model of x. W.l.o.g. we may assume that
C(A) ≤ C(x) + O(1). Indeed, there is no need to consider models of y or
x of larger complexity, as the models {y} and {x} have the least possible
cardinality and their complexity is at most C(x) + O(1). Since C(x) ≤
C(y) + O(C(z|y)) ≤ C(y) + O(k), the term O(log C(A)) is absorbed by the
general error term.

This theorem answers our question: if y is obtained from x by removing
m bits of noise then we expect that gy satisfy Theorem 2. Now we will show
that there are strings x as in Theorem 2 for which the notion of the MSS is
well defined but the structure function of some minimal sufficient statistics
does not satisfy Theorem 2. The structure set of a finite set A of strings
is defined as that of [A]. It is not hard to see that if we switch to another
computable bijection A 7→ [A] the value of g[A](j) changes by an additive
constant. Thus SA and gA are well defined for finite sets A.
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Theorem 4. For every k there is a string y of length 2k and Kolmogorov
complexity C(y) = k such that

gy(j) =

{

k if j ≤ k,
2k − j if k ≤ j ≤ 2k

and hence for any z of length k and conditional complexity C(z|y) = k the
structure function of the sting x = 〈y, z〉 is the following

gx(j) =







2k − j if j ≤ k,
k if k ≤ j ≤ 2k,
3k − j if 2k ≤ j ≤ 3k.

(See Fig. 3.) Moreover, for every such z the string x = 〈y, z〉 has a model B
of complexity C(B) = k and log-cardinality log |B| = k such that gB(j) = k
for all j ≤ 2k. All equalities here hold up to O(log k) additive error term.

log|A|

k 2k

k

C(A)

log|A|

k 2k

k

C(A)

2k

3k

Figure 3: Structure functions of y and x

The structure set of x = 〈y, z〉 clearly leaves the sufficiency line at the
point j = k. Thus k is intuitively the complexity of minimal sufficient statis-
tic and both models A = y × {0, 1}k and B are minimal sufficient statistics.
The model A, as finite object, is identical to y and hence the structure func-
tion of A coincides with that of y. In contrast, the shape of the structure
set of B is intuitively incompatible with the hypothesis that B, as a finite
object, is a denoised x.

Proof. We first construct y. Let U be the set of all y’s, |y| = 2k, such that
there is no set T ∋ y of cardinality at most 2k and complexity less than k. The
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latter requirement is not met by less than 22k strings. Thus U is non-empty.
Let y be the lexicographical first string in U . Let B = (y × {0, 1}k) ∪ {x′ |
C(x′) < k} (we add to A all strings of complexity less than k).

We claim that C(y) ≤ k + O(1). Indeed, y can be found given U and k.
The set U can be found given the set of all halting programs of length less
than k, which in turn can be identified by the k-bit number Nk of halting
programs of length less than k (we run all programs of length less than k
until Nk of them halt). The same argument shows that C(B) ≤ k + O(1).

It remains to find gy and gB. By construction, gy(k) ≥ k and gy(0) =
C(y) ≤ k. Thus gy(j) = k on the segment [0, k]. As gy(2k) = 0 (witnessed by
{0, 1}2k), gy(j) should have maximal possible rate of decrease on the segment
[0, k] to drop from k to 0.

The structure function of B is a weird one. The point is that if M is
a finite family of finite sets and B ∈ M then K(M) ≥ k − O(1). Indeed,
given k and M we can find a string u of complexity at least k: pick the
lexicographical first string outside the union of all sets from M . As that union
contains all strings of complexity less than k we have C(u) ≥ k. Therefore,
k ≤ C(u) ≤ C(M) + O(1). Thus gB(j) ≥ k − O(1) for all j. 2

4 Desired properties of sufficient statistics and

a new definition

We have seen that there is a string x that has two very different minimal
sufficient statistics A and B. Recall the probabilistic notion of sufficient
statistic [2]. In the probabilistic setting, we are given a parameter set Θ and
for each θ ∈ Θ we are given a probability distribution over a set X. For every
probability distribution over Θ we thus obtain a probability distribution over
Θ × X. A function f : X → Y (where Y is any set) is called a sufficient
statistic, if for every probability distribution over Θ, the random variables x
and θ are independent conditional to f(x). That is, for all a ∈ X, c ∈ Θ,

Prob[θ = c|x = a] = Prob[θ = c|f(x) = f(a)].

2One may think that there is a contradiction here. Indeed, B, being a finite object,
can be encoded by a binary string sB and therefore gB(j) for j = |sB| is logarithmically
small: gB(|sB|) ≤ log |sB| + O(1). The point is that it is small compared to the length of
sB, which is exponential in k.
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Saying differently, x → f(x) → θ is a Markov chain (for every probabil-
ity distribution over Θ). We say that a sufficient statistic f is less than
a sufficient statistic g if for some function h with probability 1 it holds
f(x) ≡ h(g(x)). An easy observation is that there is always a sufficient
statistic f that is less than any other sufficient statistic: f(a) is equal to the
function c 7→ Prob[θ = c|x = a]. Such sufficient statistics are called mini-
mal. Any two minimal sufficient statistics have the same distribution and by
definition every minimal sufficient statistic is a function of every sufficient
statistic. Is it possible to define a notion of an algorithmic sufficient statistic
that has similar properties? More specifically, we wish it have the following
properties.

(1) If A is an (algorithmic) sufficient statistic of x and log |A| = m then
the structure function of y = A satisfies the equality of Theorem 2. In
particular, structure functions of every MSS A, B of x coincide.

(2) Assume that A is a MSS and B is a sufficient statistic of x. Then
C(A|B) ≈ 0.

As the example of Theorem 4 demonstrates, the property (1) does not
hold for the definitions of Sections 2 and 3, and we do not know whether (2)
holds. We propose here an approach towards a definition that (hopefully)
satisfies both (1) and (2). The main idea of the definition is as follows.
As observed in [6], to have the same structure sets strings x, y should be
equivalent in the following strong sense: there should be short total programs
p, q with D(p, x) = y and D(q, y) = x (where D is an optimal description
mode in the definition of conditional Kolmogorov complexity). A program p
is called total if D(p, z) converges for all z.

Let CTD(x|y) stand for the minimal length of p such that p is total and
D(p, y) = x. For the sequel we need that the conditional description mode
D have the following property. For any other description mode D′ there is a
constant c such that CTD(x|y) ≤ CTD′(x|y) + c for all x, y. (The existence
of such a D is straightforward.) Fixing such D we get the defintion of the
total Kolmogorov complexity CT(x|y). If both CT(x|y),CT(y|x) are small
then we will say that x, y are strongly equivalent.

Lemma 5. For all x, y we have |gx(j)−gy(j)| ≤ 2 max{CT(x|y),CT(y|x)}+
O(1). (If x, y are strongly equivalent then their structure sets are close.)

Proof. We will prove the inequality gx(j) ≤ gy(j) + 2CT(x|y) + O(1). The
other inequality is proved in a similar way. Let p witness CT(x|y) and let A
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witness gy(j). The set B = {D(p, y′) | y′ ∈ A} contains x and has at most
|A| ≤ 2j elements. Its complexity is at most C(A) + 2|p| + O(1).

Call A a strongly sufficient statistic of x if CT(A|x) ≈ 0 and C(x|A) ≈
log |A|. More specifically, call a model A of x an α, β-strongly sufficient
statistic of x if CT(A|x) ≤ α and C(x|A) ≥ log |A| − β. It turns out that
strongly sufficient statistics satisfy the property (1).

Theorem 6. Assume that y is an α, β-strongly sufficient statistic of x and
log |y| = m. Then for all j ≥ m we have gx(j) = gy(j − m) and for all
j ≤ m we have gx(j) = C(y) + m − j. The equalities here hold up to a
O(log C(y) + log m + α + β) term.

Proof. Let z stand for the index of x in the lexicographical order on y. By
Theorem 2 it suffices to show that both CT(〈y, z〉|x) and CT(x|〈y, z〉) are
of order O(α) and C(z|y) ≥ m − β − O(1). Obviously, there is a total
program of constant length that maps 〈y, z〉 to x. On the other hand, given
x we can find y by applying a total α-bit program and then find z. The
inequality C(z|y) ≥ m− β −O(1) follows from C(x|y) ≤ C(z|y) + O(1) and
the assumptions of the theorem.

Let us turn now to the second desired property of algorithmic sufficient
statistics. We do not know whether (2) holds in the case when both A, B
are strongly sufficient statistics. Actually, for strongly sufficient statistics it
is more natural to require property (2) hold in a stronger form:

(2’) Assume that A is a MSS and both A, B are strongly sufficient
statistics of x. Then CT(A|B) ≈ 0.

Or, in an even stronger form:

(2”) Assume that A is a minimal strongly sufficient statistic
(MSSS) of x and B is a strongly sufficient statistic of x. Then
CT(A|B) ≈ 0.

An interesting related question:

(3) Is it true that there is always a strongly sufficient statistic
that is a MSS?
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Of course, we should require properties (2), (2’) and (2”) hold only for
those x for which the notion of MSS or MSSS is well defined. Let us state
the properties in a formal way. To this end we introduce the notation
∆x(A) = CT(A|x) + log |A| − C(x|A), which measures “the deficiency of
strong sufficiency” of a model A of x. In the case x 6∈ A we let ∆x(A) = ∞.
To avoid cumbersome notations we reduce generality and focus on strings x
whose structure set is as in Theorem 4. In this case the properties (2’) and
(3) read as follows:

(2’) For all models A, B of x

CT(A|B) = O(|C(A) − k| + ∆x(A) + ∆x(B) + log k).

(3) Is it true that there is always a model A of x such that
CT(A|x) = O(log k), log |A| = k + O(log k) and C(x|A) = k +
O(log k).

It is not clear how to formulate property (2”) even in the case of strings
x satisfying Theorem 4 (the knowledge of gx does not help).

We are only able to prove (2’) in the case when both A, B are MSS. By
a result of [7], in this case C(A|B) ≈ 0 (see Theorem 7 below). Thus our
result strengthens this result of [7] in the case when both A, B are strongly
sufficient statistics (actually we need only that A is strong).

Let us present the mentioned result of [7]. Recalling that the notion of
MSS is not well defined, the reader should not expect a simple formulation.
Let d(u, v) stand for max{C(u|v), C(v|u)} (a sort of algorithmic distance
between u and v).

Theorem 7 (Theorem V.4(iii) from [7]). Let N i stand for the number of
strings of complexity at most i. 3 For all A ∋ x and i, either d(A, N i) ≤
C(A) − i, or there is T ∋ x such that log |T | + C(T ) ≤ log |A| + C(A) and
C(T ) ≤ i − d(N i, A), where all inequalities hold up to O(log(|A| + C(A)))
additive term.

Let us explain why we interpret this result as a property of minimal
sufficient statistics. Assume that the notion of a MSS is well defined for x
and i is the complexity of minimal sufficient statistics. Assume that A is

3Actually, the authors of [7] use prefix complexity in place of the plain complexity. It
is easy to verify that Theorem V.4(iii) holds for plain complexity as well.
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such a statistic. This means that C(A) + log |A| ≈ C(x), C(A) ≈ i and
for every model T of x with C(T ) + log |T | ≈ C(x) we have C(T ) > i or
C(T ) ≈ i. We claim that Theorem 7 implies that d(A, N i) ≈ 0 (all minimal
sufficient statistics are equivalent to N i and hence are equivalent to each
other). Indeed, in the first case we have d(A, N i) ≤ C(A) − i ≈ 0. In the
second case there is T ∋ x with log |T | + C(T ) ≤ log |A| + C(A) ≈ C(x)
and d(N i, A) ≤ i − C(T ). Thus T is a sufficient statistic as well and hence
C(T ) > i or C(T ) ≈ i. Therefore, d(N i, A) ≈ 0.

Theorem 8. There is a function γ = O(log n) of n such that the following
holds. Assume that we are given a string x of length n, its models B, A and
natural numbers i ≤ n and ε < δ ≤ n. Assume that both C(B), C(A) are
at most i + ε and both C(B) + log |B|, C(A) + log |A| are at most C(x) + ε.
Assume that there is no T with C(T ) ≤ i−δ and C(T )+log |T | ≤ C(x)+ε+γ.
Then CT(A|B) ≤ 2 · CT(A|x) + ε + 2δ + γ.

Let us see what this statement yields for the string x = 〈y, z〉 from Theo-
rem 4. Let i = k and ε = 100 log k, say. Then the assumptions of Theorem 8
hold for δ = O(log k) and thus CT(A|B) ≤ 2 · CT(A|x) + O(log k) for all
100 log k-sufficient B, A of complexity at most k + 100 log k.

Proof. We claim that there is γ = O(log n) such that the assumptions
of Theorem 8 imply d(B, A) ≤ 2δ + O(log n). Indeed, we have K(A) +
log |A| = O(n). Therefore all the inequalities of Theorem 7 hold with
O(log n) precision. Thus by Theorem 7 we have d(N i, A) ≤ ε + c log n (in
the first case) or we have a T with C(T ) + log |T | ≤ i + ε + c log n and
d(N i, A) ≤ i − C(T ) + c log n (in the second case). Let γ be larger than
c log n. The assumptions of Theorem 8 then imply that C(T ) > i − δ and
hence d(N i, A) < δ + c log n. Thus anyway we have d(N i, A) ≤ δ + c log n.
The same arguments apply to B and therefore d(A, B) ≤ 2δ + O(logn).

In the course of the proof, we will neglect terms of order O(log n). They
will be absorbed by γ in the final upper bound of CT(A|B) (we may increase
γ).

Let p be a total program witnessing CT(A|x). We will prove that there
are many x′ ∈ B with x′ ∈ p(x′) = A (otherwise C(x|B) would be smaller
than assumed). We will then identify A given B in few bits by its ordinal
number among all A′ that have this property.

Let D = {x′ ∈ B | x′ ∈ p(x′) = A}. Obviously, D is a model of x with

C(D|B) ≤ C(A|B) + l(p) ≤ 2δ + l(p).
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Therefore

C(x|B) ≤ C(D|B) + log |D| ≤ log |D| + 2δ + l(p).

On the other hand, C(x|B) ≥ log |B|−ε, hence log |D| ≥ log |B|−ε−2δ−l(p).
Consider now all A′ such that

log |{x′ ∈ B | x′ ∈ p(x′) = A′}| ≥ log |B| − ε − 2δ − l(p).

These A′ are pairwise disjoint and each of them has at least |B|/2ε+2δ+l(p)

elements of B. Thus there are at most 2ε+2δ+l(p) different such A′s. Given
B and p, ε, δ we are able to find the list of all A′s. The program that maps
B to the list of A′s is obviously total. Therefore there is a total program of
ε + 2δ + 2l(p) bits that maps B to A and CT(A|B) ≤ ε + 2δ + 2l(p).

Another interesting related question is whether the following holds.

(4) Merging strongly sufficient statistics: If A, B are strongly suf-
ficient statistics for x then x has a strongly sufficient statistic D
with log |D| ≈ log |A| + log |B| − log |A ∩ B|.

It is not hard to see that (4) implies (2”). Indeed, as merging A and B
cannot result in a strongly sufficient statistic larger than A we have log |B| ≈
log |A ∩ B|. Thus to prove that CT(A|B) is negligible, we can argue as in
the last part of the proof of Theorem 8.
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