
Decomposition Complexity

. . . , Alexander Shen, . . .

Abstract

We consider a problem of decomposition of

a ternary function into a composition of bi-

nary ones from the viewpoint of communica-

tion complexity and algorithmic information

theory as well as some applications to cellular

automata.

1 Introduction

The 13th Hilbert problem asks whether all

functions can be represented as compositions

of binary functions. This question can be un-

derstood in di�erent ways. Kolmogorov and

Arnold (see [3]) gave positive answer for con-

tinuous functions proving that any continuous

function of real arguments can be represented

as a composition of continuous unary func-

tions and addition (a binary function). On the

other hand, for di�erentiable functions nega-

tive answer was obtained by Vituschkin. Later

Kolmogorov interpreted this result in terms of

information theory (see [2]): the decomposi-

tion is impossible since we have \much more"

ternary functions than compositions of binary

ones. (Below we present some discrete ver-

sion of this argument.)

Let us start with a simple decomposition

problem. An input (say, a binary string) is di-

vided into three parts x , y and z . We want to

represent T (x; y; z) as a composition of three

binary functions:

T (x; y; z) = t(a(x; y); b(y; z)):

In other words, we want to compute

T (x; y; z) under the following restrictions:

x y z

a(x,y) A b(y,z)B

T (x,y,z) = t(a(x,y),b(y,z))

T

node A gets x and y and computes some

function a(x; y); node B gets y and z and

computes some function b(y; z); �nally, the

output node T gets a(x; y) and b(y; z) and

should compute T (x; y; z).

The two upper channels have limited ca-

pacity; the question is how much capacity is

needed to make such a decomposition possi-

ble. If a- and b-channels are wide enough,

we may transmit all the available information,

i.e., let a(x; y) = 〈x; y〉 and b(y; z) = 〈y; z〉.
Even better, we can split y in an arbitrary

proportion and send one part with x and the

other one with z .

Is it possible to use less capacity? The an-

swer evidently depends on the function T . If,

say, T (x; y; z) is xor of all bits in x , y and z ,

one bit for a- and b-values is enough. How-

ever, for other functions T it is not the case,

as we see below.

In the sequel we prove di�erent lower

bounds for the necessary capacity of two up-

per channels in di�erent settings; then we

consider related questions in the framework

of multisource algorithmic information the-

ory [5]).

Before going into details, let us note that the

1

de�nition of communication complexity can

be reformulated in similar terms: one-round

complexity corresponds to the network

x y

p(x,y)

(dotted line indicates channels of limited ca-

pacity) while two-rounds complexity corre-

sponds to the network

x y

p(x,y)

etc. Another related setting that appears in

communication complexity theory: three in-

puts x; y; z are distributed between three par-

ticipants; one knows x and y , the other knows

y and z , the third one knows x and z ; all three

participants send their messages to the fourth

one who should compute T (x; y; z) based on

their messages (see [4]).

One can naturally de�ne communication

complexity for other networks (we select

some channels and count the bits that go

through these channels).

2 Communication

complexity

Let T = T (x; y; z) be a function de�ned on

Bp × Bq × Br (here Bk is the set of k -bit

strings) whose values belong to some set M .

We say that decomposition complexity of T

does not exceed n if there exist u+v 6 n and

functions a : Bp×Bq → Bu , b : Bq×Br → Bv

and t : Bu × Bv → M such that

T (x; y; z) = t(a(x; y); b(y; z))

for all x ∈ Bp , y ∈ Bq , z ∈ Br . (As in com-

munication complexity, we take into account

the total number of bits transmitted via both

restricted links. More detailed analysis could

consider u and v separately.)

2.1 General upper and

lower bounds

Since the logarithm of the image cardinality

is an evident lower bound for decomposition

complexity, it is natural to consider predi-

cates T (so this lower bound is trivial).

Theorem 1 (Upper bound) Complexity of

any function does not exceed n = p+q+r ;

complexity of any predicate does not exceed

2p + r as well as 2r + p.

(Lower bound) If p and r are not too

small (at least log n + O(1)), then there

exists a predicate with decomposition com-

plexity n − O(1).

The second statement shows that the upper

bounds provided by the �rst one are rather

tight.

Proof. (Upper bounds) For the �rst bound

one can let, say, a(x; y) = 〈x; y〉 and

b(y; z) = z . (One can also split y between a

and b in an arbitrary proportion.)

For the second bound: for each x; y the

predicate tx;y

z 7→ tx;y(z) = t(x; y; z)

can be encoded by 2r bits, so we let a(x; y) =

tx;y and b(z) = z and get decomposition com-

plexity at most 2r + p. The bound 2p + r is

obtained in a symmetric way.

(Lower bound) We can use a standard

counting argument. Assuming that a has u -

bit values and b has v -bit values, we have

2

(2u)2
p+q

possible a's, (2v)2
q+r

possible b's and

2u+v possible t 's, i.e.,

2u2
p+q · 2v2q+r · 22u+v

possibilities (for �xed u; v). In total we get at

most

m2u2
p+q · 2v2q+r · 22m

predicates of decomposition complexity less

than m (the factor m appears since there are

at most m decompositions of m−1 into u+v).

Therefore, if all 22
n

predicates Bp×Bq×Br →
B have decomposition complexity less than m ,

we have

m2u2
p+q · 2v2q+r · 22m > 22

n

or

logm + u2p+q + v2q+r + 2m > 2n

At least one of the terms in the left-hand side

should be
(2n), therefore either m > n −
O(1), or log u > r − O(1), or log v > p −
O(1). �

2.2 Bounds for explicit functions

As with circuit complexity, an interesting

question is to provide a lower bound for an

explicit function; it often is much harder than

proving the existence results. The following

statement provides a lower bound for a simple

function.

Consider the predicate T : Bk×B22k×Bk →
B de�ned as follows:

T (x; y; z) = y(x; z)

where y ∈ B22k is treated as a function Bk ×
Bk → B.

Theorem 2 The decomposition complexity

of T is at least 2k .

(Note that this bound is weaker than in

Theorem 1: it is close to the square root of

the input size, not the input size as in the non-

constructive bound.)

Proof. Assume that some decomposition of

T is given:

T (x; y; z) = t(a(x; y); b(y; z))

where a(x; y) and b(y; z) have u and v bits

respectively. Then every y : Bk × Bk → B
determines two functions ay : Bk → Bu and

by : Bk → Bv obtained from a and b by �xing

y . Knowing these two functions one should

be able to reconstruct T (x; y; z) for all x and

z , since

T (x; y; z) = t(ay(x); ay(z));

i.e., to reconstruct u . Therefore, the number

of possible pairs 〈ay ; by〉, which is at most

2u2
k · 2v2k ;

is at least the number of all y 's, i.e. 22
2k

. So

we get

(u + v)2k > 22k ;

or u + v > 2k , therefore the decomposition

complexity of T is at least 2k . �
Remarks.

1. In this way we get a lower bound

(
√
n) (where n is the input size) for the

case when x and z are of size O(log n). It is

easy to see that we can add dummy bits to x

and z and get the same bound
(
√
n) for the

case when x and z have bigger size. (On the

contrary, we cannot signi�cantly decrease the

size of x and z according to Theorem 1.)

2. Note that if the predicate t(x; y; z) is

de�ned as x = z , we need to transmit x and

z completely (pigeon-hole principle). So there

is a trivial (and tight) linear bound if we let

x and z be long (of �(n)) size. It would be

interesting to get a linear bound for an explicit

function in the more interesting case where x

and z are short compared to y (preferable

even of logarithmic size as above)

Note that the function T de�ned above does

not work (since there is an upper bound:

3

a(x; y) can be x th row in matrix y). The

function T ′ : Bk × B2k × Bk × B de�ned by

T ′(x; y; z) = y(x ⊕ z) also has a (non-trivial)
sublinear upper bound, see [4]. (This upper

bound is still much bigger than
(
√
n) lower

bound obtained by reduction to T .)

3. For communication complexity peo-

ple consider also probabilistic and random-

ized versions. For decomposition complex-

ity one may do the same: either consider

random variables instead of binary function

(with shared random bits or independent ran-

dom bits) or look for a decomposition that is

Hamming-close to a given function. The fol-

lowing natural question arise:

• what are the relations between these

models?

• what upper and lower bounds can be

proven for generic functions?

• what upper and lower bounds can be

proven for explicit functions (in partic-

ular, for functions T and T ′ de�ned

above)?

3 Applications to cellular au-

tomata

An (one-dimensional) cellular automata is a

linear array of cells. Each of the cells can

be in some state from a �nite set S of states

(the same for all cells). At each step all the

cells update their state; new state is some �xed

function of its old state and the states of its

neighbors. All the updates are made syn-

chronously.

Using a cellular automaton to compute a

predicate, we assume that there are two spe-

cial states 0 and 1 and a neutral state that is

stable (the cell remains neutral if it is neutral

together with its two neighbors). To compute

P (x) for a n -bit string x , we assemble n cells

and put them into states that correspond to x ;

the rest of the (biin�nite) cell array is in a

neutral state.

Then we start the computation; the answer

should appear in some prede�ned cell (see be-

low about the choice of this cell).

There is a natural non-uniform version of

cellular automata: we assume that in each

vertex of the time-space diagram an arbitrary

function is used. Then the only restriction is

caused by the limited capacity of links: we re-

quire that inputs/outputs of all functions (in

all vertices) belong to some �xed set S .

In this non-uniform setting a predicate P

on binary strings is considered as a family

of Boolean functions Pn (where Pn is a re-

striction of P onto n -bit strings) and for each

Pn we measure the minimal size of a set S

needed to compute Pn in a non-uniform way

described above. If this size is an unbounded

function of n , we conclude that predicate P is

not computable by a cellular automaton. (In

compexity theory we use the same approach

when we try to prove that some predicate is

not in P since it needs superpolinomial circuits

in a non-uniform setting.)

As usual, getting lower bounds for nonuni-

form model is di�cult, but it turns out that

the decomposition complexity can be used if

the cellular automaton is obliged to produce

the answer as soon as possible.

Let us �x the neighborhood and assume that

each cell depends on itself and its two neigh-

bors. Then the �rst occasion to use all n input

bits happens around time n=2 in the middle of

the string:

u1 un

Now we assume that the output of a cellu-

lar automaton should be produced at this place

(both in uniform and non-uniform model).

(This is a very strong version of real-time

4

computation by cellular automata; we could

call it \as soon as possible"-computation .)

Theorem 3 Let Tk : Bk×Bf (k)×Bk → B be

a family of predicates that is non-uniformly

computable in this sense. Then the decom-

position complexity of Tk is O(k), and the

constant in O-notation is the logarithm of

the number of states.

Proof: see the picture

k

x

f (k)

y

k

z

T (x,y,z)

a(x,y) b(x,y)

(we use bigger units for time direction to

make the picture more clear).

We consider the contents of the line of

length 2k located k steps before the end of

the computation. The left half is a(x; y), the

right half is b(y; z) and the function t is com-

puted by the upper part of the circuit. It is

easy to see that a(x; y) indeed depends only

on x and y since information about z has not

arrived yet; for the same reason b(y; z) de-

pends only on y and z . �
Corollary: the predicate T from Theo-

rem 2 cannot be computed in this model.

Note that this predicate is computable by a

cellular automaton in linear time (we combine

the string x and z into a 2k -binary string; then

we move this string across the middle part of

input subtracting one at each step and waiting

until our counter decreases to zero; then we

know where the output bit should be read.

So we get the following result:

Theorem 4 There exists a linear-time com-

putable predicate that is not computable

\as soon as possible" even in a non-uniform

model.

Remark. This result and the intuition be-

hind the proof are not new (see the papers

of V. Terrier [6]; see also [1]). However, the

explicit use of decomposition compleixty helps

to formalize the intuition behind the proof. It

also allows us to show (in a similar way) that

this predicate cannot be computed not only

\as soon as possible", but even after o(
√
n)

steps after this moment (which seems to be an

improvement).

Questions: There could be other ways to

get lower bounds for non-uniform automata

(=triangle circuits). Of course, there is a

counting lower bound, but this does not give

any explicit function. Are there some other

tools?

4 Algorithmic Information

Theory

Now we can consider the Kolmogorov com-

plexity version of the same decomposition

problem. Assume that we have four binary

strings x; y; z; t such that K(t |x; y; z) ≈ 0.

Here K(�|�) stands for conditional complex-
ity of � when � is known, i.e., for the mini-

mal length of a program that transforms � to

�. (Hence our requirement says that there is

a short program that produces t given x; y; z .)

We are looking for strings a and b such

that K(a|x; y) ≈ 0, K(b |y; z) ≈ 0, and

K(t |a; b) ≈ 0. Such a and b always exist,

since we may let a = 〈x; y〉 and b = 〈y; z〉
(again, y can be split between a and b). How-

ever, the situation change if we restrict the

complexity of a and b. As we shall see, some-

times we need a and b of total complexity

close to K(x) + K(y) + K(z) even if t has

much smaller compmlexity. (Note the now

5

we cannot restrict to one-bit strings t for ev-

ident reasons.)

Theorem that shows that in general it is not

possible

TO BE WRITTEN:

Proof by a game-theoretic argument: op-

ponent has less moves so we can still create a

problem for him after every move

A stronger result requires that t is obtained

from x; y; z by a simple total function. To

prove this we need a probabilitic argument:

random function is covered by a small family

of binary functions with negligible probability

Reformulation: is there a function that has

large decomposition complexity even if we al-

low multi-valued functions?

Question: it would be nice to get bounds

for an explicit function t(x; y; z).

Question: is the reformulation in terms of

classical information theory possible? Is it re-

lated to the probabilistic decomposition com-

plexity?

References

[1] C. Cho�rut and K. Culik II, On Real-Time

Cellular Automata and Trellis Automata,

Acta Informatica, 21, 393{407 (1984).

[2] ëÏÌÍÏÇÏÒÏ× á.î., ôÉÈÏÍÉÒÏ× ÷.í.,

"-ÜÎÔÒÏÐÉÑ É "-£ÍËÏÓÔØ ÍÎÏÖÅÓÔ×

× ÆÕÎËÃÉÏÎÁÌØÎÙÈ ÐÒÏÓÔÒÁÎÓÔ×ÁÈ.

õÓÐÅÈÉ ÍÁÔÅÍÁÔÉÞÅÓËÉÈ ÎÁÕË, 14 (2),

p. 3{86.

[3] ëÏÌÍÏÇÏÒÏ× á. î., ï ÐÒÅÄÓÔÁ×ÌÅÎÉÉ

ÎÅÐÒÅÒÙ×ÎÙÈ ÆÕÎËÃÉÊ ÎÅÓËÏÌØËÉÈ

ÐÅÒÅÍÅÎÎÙÈ × ×ÉÄÅ ÓÕÐÅÒÐÏÚÉÃÉÊ

ÎÅÐÒÅÒÙ×ÎÙÈ ÆÕÎËÃÉÊ ÏÄÎÏÇÏ

ÐÅÒÅÍÅÎÎÏÇÏ É ÓÌÏÖÅÎÉÑ. äÏËÌÁÄÙ

áËÁÄÅÍÉÉ ÎÁÕË óóóò, 114(5), 953{

956 (1957)

[4] Eyal Kushilevitz, Noam Nisan, Communi-

cation complexity, Cambridge University

Press, 1997.

[5] Shen A., Multisource information theory,

Theory and Applications of Models of

Computation, Lecture Notes in Computer

Science, Springer Berlin/Heidelberg,

3959 (2006), p. 327-338.

[6] V�eronique Terrier, Language not recog-

nizable in real time by one-way cellu-

lar automata. Theoretical Computer Sci-

ence, 156(1{2), 281{287 (1996).

6

