
Monotone complexity of a pair

Pavel Karpovich∗

August 5, 2009

Abstract
We define monotone complexity KM(x,y) of a pair of binary strings x,y in a natural

way and show that KM(x,y) may exceed the sum of the lengths of x and y (and therefore
the a priori complexity of a pair) by α log(|x|+ |y|) for every α < 1 (but not for α > 1).

We also show that decision complexity of a pair or triple of strings does not exceed the
sum of its lengths.

1 Introduction
There are different versions of Kolmogorov complexity: plain complexity (C), prefix complex-
ity (K), decision complexity (KR), monotone complexity (KM), etc. Let us recall the definitions
of plain, monotone and decision complexities in a form suitable for generalizations (see [7, 8]).

1.1 Plain complexity
Kolmogorov complexity CF(x) of a binary string x with respect to a computable function F (a
decompressor) is defined as

CF(x) = min{|p| : F(p) = x},

where |p| stands for the length of a binary string p. There exists an optimal decompressor U
such that CU is minimal up to O(1); CU(x) is then called (plain) Kolmogorov complexity of x.

Let us reformulate this definition in a way that is parallel to the definition of monotone com-
plexity. Instead of a function F let us consider its graph. A description mode is an enumerable
set W of pairs of binary strings that is a graph of a function, i.e.,

〈p,x〉 ∈W, 〈p′,x′〉 ∈W, p = p′ ⇒ x = x′,

If 〈p,x〉 ∈W , then p is called a description for x with respect to W . The complexity CW (x) of
a binary string x is the minimal length of a description for x with respect to W . There is an
optimal description mode S such that for every description mode W there exists cW such that

CS(x) 6 CW (x)+ cW

for every binary string x. The corresponding function CS is plain Kolmogorov complexity.
∗Moscow State Lomonosov University, pkarpovich@mail.ru. The work was performed while visiting LIF

Marseille (CNRS & Univ. Aix–Marseille); the visit was made possible by the CNRS France–Russia exchange
program; preparation of the final text was supported also by NAFIT ANR 008-01 grant.

1

1.2 Monotone complexity
We use the definition of monotone complexity KM(x) suggested by L. A. Levin. (Levin [2]
gave a criterion of Martin-Löf randomness in its terms: a binary sequence ω is Martin-Löf
random if and only if |x| −KM(x) 6 c for some constant c and all prefixes x of sequence ω;
here |x| denotes the length of a string x. Earlier a similar criterion was proven by Schnorr
who used a different version of complexity, called “process complexity”.) Let us recall the
definition of monotone complexity in terms of binary relations. A monotone description mode
is an enumerable set W of pairs of binary strings such that:

• if 〈p,x〉 ∈W and p� p′, then 〈p′,x〉 ∈W .

• if 〈p,x〉 ∈W and x′ � x, then 〈p,x′〉 ∈W .

• if 〈p,x〉 ∈W and 〈p,x′〉 ∈W, then x� x′ or x′ � x.

Here x � x′ means that x is a prefix of x′ (or x = x′). The intuition behind this definition:
a binary string u is considered as partial information about an infinite sequence that has prefix
u; then p� p′ means that p′ is a refinement of p, so if p describes x, every p′ � p should also
describe x, and so on.

If 〈p,x〉 ∈W , then p is called a description for x with respect to W . The monotone com-
plexity KMW (x) of x with respect to a monotone description mode W is (again) the minimal
length of a description for x. There is an optimal monotone description mode S such that

KMS(x) 6 KMW (x)+ cW

for every monotone description mode W and binary string x. The function KMS is called
monotone Kolmogorov complexity. (It is indeed monotone: if x is a prefix of x′, then KM(x) 6
KM(x′).)

1.3 Decision complexity
Decision complexity was defined by D.W. Loveland [4]. As before, we reformulate the defini-
tion in terms of binary relations. (Here description is treated as an isolated binary string while
described object is treated as information about an infinite sequence.)

Formally, a decision description mode is an enumerable set W of pairs of binary strings
such that:

• if 〈p,x〉 ∈W and x′ � x, then 〈p,x′〉 ∈W .

• if 〈p,x〉 ∈W and 〈p,x′〉 ∈W , then x� x′ or x′ � x.

If 〈p,x〉 ∈W , then p is called a description for x with respect to W . The decision complexity
KRW (x) of x is the minimal length of a description for x with respect to W . There is an optimal
decision description mode S such that

KRS(x) 6 KRW (x)+ cW

for every decision description mode W and binary string x. KRS(x) is called decision Kol-
mogorov complexity.

The notions of monotone complexity and decision complexity can be naturally generalized
to tuples of strings. (Monotone complexity for tuples was considered also by H. Takahashi,
cf. [6].)

2

2 Monotone complexity of a pair.
A monotone description mode for pairs is a pair of enumerable sets W1 and W2; each of them
is a monotone description mode (as defined earlier).

The monotone complexity KMW1,W2(x,y) of a pair of binary strings x and y is the minimal
length of a string p such that 〈p,x〉 ∈W1 and 〈p,y〉 ∈W2 (i.e., p describes x with respect to W1
and describes y with respect to W2). There is an optimal monotone description mode for pairs
and we can define monotone complexity of a pair, denoted by KM(x,y).

Monotone complexity of pairs is a monotone function: x� x′ and y� y′ implies KM(x,y) 6
KM(x′,y′). Monotone complexity of pairs 〈x,x〉, 〈x,Λ〉 and 〈Λ,x〉 (here Λ stands for an empty
string) equals KM(x) (up to O(1) additive term).

Monotone complexity of a string x is bounded by its length:

KM(x) 6 |x|+ c

(for some c and all x). It is easy to prove that monotone complexity of a pair 〈x,y〉 is bounded
by sum of lengths of strings x and y with additional logarithmic term. For every α > 1 we have

KM(x,y) 6 |x|+ |y|+α log(|x|+ |y|)+O(1).

(all the logarithms have base 2). Indeed, a pair 〈x,y〉 can be (monotonically) described by the
concatenation of a self-delimited code for x (of size |x|+α log |x|) and string y. The following
theorem shows that this bound cannot be significantly improved.

Theorem 1. For every α < 1 and every c ∈ N there exists a pair of binary strings 〈x,y〉 such
that

KM(x,y) > |x|+ |y|+α log(|x|+ |y|)+ c.

Proof. We fix some universal monotone description mode W of pairs. By way of contradiction,
let us suppose the inequality

KM(x,y) 6 |x|+ |y|+α log(|x|+ |y|)+ c

holds for some α < 1, some c ∈N and for all pairs 〈x,y〉. Then every pair 〈x,y〉 has description
of length f (|x|+ |y|) where

f (n) = n+ bα lognc+ c

(and f (0) = c). (Note that if p is a description for a string x, then every p′� p is also description
for x).

We get the desired contradiction by counting how many objects can a description serve and
how many descriptions and objects we have. First of all, note that we have about n2n pairs
where sum of lengths is n but only 2n descriptions of length n. This is not enough for us,
because the same string can be a description of many pairs: if p is a description of some pair
〈x,y〉 with long x and y, it is a description of all pairs 〈x′,y′〉 where x′ � x and y′ � y, and n+1
pairs among them have |x′|+ |y′|= n. So we get the same factor n here as before. The crucial
observation is that if some short p is a description of a pair 〈x,y〉 with long x and y, then all
extensions of p describe the same pair and therefore we waste a lot of descriptions. To make
this argument formal, we need to consider at the same time descriptions of different lengths.

3

It is done in the following way. Let S be a set of binary strings. We define the gain of
the set S, denoted by G(S), as follows: each pair 〈x,y〉 that has a description p in S with
|p|= f (|x|+ |y|), adds 2−(|x|+|y|) to the gain.

G(S) = ∑
〈x,y〉 has a description p in S with |p|= f (|x|+ |y|)

2−(|x|+|y|).

Let Sn be a set of all strings of length at most f (n). By assumption, Sn contains descriptions
of length f (k) for all pairs 〈x,y〉 such that k = |x|+ |y|6 n. Therefore the gain of Sn is at least

∑
k6n

(k +1)' n2/2

At the other hand, we prove the following lemma (and get the desired contradiction):
Lemma. The gain of the set of all strings of length at most f (n) does not exceed O(n1+α).
Proof. Let p be a string of length f (l) for some l 6 n. We prove the following upper bound

on the gain of set Sp,n of all binary strings of length at most f (n) that have prefix p:

2 f (l)G(Sp,n) 6 (n+1)2 f (n)−n +
n−1

∑
k=l

2 f (k)−k+1 +
n−1

∑
k=d(n−1)/2e

(2k +1−n)2 f (k)−n (1)

(Note that in the last term the factor (2k+1−n) is non-negative if and only if k > d(n−1)/2e.)
Using the fact that f (k) is less than k +α log(k)+ c we get an upper bound for the gain of Sb,n
when |b|= c (we let l = 0):

2cG(Sb,n) 6 2c(n+1)nα +2c ·2 ·
n−1

∑
k=0

kα +2c ·2 ·
n−1

∑
k=d(n−1)/2e

(2k +1−n)2k−nkα

The left-hand side is an upper bound for G(Sn) since the gain is achieved on strings of
size b or more, and all three terms in the right hand side (both sums and the additional term
2c(n+1)nα) are bounded by O(n1+α) values.

It remains to prove the inequality (1) by a backward induction on the length of string p.
There are 2 f (k) different subsets Sp,n with |p|= f (k), and our bound is valid for each of them.
The right side of the inequality (1) depends only on the length of p.

Induction base (l = n). For strings p with |p| = f (n) we need to show that the following
inequality holds:

G(Sp,n) 6 (n+1)2−n

Indeed, the set Sp,n consists of only one string of length f (n) that can be a description for n+1
(or less) pairs 〈x,y〉 with |x|+ |y|= n, and the pairs with smaller sum of lengths do not give any
gain.

Induction step. Suppose the inequality (1) is valid for all sets Sp′,n with |p′| = f (l) and
l > k. We will prove the bound on the gain G(Sp,n) with |p|= f (k). At first we consider a case
when f (k + 1) = f (k)+ 1. (It can also happen that f (k + 1) = f (k)+ 2, but we consider this
case later.) The set Sp,n consists of the root p and two subtrees Sp0,n and Sp1,n. A simple bound
for G(Sp,n) is the sum of gains of this subtrees and the root’s gain, but it is not enough. We
should use the fact that if the root (p) is a description for many pairs of total length k then there

4

should be of lot of pairs (of greater total length) that have descriptions in both subtrees Sp0,n
and Sp1,n, and we should take into account descriptions for each of this pairs only once.

There is some maximal pair of binary strings 〈x,y〉 such that p is a description of 〈x,y〉 (in
the following sense: if p is a description of some other pair 〈x′,y′〉, then x′ � x and y′ � y). The
total length |x|+ |y| of this pair may be greater than k; in this case p provides gain for several
pairs. Let r be a number of those pairs. (Obviously, 0 6 r 6 k + 1). Then (by definition) the
root p itself provides gain r2−k. If r > 1, the root p is also a description for at least r−1 pairs
with total length k+1. These pairs are already taken into account in both G(Sp0,n) and G(Sp1,n)
since they have descriptions of length f (k + 1) in these subtrees. Therefore, we may subtract
this overlap of size (r− 1)2−(k+1) from the sum G(Sp0,n)+ G(Sp1,n). Continuing this line of
reasoning, we note that the root p is a description for r− 2 pairs with total length k + 2, for
r−3 pairs with total length k +3 and so on. We should take into account the overlap for these
pairs too. Gains and penalties should be taken only for pairs with total length at most n. Thus
we get the following bound on the gain of Sp,n:

G(Sp,n) 6 G(Sp0,n)+G(Sp1,n)+ r2−k− (r−1)2−(k+1)− (r−2)2−(k+2)− . . .− (r− i)2−(k+i).

Here i is the maximal integer such that r− i > 1 and k + i 6 n, i.e., i = min(r− 1,n− k).
Transforming the right hand side (splitting one term into two), we get

G(Sp,n) 6 G(Sp0,n)+G(Sp1,n)+2−k +(r−1)2−k− (r−1)2−(k+1)−
− (r−2)2−(k+2)− . . .− (r− i)2−(k+i),

then (combining terms that contain r−1)

G(Sp,n) 6 G(Sp0,n)+G(Sp1,n)+2−k +(r−1)2−(k+1)−
− (r−2)2−(k+2)− . . .− (r− i)2−(k+i),

then (splitting again)

G(Sp,n) 6 G(Sp0,n)+G(Sp1,n)+2−k +2−(k+1) +(r−2)2−(k+1)−
− (r−2)2−(k+2)− . . .− (r− i)2−(k+i),

then (combining terms that contain r−2)

G(Sp,n) 6 G(Sp0,n)+G(Sp1,n)+2−k +2−(k+1) +(r−2)2−(k+2)− . . .− (r− i)2−(k+i),

and so on until we get

G(Sp,n) 6 G(Sp0,n)+G(Sp1,n)+2−k +2−(k+1) + . . .+2−(k+i−1) +(r− i)2−(k+i),

Recall that we have two cases: i = min(r−1,n− k) and minimum can be equal to the first or
the second term. If r−1 < n− k, the first term matters. Then i = r−1, so r− i = 1 and in the
right hand side we have a geometric sequence that can be bounded by twice its first term, i.e.,

G(Sp,n) 6 G(Sp0,n)+G(Sp1,n)+2 ·2−k.

5

If r−1 > n− k, then i = n− k and (in addition to geometric sequence) we have the last term:

G(Sp,n) 6 G(Sp0,n)+G(Sp1,n)+2 ·2−k +(r−n+ k)2−n.

The maximal value for this last term is achieved when r is maximal, i.e., r = k + 1. So in any
case we have the following bound:

G(Sp,n) 6 G(Sp0,n)+G(Sp1,n)+2 ·2−k +(2k +1−n)2−n.

At the end we have the expression:

G(Sp) < 2max(G(Sp0),G(Sp1))+2−k+1 +max(0,2k +1−n)2−n

Remember, f (k +1)− f (k) is equal to 1 by assumption. Then the inequality may be rewritten
as:

G(Sp) < 2 f (k+1)− f (k) max(G(Sp0),G(Sp1))+2−k+1 +max(0,2k +1−n)2−n (2)

Now we can multiply both sides of inequality (2) by 2 f (k) and use the induction assumption.
The max-operation in the last terms restricts the sum to its non-negative terms, i.e., for k >
d(n−1)/2e.

Now it remains to consider the case f (k+1)− f (k) = 2. In this case we can also use the in-
equality (2) with term max(G(Sp00),G(Sp10),G(Sp01),G(Sp11)) instead of max(G(Sp0),G(Sp1)).
(We have the sum of gains for four subtrees, and 2 f (k+1)− f (k) = 4. Note that we do not use the
overlap in full: the same pairs are served in all four subtrees, so we could subtract three times
more, but it is not needed.) This is enough for our induction argument.

Lemma (and therefore Theorem 1) are proven.

3 Decision complexity of triples.
A decision description mode for pairs is a pair of enumerable sets W1 and W2; each of them is
a decision description mode. The complexity KRW1,W2(x,y) of a pair of binary strings x and y
is the minimal length of a string p such that 〈p,x〉 ∈W1 and 〈p,y〉 ∈W2 (i.e., p describes x with
respect to W1 and p describes y with respect to W2).

There is an optimal decision description mode for pairs and we can define decision com-
plexity of a pair, denoted by KR(x,y). We can also define decision complexity KR(x,y,z) of a
triple in the same way (as well as decision complexity of k-tuples for any fixed k).

It is easy to see that decision complexity of a binary string x is bounded by |x|+ O(1).
Indeed, we may consider the set W of all pairs 〈p,x〉 where x is a prefix of p. In this case every
string x is a description of itself; switching to the optimal description mode, we lose O(1).

It is also easy to prove that decision complexity of a pair 〈x,y〉 is bounded by |x|+ |y|+O(1).
Let the set W1 from our definition be the set of all pairs 〈p,x〉 where x is a prefix of p. Let the
set W2be the set of all pairs 〈p,y〉 where y is a prefix of pR (the reversed string p). Then any
pair 〈x,y〉 has a description xyR, and its length is |x|+ |y|.

It turns out (quite unexpectedly) that similar statement is true for triples (though we do not
know the simple explanation why it happens and the argument we use looks artificial; we do
not know whether it generalizes to k-tuples for k > 3):

Theorem 2.
KR(x,y,z) 6 |x|+ |y|+ |z|+ c

6

for some c and all triples 〈x,y,z〉.

Proof. The statement of Theorem 2 is a consequence of the following combinatorial state-
ment:

Lemma 1. For every n ∈ N there is a set Zn that contains 2n triples of n-bit strings 〈a,b,c〉
such that for every triple 〈x,y,z〉 with |x|+ |y|+ |z| = n there exists a triple 〈a,b,c〉 ∈ Zn such
that x� a, y� b and z� c.

Note that we need at least 2n elements in Zn since every triple 〈a,b,c〉 serves
(n+2

2

)
triples

〈x,y,z〉 and there are 2n(n+2
2

)
triples 〈x,y,z〉 with |x|+ |y|+ |z|= n.

Lemma 1 implies the statement of Theorem 2. Indeed, we may assume that Zn is a com-
putable function of n, and fix some bijection between elements of Zn and n-bit strings. Then a
binary string p of length n that corresponds to a triple 〈a,b,c〉 ∈ Zn is considered as a description
for every triple 〈x,y,z〉 where x� a, y≺ b, z� c. It remains to prove Lemma 1.

Lemma 1 is a simple consequence of the following algebraic statement. Consider for every
n a n-dimensional vector space Fn

2 over two-element field F2.
Lemma 2. There is a family of 3n vectors a1, . . . ,an,b1, . . . ,bn,c1, . . . ,cn in this space such

that for every non-negative q,r, t with q + r + t = n the vectors a1, . . . ,aq,b1, . . . ,br,c1, . . . ,ct
are linearly independent.

In other terms, we have three bases (ai), (bi) and (ci) in our space Fn
2 with additional prop-

erty: if we take in total n vectors from these bases, and in each basis start from the beginning,
we again get a basis in Fn

2.
Let us show how Lemma 2 implies Lemma 1 (and therefore the statement of Theorem 2).

There are 2n different linear functions on Fn
2→ F2. For each linear function f we construct a

triple of binary strings 〈a,b,c〉 (and these triples form Zn):

a = f (a1) . . . f (an), b = f (b1) . . . f (bn), c = f (c1) . . . f (cn).

So we get 2n triples. For any triple of binary strings 〈x,y,z〉 such that |x|+ |y|+ |z|= n, consider
q = |x|, r = |y|, and t = |z|. Since a1, . . . ,aq,b1, . . . ,br,c1, . . . ,ct are independent, there exists
a linear function that has values x1, . . . ,xq on a1, . . . ,a1, has values y1, . . . ,yr on b1, . . . ,br and
z1, . . . ,zt on c1, . . . ,ct . It remains to prove Lemma 2.

Proof of lemma 2. We will construct the required family by induction over n. The induction
step moves us from n to n+3, so we need to consider the cases n = 1,2,3 for a base.

Induction base. For n = 1, the space has dimension 1 and three vectors are a,a,a where a
is the only nonzero vector in the space.

For n = 2 consider the basis e, f in our (2-dimensional) space; six vectors could be, for
example

e f
f e

e+ f e

(the first row is a1,a2, the second is b1,b2, the third is c1,c2). Each row is evidently a basis,
and if we take any two vectors from the first column, we also get a basis.

Finally, for n = 3 we take a basis e, f ,g in three-dimensional space and consider vectors

e f g
g f e

f + e+g f e.

7

Each row is evidently a basis; first column is a basis. If we take two first vectors of any row
and complement them by a first element of some other row, we again get a basis. (Note that we
can check either the linear independence or the fact that chosen vectors span the entire space.)

Induction step. By induction assumption, we have 3k vectors

a1 a2 . . . ak
b1 b2 . . . bk
c1 c2 . . . ck

in a k-dimensional space. Now we add three new dimensions and corresponding vectors a,b,c
(that complement any basis in k-dimensional space giving a basis in (k+3)-dimensional space).
We need to construct 3k +3 vectors in this extended space. It can be done as follows:

a a1[+c] a2[+c] . . . ak[+c] b+ c c
b b1[+a] b2[+a] . . . bk[+a] c+a a
c c1[+b] c2[+b] . . . ck[+b] a+b b

(square brackets mean that we either add the term in brackets or not, the choice will be made
later).

We need to check the every family of k + 3 vectors (in each row we choose some vectors
starting from the left) is independent. Let us start with simple cases where this can be checked
independently of the terms in brackets.

Each row forms a basis: first vector and two last vectors generate all three vectors a,b,c,
after that the square brackets terms do not matter and we use the induction assumption.

If selection involves all three rows, then vectors a, b, and c are there, and the rest of the
selection is k vectors taken from old family, so we get a basis (induction assumption).

It remains to consider the case when selection involves exactly two rows, say, two first rows.
Then it includes vectors a and b. Therefore, the terms [+a] in the second row do not matter
(since we can add b without changing linear independence). There are several possibilities
starting from

a,b,b1,b2, . . . ,bk,a+ c

(all the terms except the first one are taken from the second row) and ending with

a,a1[+c],a2[+c], . . . ,ak[+c],b+ c,b

(all the terms, except the last one, are taken from the first row). These two extreme cases
are easy (we have a,b,c and vectors from the old basis), but intermediate cases require more
attention. Let us start with selection

a,a1[+c],b,b1,b2, . . . ,bk

(two vectors from the first row and the rest from the second row). We have here b1, . . . ,bk that
form a basis in the old space; vector a1 is a combination of them, so if we add c, we get a
basis in the new space (all three new vectors a,b,c are now accessible). Then we move to the
selection

a,a1 + c,a2[+c],b,b1, . . . ,bk−1.

Here (by induction) the vectors a1,b1, . . . ,bk−1 form a basis, therefore a2 is a combination of
them. Using a1 + c instead of a1 in this combination, we may get a2 + c instead of a2. If this

8

is the case, we do not add c to a2 and get a basis in the new space; if we still get a2, not a2 + c
(this happens if a1 was not involved in the expression for a2), we use a2 +c. Then we consider
the next selection

a,a1 + c,a2[+c],a3[+c],b,b1,b2, . . . ,bk−2,

recall that a1,a2,b1, . . . ,bk−2 form a basis, take an expression for a3 in this basis, look whether
c appears if we use a1 + c and a2[+c] instead of a1 and a2, and so on.

The case when selection does not involve first or second row is similar (circular permutation
of rows).

Lemma 2 is proven.
Question: is an algebraic statement similar to Lemma 2 true for quadruples (or k-tuples)

instead of triples? If not, is the combinatorial statement similar to Lemma 1 true? If not, is the
decision complexity bounded by the sum of lengths?

Remark: If it is not the case for k-tuple for some fixed k, then get a new proof of Theorem 1
in a weak form saying that KM(x,y) is not bounded by |x|+ |y|+O(1). indeed, it is easy to see
that if such a bound were true, this would imply similar bound for k-tuples for any k, and this
would imply Theorem 2 for any k.

References
[1] Gács, P., On the relation between descriptional complexity and algorithmic probability,

FOCS 1981. Journal version: Theoretical Computer Science, 22:71–93 (1983).

[2] Levin L.A., On the notion of a random sequence, Soviet Math. Dokl., 14:1413–1416 (1973).

[3] Li M., Vitányi P., An Introduction to Kolmogorov Complexity and Its Applications, Second
Edition, Springer, 1997. (638 pp.)

[4] Loveland, D.W., A Variant of the Kolmogorov Concept of Complexity, Information and
Control, 15:510–526 (1969).

[5] A. Shen, Algorithmic Information Theory and Kolmogorov Complexity. Lecture notes of
an introductory course. Uppsala University Technical Report 2000-034. (2000)

[6] Takahashi, H., On a definition of random sequences with respect to conditional probability,
Information and Computation, 206:1375–1382 (2008).

[7] Shen, A., Algorithmic variants of the notion of entropy, Soviet Math. Dokl., 29(3):569–573
(1984).

[8] Uspensky, V.A., Shen, A., Relation between varieties of Kolmogorov complexities, Math.
Systems Theory, 29(3):271–192 (1996).

[9] Zvonkin, A.K., Levin, L.A., The complexity of finite objects and the development of the
concepts of information and randomness by means of the theory of algorithms. Russian
Math. Surveys, 25(6):83–124 (1970).

9

