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Abstract. Muchnik’s theorem about simple conditional descriptions
states that for all strings a and b there exists a program p transforming
a to b that has the least possible length and is simple conditional on b.
In this paper we present two new proofs of this theorem. The first one is
based on the on-line matching algorithm for bipartite graphs. The sec-
ond one, based on extractors, can be generalized to prove a version of
Muchnik’s theorem for space-bounded Kolmogorov complexity. Another
version of Muchnik’s theorem is proven for a resource-bounded variant
of Kolmogorov complexity based on Arthur–Merlin protocols.

1 Muchnik’s Theorem

In this section we recall a result about conditional Kolmogorov complexity due
to An. Muchnik [7]. By C(u) we denote Kolmogorov complexity of string u, i.e.,
the length of a shortest program generating u. The conditional complexity of u
given v, the length of a shortest program that translates v to u, is denoted by
C(u | v), see [4].

Theorem 1. Let a and b be two binary strings, C(a) < n and C(a | b) < k. Then
there exists a string p such that
• C(a |p, b) ≤ O(log n);
• C(p) ≤ k +O(log n);
• C(p |a) ≤ O(log n).

This is true for all a, b, n, k, and the constants hidden in O(log n) do not depend
on them.

Remarks. 1. In the second inequality we can replace complexity C(p) of a
string p by its length |p|. Indeed, we can use the shortest description of p instead
of p.

2. We may let k = C(a | b) + 1 and replace k+O(log n) by C(a | b) +O(log n)
in the second inequality. We may also let n = C(a) + 1.
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3. Finally, having |p| ≤ C(a | b) +O(log n), we can delete O(log n) last bits in
p, and the first and third inequalities will remain true. We come to the following
reformulation of Muchnik’s theorem: for every two binary strings a and b there
exist a binary string p of length at most C(a | b) such that C(a |p, b) ≤ O(log C(a))
and C(p |a) ≤ O(log C(a)).

Informally, Muchnik’s theorem says that there exists a program p that trans-
forms b to a, has the minimal possible complexity C(a | b) up to a logarithmic
term, and, moreover, can be easily obtained from a. The last requirement is cru-
cial, otherwise the statement becomes a trivial reformulation of the definition of
conditional Kolmogorov complexity.

This theorem is an algorithmic counterpart of Slepian–Wolf theorem [11] in
multisource information theory. Assume that somebody (S) knows b and wants
to know a. We know a and want to send some message p to S that will allow
S to reconstruct a. How long should be this message? Do we need to know b to
be able to find such a message? Muchnik’s theorem provides kind of a negative
answer to the last question, though we still need a logarithmic advice. Indeed,
the absolute minimum for a complexity of a piece of information p that together
with b allows S to reconstruct a, is C(a | b). It is easy to see that this minimum
can be achieved with logarithmic precision by a string p that has logarithmic
complexity conditional on a and b. But it turns out that in fact b is not needed
and we can provide p that is simple conditional on a and still does the job.

In many cases statements about Kolmogorov complexity have combinatorial
counterparts (and sometimes it is easy to show the equivalence between complex-
ity and combinatorial statements). In the present paper we study two different
combinatorial objects closely related to Muchnik’s theorem and its proof.

First (Sect. 2), we define the on-line matching problem for bipartite graphs.
We formulate some combinatorial statement about on-line matchings. This state-
ment (1) easily implies Muchnik’s theorem and (2) can be proven using the same
ideas (slightly modified) that were used by Muchnik in his original proof.

Second (Sect. 3), following [3], we use extractors and their combinatorial
properties. Based on this technique, we give a new proof of Muchnik’s theorem.
With this method we prove versions of this theorem for polynomial space Kol-
mogorov complexity and also for some very special version of polynomial time
Kolmogorov complexity.

This work was presented on the CSR2009 conference in Novosibirsk, Russia
on 18–23 August, 2009, and the conference version of the paper was published in
CSR2009 Proceedings by Springer-Verlag. This version of the paper is slightly
rearranged and extended.

2 Muchnik’s Theorem and On-line Matchings

In this section we introduce a combinatorial problem that we call on-line match-
ing. It can be considered as an on-line version of the classical matching problem.
Then we formulate some combinatorial statement about on-line matchings and
explain how it implies Muchnik’s theorem. Finally, we provide a proof of this



combinatorial statement (starting with the off-line version of it) thus finishing
the proof of Muchnik’s theorem.

2.1 On-line Matchings

Consider a bipartite graph with the left part L, the right part R and a set of
edges E ⊂ L × R. Let s be some integer. We are interested in the following
property of the graph:

for any subset L′ of L of size at most s there exists a subset E′ ⊂ E that
performs a bijection between L′ and some R′ ⊂ R.

A necessary and sufficient condition for this property is provided by well-
known Hall’s theorem. It says that for each set L′ ⊂ L of size t ≤ s the set of
all neighbors of elements of L′ contains at least t elements.

x

This condition is not sufficient for the following on-line
version of matching. We assume that an adversary gives us
elements of L (up to s elements) one by one. At each step
we should provide a counterpart for each given element x,
i.e., to choose some neighbor y ∈ R not used before. This
choice is final and cannot be changed later.

Providing a matching on-line, when next steps of the adversary are not known
in advance, is a more subtle problem than the usual off-line matching. Now Hall’s
criterion, while still being necessary, is no more sufficient. For example, for the
graph shown in the picture, one can find a matching for each subset of size at
most 2 of the left part, but this cannot be done on-line. Indeed, we are blocked
if the adversary starts with x.

Now we formulate a combinatorial statement about on-line matching; then
we show that this property implies Muchnik’s theorem (Sect. 2.2) and prove this
property (Sect. 2.3).

Combinatorial statement about on-line matchings (OM). There exists
a constant c such that for every integers n and k ≤ n there exists a bipartite
graph E ⊂ L×R whose left part L has size 2n, right part R has size 2knc, each
vertex in L has at most nc neighbors in R, and for which on-line matching is
possible up to size 2k.

Note that the size of the on-line matching is close to the size of R up to a
polynomial factor, and the degrees of all L-elements are polynomially bounded,
so we are close to Hall’s bound.

2.2 Proof of Muchnik’s theorem

First we show how (OM) implies Muchnik’s theorem. We may assume without
loss of generality that the length of the string a (instead of its complexity) is
less than n. Indeed, if we replace a by a shortest program that generates a, all
complexities involving a change by only O(log n) term: knowing the shortest
program for a, we can get a without any additional information, and to get a



shortest program for a given a we need only to know the value of C(a), because
we can try all programs of length C(a) until one of them produces a. There may
exist several different shortest programs for a; we take that one which appears
first when trying in parallel all programs of length C(a). As we have said, for
similar reasons it does not matter whether we speak about C(p) or |p| in the
conclusion of the theorem. We used C(p) to make the statement more uniform;
however, in the proof we get the bound for |p| directly.

We may assume that n ≥ k, otherwise the statement of theorem 1 is trivial
(let p = a). Consider the graph E provided by (OM) with parameters n and
k. Its left part L is interpreted as the set of all strings of length less than n;
therefore, a is an element of L. Knowing b, we can enumerate all strings x of
length less than n such that C(x | b) < k. There exist at most 2k such strings, and
a is one of them. The property (OM) implies that it is possible to find an on-line
matching for all these strings (in the order they appear during the enumeration).
Let p be an element of R that corresponds to a in this matching.

Let us check that p satisfies all the conditions of Muchnik’s theorem. First
of all, note that the graph E can be chosen in such a way that its complexity
is O(log n). Indeed, (OM) guarantees that a graph with the required properties
exists. Given n and k, we can perform an exhaustive search until the first graph
with these properties is found. This graph is a computable function of n and
k, so its complexity does not exceed the complexity of the pair (n, k), which is
O(log n).

If a is given (as well as n and k), then p can be specified by its ordinal number
in the list of a-neighbors. This list contains at most nc elements, so the ordinal
number contains O(log n) bits.

To specify p without knowing a, we give the ordinal number of p in R, which
is k+O(log n) bits long. Here we again need n and k, but this is another O(log n)
bits.

To reconstruct a from b and p, we enumerate all strings of lengths less than
n that have conditional complexity (relative to b, which is known) less than k,
and find R-counterparts for them using (OM) until p appears. Then a is the
L-counterpart of p in this matching.

Formally speaking, for given n and k we should fix not only a graph G but
also some on-line matching procedure, and use the same procedure both for
constructing p and for reconstructing a from b and p. ut

2.3 On-line Matchings Exist

It remains to prove the statement (OM). Our proof follows the original Muchnik’s
argument adapted for the combinatorial setting.

First, let us prove a weaker statement when on-line matchings are replaced
by off-line matchings. In this case the statement can be reformulated using Hall’s
criterion, and we get the following statement:

Off-line version of (OM). There exists a constant c such that for any
integers n and k ≤ n there exists a bipartite graph E ⊂ L × R whose left part
L is of size 2n, the right part R is of size 2knc, each vertex in L has at most



nc neighbors in R and for any subset X ⊂ L of size t ≤ 2k the set N(X) of all
neighbors of all elements of X contains at least t elements.

We prove this statement by probabilistic arguments. We choose at random
(uniformly and independently) nc neighbors for each vertex l ∈ L. In this way
we obtain a (random) graph where all vertices in L have degree at most nc; the
degree can be less, as two independent choices for some vertex may coincide.

We claim that this random graph has the required property with positive
probability. If it does not, there exists a set X ⊂ L of some size t ≤ 2k and a set
Y of size less than t such that all neighbors of all elements of X belong to Y .
For fixed X and Y the probability of this event is bounded by

(
1
nc

)tnc

since
we made tnc independent choices (nc times for each of t elements) and for each
choice the probability to get into Y is at most 1/nc (the set Y covers at most
1/nc fraction of points in R).

To bound the probability of violating the required property of the graph,
we multiply the bound above by the number of pairs X, Y . The set X can be
chosen in at most (2n)t different ways, since for each of t elements we have at
most 2n choices; actually the number is smaller since the order of elements does
not matter. For Y we have at most (2knc)t choices. Further we sum up these
bounds for all t ≤ 2k. Therefore the total bound is

2k∑
t=1

(
1
nc

)tnc

(2n)t
(
2knc

)t
This is a geometric series; the sum is less than 1 (which is our goal) if the base
is small. The base is (

1
nc

)nc

(2n)
(
2knc

)
=

2n+k

nc(nc−1)

and c = 2 makes it small enough, it even tends to zero as n → ∞. Off-line
version is proven. ut

Now we have to prove (OM) in its original on-line version. Fix a graph E ⊂
L×R that satisfies the conditions for the off-line version (for given n and k). Let
us use the same graph in the on-line setting with the following straightforward
(“greedy”) strategy. When a new element x ∈ L arrives, we check if it has
neighbors that are not used yet. If yes, one of these neighbors is chosen to be a
counterpart of x. If not, x is “rejected”.

Before we explain what to do with the rejected elements, let us prove that at
most half of 2k given elements could be rejected. Assume that more than 2k−1

elements are rejected. Then less than 2k−1 elements are served and therefore
less than 2k−1 elements of R are used as counterparts. But all neighbors of all
rejected elements are used (this is the only reason for rejection), and we get
the contradiction with the condition #N(X) ≥ #X if X is the set of rejected
elements.

Now we need to deal with rejected elements. They are forwarded to the “next
layer” where the new task is to find on-line matching for 2k−1 elements. If we can



do this, then we combine both graphs using the same L and disjoint right parts
R1 and R2; the elements rejected at the first layer are sent to the second one.
In other terms: (n, k) on-line problem is reduced to (n, k) off-line problem and
(n, k − 1) on-line problem. The latter can then be reduced to (n, k − 1) off-line
and (n, k − 2) on-line problems etc.

Finally we get k levels. At each level we serve at least half of the requests
and forward the remaining ones to the next layer. After k levels of filtering only
one request can be left unserved, so one more layer is enough. Note also that we
may use copies of the same graph on all layers.

More precisely, we have proven the following statement: Let E ⊂ L × R be
a graph that satisfies the conditions of the off-line version for given n and k.
Replace each element in R by (k+ 1) copies, all connected to the same elements
of L as before. Then the new graph provides on-line matchings up to size 2k.

Note that this construction multiplies both the size of R and the degree of
vertices in L by (k + 1) (a polynomial in n factor). The statement (OM) is
proven. ut

3 Muchnik’s Theorem and Extractors

In this section we present another proof of Muchnik’s theorem based on the
notion of extractors. This technique was first used in a similar situation in [3].
With this technique we prove some versions of Muchnik’s theorem for resource-
bounded Kolmogorov complexity. This result was presented in the Master Thesis
of one of the authors [5].

3.1 Extractors

Let G be a bipartite graph with N vertices in the left part and M vertices in the
right part. The graph may have multiple edges. Let all vertices of the left part
have the same degree D. Let us fix an integer K > 0 and a real number ε > 0.

Definition 1. A bipartite graph G is a (K, ε)-extractor if for all subsets S of its
left part such that #S ≥ K and for all subsets Y of the right part the inequality∣∣∣∣#E(S, Y )

D ·#S
− #Y

M

∣∣∣∣ < ε (1)

holds, where E(S, Y ) stands for the set of edges between S and Y .

In the sequel we always assume that N , M and D (and sometimes other quanti-
ties denoted by uppercase letters) are powers of 2, and use corresponding lower-
case letters (n, m, d, etc.) to denote their logarithms. In this case the extractor
may be seen as a function that maps a pair of binary strings of length n = logN
(an index of a vertex on the left) and of length d = logD (an index of an edge
incident to this vertex) to a binary string of length m = logM (an index of the
corresponding vertex on the right).



The extractor property may be reformulated as follows: consider a uniform
distribution on a set S of left-part vertices. The probability of getting a vertex in
Y by taking a random neighbor of a random vertex in S is equal to #E(S, Y )/(D·
#S); this probability must be ε-close to #Y/M , i.e. the probability of getting a
vertex in Y by taking a random vertex in the right part.

It can be proven that (for an extractor graph) a similar property holds not
only for uniform distributions on S, but for all distributions with min-entropy
at least k = logK (this means that no element of L appears with probability
greater than 1/K). That is, an extractor extracts m almost random bits from
n quasi-random bits (with min-entropy k or more) using d truly random bits.
For a good extractor m should be close to k + d and d should be small (as well
as ε). Standard probabilistic argument shows that for all n, k and ε extractors
with near-optimal parameters m and d do exist:

Theorem 2. For all K, N , M and ε such that 1 < K ≤ N , M > 0, ε > 0,
there exists an (K, ε)-extractor with

D =
⌈

max
{
M

K
· ln 2
ε2

,
1
ε2

(
ln
N

K
+ 1
)}⌉

.

So for given n and k we may choose the followings values of parameters (in
logarithmic scale):

d = log(n− k) + 2 log(1/ε) +O(1) and m = k + d− 2 log(1/ε)−O(1).

The proof may be found in [1]; it is also shown there that these parameters
are optimal up to an additive term O(log(1/ε)).

So far no explicit constructions of optimal extractors have been invented. By
saying the extractor is explicit we mean that there exists a family of extractors
for arbitrary values of n and k, other parameters are computable in time poly(n),
and the extractor itself as a function of two arguments is computable in poly(n)
time. All known explicit constructions are not optimal in at least one parameter:
they either use too many truly random bits, or not fully extract randomness (i.e.,
m � k + d), or work not for all values of k. In the sequel we use the following
theorem proven in [2]:

Theorem 3. For all 1 < k ≤ n and ε > 1/ poly(n) there exists an explicit
(2k, ε)-extractor for m = k + d and d = O((log n log log n)2).

For the sake of brevity we use shorter and slightly weaker bound O(log3 n)
instead of O((log n log log n)2) in the sequel.

3.2 The Proof of Muchnik’s Theorem

Now we show how to prove Muchnik’s theorem using the extractor technique.
Consider an extractor with some N , K, D, M and ε. Let S be a subset of its
left part such that #S ≤ K. We say that a right-part element is bad for S if it
has more than 2DK/M neighbors in S (twice more than the expected value if



neighbors in the right part are chosen at random and S has maximal possible
size K), and we say that a left-part element is dangerous in S if all its neighbors
are bad for S.

Lemma 1. The number of dangerous elements in S is less than 2εK.

Proof. We reproduce a simple proof from [3]. Without loss of generality we may
assume that S contains exactly K elements (the sets of bad and dangerous
elements can only increase when S increases.)

For any graph the fraction of bad right-part vertices is at most 1/2, because
the degree of a bad vertex is at least twice as large as the average degree. The
extractor property reduces this bound from 1/2 to ε. Indeed, let δ be the fraction
of bad elements in the right part. Then the fraction of edges going to bad elements
(among all edges starting at S) is at least 2δ. Due to the extractor property, the
difference between these fractions should be less than ε. The inequality δ < ε
follows.

Now we count dangerous elements in S. If their fraction in S is 2ε or more,
then the fraction of edges going to the bad elements (among all edges leaving S)
is at least 2ε. But the fraction of bad vertices is less than ε, and the difference
between two fractions should be less than ε due to the extractor property. ut

Now we present a new proof of Muchnik’s theorem. As we have seen before,
we may assume without loss of generality that the length of a is less than n.
Moreover, as we have said, we may assume that conditional complexity C(a | b)
equals k − 1 (otherwise we decrease k) and that k < n (otherwise the theorem
is obvious, take p = a).

Consider an extractor with given n, k; let d = O(log n), m = k and ε = 1/n3;
such an extractor exists due to Theorem 2. (The choice of ε will become clear
later). We choose an extractor whose complexity is at most 2 log n+O(1). It is
possible, because only n and k are needed to describe such an extractor: other
parameters are functions of n and k, and we can search through all bipartite
graphs with given parameters in some natural order until the first extractor
with required parameters is found. (This search requires a very long time, so
this extractor is not explicit.)

Now assume that an extractor is fixed. We treat the left part of the extractor
as the set of all binary strings of length less than n (including a), and the right
part as the set of all binary strings of length m = k (we will choose p among
them). Consider the set Sb of all strings in the left part such that their complexity
conditional on b is less than k (a belongs to this set).

We want to apply Lemma 1 to the set Sb and prove that a is not dangerous in
Sb (by showing that otherwise C(a | b) would be too small). So a has a neighbor
p that is not bad for Sb, and this p has the required properties.

According to this plan, let us consider two cases.
Case 1. If a is not dangerous in Sb, then a has a neighbor p that is not bad

for Sb. Let us show that p satisfies the claim of the theorem.
Complexity of p is at most k +O(1) because its length is k.



Conditional complexity C(p |a) is logarithmic because p is a neighbor of a in
the extractor and to specify p we need a description of the extractor (2 log n +
O(1) bits) and the ordinal number of p among the neighbors of a (d = logD =
O(log n) bits).

As p is not bad for Sb, it has less than 2D neighbors in Sb. If b is known, the set
Sb can be enumerated; knowing p, we select neighbors of p in this enumeration.
Thus, to describe a given p and b, we need only a description of the extractor
and the ordinal number of a in the enumeration of the neighbors of p in Sb, i.e.,
O(log n) bits in total.

Case 2. Assume that a is dangerous in Sb. Since the set Sb can be enumerated
given b, the sets of all bad vertices (for Sb) and all dangerous elements in Sb can
also be enumerated. Therefore, a can be specified by the string b, the extractor
and the ordinal number of a in the enumeration of all dangerous elements in Sb.
This ordinal number consists of k − 3 log n + O(1) bits due to the choice of ε
(Lemma 1). So, the full description of a given b consists of k− log n+O(log log n)
bits (here O(log log n) additional bits are needed for separating n, k and the
ordinal number). This contradicts the assumption that C(a | b) = k − 1. Thus,
the second case is impossible and Muchnik’s theorem is proven. ut

3.3 Several Conditions and Prefix Extractors

In [7] An. Muchnik proved also the following generalization of Theorem 1:

Theorem 4. Let a, b and c be binary strings, and let n, k and l be numbers such
that C(a) < n, C(a | b) < k and C(a | c) < l. Then there exist binary strings p
and q of length k and l respectively such that one of them is a prefix of the other
one and all the conditional complexities C(a |p, b), C(a | q, c), C(p |a), C(q |a)
are of order O(log n).

This theorem is quite non-trivial: indeed, it says that information about a that
is missing in b and c can be represented by two strings such that one is a prefix
of the other (though b and c could be totally unrelated). It implies also that
for every three strings a, b, c of length at most n the minimal length of a pro-
gram that transforms b to a and at the same time transforms c to a is at most
max{C(a | b),C(a | c)}+O(log n).

In fact a similar statement can be proven not only for two but for many (even
for poly(n)) conditions. For the sake of brevity we consider only the statement
with two conditions.

This theorem also can be proven using extractors. Any extractor can be
viewed as a function E : {0, 1}n × {0, 1}d → {0, 1}m.

Definition 2. We say that a (2k, ε)-extractor E : {0, 1}n × {0, 1}d → {0, 1}m
is a prefix extractor if for every i ≤ k its prefix of length m − i (a function
Ei : {0, 1}n×{0, 1}d → {0, 1}m−i obtained by truncating i last bits) is a (2k−i, ε)-
extractor.

By using probabilistic method the following theorem can be proven:



Theorem 5. For all 1 < k ≤ n and ε > 0 there exists a prefix (2k, ε)-extractor
with parameters d = log n+2 log(1/ε)+O(1) and m = k+d−2 log(1/ε)−O(1).

Proof: This proof is quite similar to the standard proof of Theorem 3. In that
proof the probabilistic argument is used to show that a random graph has the
required property with positive probability. In fact it is shown that this proba-
bility is not only positive but close to 1. Then we show that the restriction of
a random graph is also a random graph, and the intersection of several events
having probability close to 1 has a positive probability. Let us explain these
arguments in more detail.

We want to show that a random bipartite graph with given parameters is a
prefix extractor with a positive probability. First of all we note that it is enough
to show that inequality (1) holds for S of size exactly K. Then this condition is
true also for every bigger set S, since the uniform distribution on S is an average
of the distributions on its subsets of size K. Second, it is enough to check the
bound (1) only in one direction:

#E(S, Y )
D ·#S

<
#Y
M

+ ε

(for all sets S of cardinality K and for all Y ). Indeed, the inequality

#E(S, Y )
D ·#S

>
#Y
M
− ε

follows from the previous one applied to the complement of Y : if there are too
few edges from S to Y then there are too many edges from S to the complement
of Y .

Now we specify the distribution on graphs. For every string of length n (a
vertex of the left part) we choose at random (uniformly and independently)
D = 2d strings of length m (its neighbors in the right part). Now we bound the
probability of the event a random graph is not a prefix extractor.

If the extractor property is violated for some prefix of length m−i then there
exists a set S of K/2i elements from the left part and a set Y ⊂ {0, 1}m−i of
size α2m−i (for some α > 0) such that the number of edges between S and Y is
greater than (α+ ε)KD/2i. From the Chernoff-Hoeffding bound it follows that
probability of this event is not greater than exp(−2ε2KD/2i). Hence, probability
of the event a random graph is not a prefix extractor can be limited by the sum
of such bounds for all i, S, and Y :

k∑
i=0

(
N
K/2i

)
· 2M/2i

exp(−2ε2KD/2i).



Since
(
u
v

)
≤ uv/v! ≤ (ue/v)v, this sum does not exceed

k∑
i=0

(
eN

K/2i

)K/2i

2M/2i

exp(−2ε2KD/2i) =

=
k∑
i=0

(
e(K/2i)(1+ln(2iN/K)) · e−ε

2KD/2i
)
·
(
eM ln 2/2i

· e−ε
2KD/2i

)
The condition of the theorem implies that D ≥ M

K ·
ln 2
ε2 , assuming that O(1)

constant is large enough. Hence, the second factor in each term of the sum is
not greater than 1. Respectively, the first factor equals

e(K/2i)(1+ln(2iN/K)−ε2D) ≤ e(K/2i)(1+lnN−ε2D),

which is less than (1/2)(K/2i), since Dε2 ≥ 1 + ln 2 + lnN . The sum of these
terms is strictly less than 1. Thus, probability of the event a random graph is a
prefix extractor must be positive. ut

However, using prefix extractors is not enough; we need to modify the ar-
gument, since now we need to find two related neighbors in two graphs. So we
modify the notion of a dangerous vertex and use the following analog of Lemma 1:

Lemma 2. Let us call a left-part element weakly dangerous in S if at least half
of its neighbors are bad for S. Then the number of weakly dangerous elements
in S is at most 4εK.

The proof is similar to the proof of Lemma 1: since only half of all neighbors are
bad, we need twice more elements. ut

Now we give a new proof of Theorem 5 based on prefix extractors. Fix a
prefix extractor E with parameters n, k, d = O(log n), m = k and ε = 1/n3

(again, we may assume that complexity of this extractor is 2 log n + O(1)). We
also may assume that C(a | b) = k − 1, C(a | c) = l − 1 and (without loss of
generality) k ≥ l.

Let Sb and Sc be the sets of strings of conditional complexity less than k and
l conditional on b and c respectively. Call an element weakly dangerous in Sb if
it is weakly dangerous (in Sb) for the original extractor and weakly dangerous
in Sc if it is weakly dangerous (in Sc) for the l-bit prefix of E. Since this prefix
Ek−l is also an extractor, the statement of Lemma 2 holds for Sc. The string a
belongs to the intersection of Sb and Sc and is not weakly dangerous in both.
Hence, a random neighbor of a and its prefix are not bad for Sb [resp. Sc] with
probability greater than 1/2. So we can find a k-bit string p such that p and its
l-bit prefix q are not bad for Sb and Sc respectively.

They satisfy the requirements. Indeed, the conditional complexities C(p |a)
and C(q |a) are logarithmic because p and q can be specified by their ordinal
numbers among the neighbors of a in the extractor. The string a may be obtained
from p and b with logarithmic advice because p is not bad for Sb in E; similarly,
a can be obtained from q and c with logarithmic advice because q is not bad for
Sc in Ek−l. This completes the proof of Muchnik’s theorem for two conditions.

ut



3.4 Muchnik’s Theorem about Space-Bounded Complexity

The arguments from Sect. 3.2 together with constructions of explicit extractors
imply some versions of Muchnik’s theorem for resource-bounded Kolmogorov
complexity. In this section we present such a theorem for the space-bounded
complexity.

First of all, the definitions. Let ϕ be a multi-tape Turing machine that trans-
forms pairs of binary strings to binary strings. Conditional complexity Ct,sϕ (a | b)
is the length of the shortest x such that ϕ(x, b) produces a in (at most) t steps
using space (at most) s. It is known (see [4]) that there exists an optimal de-
scription method ψ in the following sense: for every ϕ there exists a constant c
such that

Cct log t,cs
ψ (a | b) ≤ Ct,sϕ (a | b) + c

We fix such a method ψ, and in the sequel use notation Ct,s instead of Ct,sψ .
Now we present our variant of Muchnik’s theorem for space-bounded Kol-

mogorov complexity:

Theorem 6. Let a and b be binary strings and n, k and s be numbers such that
C∞,s(a) < n and C∞,s(a | b) < k. Then there exists a binary string p such that

• C∞,O(s)+poly(n)(a |p, b) = O(log3 n);
• C∞,O(s)(p) ≤ k +O(log n);
• C∞,poly(n)(p |a) = O(log3 n),

where all constants in O- and poly-notation depend only on the choice of the
optimal description method.

Proof. The proof of this theorem starts as an effectivization of the argument
of Sect. 3.2. To find p effectively, we use an explicit extractor with parameters
n, k, d = O(log3 n), m = k and ε = 1/n3. We increase d and respectively
the conditional complexity of p (when a is given) from O(log n) to O(log3 n),
because (currently known) explicit extractors use more random bits than the
ideal extractors from Theorem 2. The advantage is that to obtain p from a we
now need only polynomial space (in fact, even polynomial time).

First we prove a weaker version of the theorem assuming that the value of s
is added as a condition (in three complexities that are bounded by the theorem).
Later we explain how to get rid of this restriction.

Recall that a right-part element is bad if it has more than DK/M neighbors
on the left and a left-part element is dangerous if all its neighbors are bad. Let
us show that if a is not dangerous and p is a neighbor of a that is not bad,
then we can recover a from b and p using O(log3 n) extra bits of information
and O(s) + poly(n) space. For any string a′ we can test in O(s) + poly(n) space
whether C∞,s(a′ | b) < k: We test sequentially all programs of length less than k
and check if they produce a′ on space s given b. Simulating every such a program,
we limit its workspace to s, and prevent infinite loops by counting the number
of steps. If a program makes more than cs steps in space s then it loops; here c is



some constant that depends only on the choice of the universal Turing machine.
This counter uses only O(s) space. Therefore, given b and p we can enumerate
all the strings a′ that are neighbors of p and C∞,s(a′ | b) < k, and wait until a
string with a given ordinal number appears.

The difficulty arises when we try to prove that a is not dangerous. Let us
try to repeat our arguments taking into account the space restrictions. First we
note that one can enumerate (or recognize: for space complexity it is the same)
all bad elements in the right part using space O(s) + poly(n). (As before, we
assume here that s is given in addition to n, k, and b.) Indeed, bad elements (as
defined above) have many neighbors among strings a′ such that C∞,s(a′ | b) < k,
and those strings can be enumerated.

Therefore, we can also enumerate all dangerous elements in the left part using
space O(s) + poly(n). We know also that the number of dangerous elements is
small, but this does not give us a contradiction (as it did before) since the space
used by this enumeration increases from s to O(s) + poly(n), and even a small
increase destroys the argument. So we cannot claim that a is not dangerous and
need to deal somehow with dangerous elements.

To overcome this difficulty, we use the same argument as in Sect. 2.3. We treat
the dangerous elements on the next layer, with reduced k and other extractor
graph. We need O(k) layers (in fact even O(k/ log n) layers) since by Lemma 1
at every next layer the number of dangerous elements that still need to be served
is reduced at least by the factor 2ε. Note also that the space overhead needed
to keep the accounting information is poly(n) and we never need to run in
parallel several computations that require space s (this space is needed only at
the bottom level of the recursion, in all other cases poly(n) is enough).

So we get the theorem in its weak form (with condition s). For the full
statement some changes are needed. Let us sequentially use space bounds s′ =
1, 2, . . .: to enumerate all strings a′ such that C∞,s(a′ | b) < k, we sequentially
enumerate all strings that can be obtained from b and a k-bit encoding using
space s′ = 1, 2, etc. The corresponding set increases as s′ increases, and at some
point we enumerate all strings a′ such that C∞,s(a′ | b) < k (though this moment
is not known to us). Note that we can avoid multiple copies of the same string
for different values of s′: performing the enumeration for s′, we check for every
string whether it has appeared earlier (using s′−1 instead of s′). This requires a
lot of time, but only O(s) space. Knowing the ordinal number of a in the entire
enumeration, we stop as soon as it is achieved; hence, the enumeration process
requires only space O(s) + poly(n) (though s is not specified explicitly).

Similarly, the set of dangerous words a (that go to the second or higher layer)
increases as s′ increases, and can be enumerated sequentially for s′ = 1, 2, 3 . . .
without repetitions in O(s′)+poly(n) space. Therefore, at every layer we can use
the same argument (enumerating all the elements that reach this layer and at the
same time are neighbors of p, until we produce as many of them as required). ut

Remarks. 1. The process of enumerating a′ such that C∞,s
′
(a′ | b) < k se-

quentially for s′ = 1, 2, 3, . . . can be considered as the enumeration of all a′ such
that C(a′ | b) < k. So we just get the proof for the unrestricted version of Much-



nik’s theorem with an additional remark: if an explicit extractor is used, then
the short programs provided by this theorem require only slightly more space
than the programs given in the condition.

2. When we use several layers (instead of a contradiction with the assumption
that the complexity C(a | b) is exactly k− 1) we in fact do not need to use small
ε (like 1/n3 that we have used in our argument); small constant value of ε is
enough.

3.5 Muchnik’s Theorem for CAM-complexity

The arguments from the previous sections cannot be applied for Kolmogorov
complexity with polynomial time bound. Roughly speaking, the obstacle is the
fact that we cannot implement an exhaustive search over the list of ‘bad’ strings
in polynomial time unless P = NP. The best result that we can prove for poly-
time bounded complexity involves a version of Kolmogorov complexity intro-
duced in [9]:

Definition 3. Let Un be a non-deterministic universal Turing machine. Arthur-
Merlin complexity CAMt(x | y) is the length of a shortest string p such that

1. Probr[Un(y, p, r) accepts, and all accepting paths return x] > 2/3
2. Un(y, p, r) stops in at most time t (for all branches of non-deterministic

computation).

As always, CAMt(x) := CAMt(x |λ).
This definition is typically used for t = poly(|x|). Intuitively, a CAM-des-

cription p of a string x (given another string y) is an interactive Arthur–Merlin
protocol: Arthur himself can do probabilistic polynomial computations, and can
ask questions to all-powerful but not trustworthy Merlin; Merlin can do any com-
putations and provide to Arthur any requested certificate. So, Arthur should ask
such questions that the certificates returned by Merlin could be effectively used
to generate x. With this version of resource-bounded Kolmogorov complexity we
have a variant of Muchnik’s theorem:

Theorem 7. For every polynomial t1 there exists a polynomial t2 such that the
following condition holds. Let a, b be strings such that Ct1(n),∞(a | b) ≤ k, where
n = |a|. Then there exists a string p of length k +O(log3 n) such that

– Ct2(n),∞(p |a) = O(log3 n) and
– CAMt2(n)(a | b, p) = O(log3 n).

Proof: In the proof of this theorem we cannot use an arbitrary effective ex-
tractor. We employ very essentially properties of one particular extractor con-
structed by L. Trevisan [10]. Our arguments mostly repeat the proof of Theo-
rem 3 from [9].

First of all we recall the definition of the Trevisan extractor, which is based
on the technique from the seminal paper by Nisan and Wigderson [12]. The first
crucial ingredient of the Trevisan function is a weak design. A system of sets

S1, . . . , Sm ⊂ {1, . . . , d}



is called a weak design with parameters (l, d) if each Si consists of l elements and

for every i > 1 the sum
i−1∑
j=1

2#(Si∩Sj) is bounded by (m−1). Weak designs exist;

moreover, they can be constructed effectively. More precisely, there exists an
algorithm that for any given l,m generates a week design with d = O(l2 logm)
in time polynomial in l and m, see [12].

Let us fix a weak design as above. For x ∈ {0, 1}d we use the following
notation: x|Si

denotes the l-bit string that is obtained by projecting x onto
coordinates specified by Si.

The second important ingredient of Trevisan’s construction is an error cor-
recting code. For every positive integer n and δ > 0, there exists a list decodable
code

LDCn,δ : {0, 1}n → {0, 1}n̄

where n̄ = poly(n/δ), such that

1. LDCn,δ(x) can be computed in polynomial time;
2. given any y′ ∈ {0, 1}n̄, the list of all x ∈ {0, 1}n such that x̂ = LDCn,δ(x)

and y agree in at least (1/2 + δ) fraction of bits, can be generated in time
poly(n/δ). In particular, this property means that the number of words x in
this list is not greater than poly(n/δ);

(see, e.g., [13]). In the sequel we will assume that n̄ is a power of 2.
Let us fix an encoding as above and denote l(n) = log n̄. For u ∈ {0, 1}n the

value LDCn,δ(u) is a string of length 2l. So, we can view LDCn,δ(u) as a Boolean
function

û : {0, 1}l → {0, 1}

Having fixed a weak design S1, . . . , Sm and an encoding LDCn,δ, we define the
Trevisan function TRδ : {0, 1}n × {0, 1}d → {0, 1}m as

TRδ(u, y) = û(y|S1) . . . û(y|Sm)

We do not need to show that TR is an extractor (for suitable values of n, d,m);
in our proof we refer directly to the definition of this function. We will use the
Trevisan function for δ = 1

8m and m = k+ d+ 2. More precisely, the parameters
are chosen as follows. Numbers k and n are taken from the statement of the
theorem; l(n) = log n̄ is obtained from the construction of LDCn,δ; further, we
can choose appropriate m and d = O(l2 logm) = O(log3 n) so that (i) there
exists a weak design with parameters m, l, d, and (ii) it holds m = k + d+ 2.

Denote by Lb the set of all strings whose time-bounded complexity condi-
tional on b is not greater than k:

Lb = {u ∈ {0, 1}n | Ct1(n),∞(u | b) ≤ k}

(obviously a ∈ Lb and #Lb ≤ 2k+1). We have chosen such an m that the TR-
image of Lb (i.e., the set of values TRδ(u, p) for some u ∈ Lb and p ∈ {0, 1}d)



covers at most 50% of the set {0, 1}m. Denote by B the predicate being in the
TR-image of Lb. Trivially, for every u ∈ Lb

Probr1...rd
[B(TRδ(u, r1 . . . rd)) = 1]− Probr1...rm

[B(r1 . . . rm) = 1] ≥ 1/2

(the first probability is equal to 1 and the second one is not greater than 1/2).
In other notation, we have

Proby∈{0,1}d [B(û(y|S1)û(y|S2) . . . û(y|Sm
)) = 1]−

−Probr1...rm
[B(r1 . . . rm) = 1] ≥ 1/2

We apply the standard ‘hybridization’ trick: we note that for some i

Proby,ri+1,...,rm
[B(û(y|S1)û(y|S2) . . . û(y|Si

)ri+1 . . . rm) = 1]−
−Proby,ri,ri+1,...,rm

[B(û(y|S1)û(y|S2) . . . û(y|Si−1)ri . . . rm) = 1] ≥ 1/(2m)
(2)

Further, we can somehow fix the bits of y outside of Si so that (2) remains true.
Denote y|Si

by x. Now all functions û(y|Sj
) depend on #(Sj ∩ Si) bits from

x (the other bits of y are fixed). Thus, every û(y|Sj
) can be considered as a

function ûj(x), with a truth table of size 2#(Sj∩Si). It follows that all functions
û(y|S1), . . . , û(y|Si−1) together can be specified by

i−1∑
j=1

2#(Sj∩Si) < m

bits (the last inequality follows from the definition of weak designs). This argu-
ment holds for every u ∈ {0, 1}n. We are interested in the case u = a, where a is
the string from the statement of the theorem. We denote by p the concatenation
of the truth tables of û(y|s1), . . . , û(y|si−1) for u = a (so its length is less than
m). To specify this p given a, we need to know only m, i and the bits of y outside
of Si. Hence, Cpoly(n),∞(p |a) = O(log3 n).

In the rest of the proof we show that there exists an Arthur–Merlin protocol
that reconstructs a given b, p and some small additional information. Since u = a,
it is enough to reconstruct the string û (then we apply the decoding procedure
and find a = LDC−1

n,δ(û)).
Let us investigate inequality (2). To make the notations more concise, we

denote F (x, ri . . . rm) = B(û1(x) . . . ûi−1(x)ri . . . rm), and

gri
(x, ri+1 . . . rm) =

{
ri if F (x, ri . . . rm) = 1

1− ri otherwise

Straightforward calculations imply

Probx,ri...rm [û(x) = gri(x, ri+1 . . . rm)] ≥ 1/2 + 1/(2m) (3)

(This is a standard argument from the computational XOR Lemma, see [14].)
Now we fix a value of ri (set it to 0 or 1) so that inequality (3) remains true.



This bit must be included into the description of a given b and p. Without
any loss of generality we assume that ri = 1, and in the sequel we omit ri in
our notations. If the word p defined above and a “typical” sequence ri+1 . . . rm
are given, Arthur can approximate û and then reconstruct a (using decoding
algorithm for LDCn,δ). So, Arthur chooses at random several copies of ri+1 . . . rm
and tries to approximate û with each copy. Further we explain how it works.

We say that r ∈ {0, 1}m−i provides an α-approximation to û if Probx[g(x, r) =
û(x)] ≥ α. For every fixed r we identify the function gr(x) := g(x, r) with
the string zr of length 2l = n̄ where every x-th bit equals 1 iff g(x, r) = 1.
So, the number of 1’s in zr is equal to the number of strings x such that
B(û1(x) . . . ûi−1(x)1r) = 1.

Observation: If B(w) = 1 for some string w, Merlin can provide a certifi-
cate for this fact. Indeed, he communicates to Arthur (i) some u, y such that
TRδ(u, y) = w, and (ii) provides a poly-time program π of length at most k
such that π(b) stops in t1 steps and returns u (i.e., Merlin proves to Arthur that
u ∈ Lb).

We say that a string v ∈ {0, 1}n̄ is a candidate if at least 1/32m of all r ∈
{0, 1}m−i provide an (1/2+1/8m)-approximation to v. From the decoding prop-
erty of the code LDCn,δ, each z ∈ {0, 1}n̄ can be an approximation for at most
q = poly(m) different codewords LDCn,δ(u). Hence, there exist at most 32mq
candidates (of course, û is a candidate). By Sipser’s CD-coding theorem [15]
there exists a poly-time program p′ of length 2 log(32mq) = O(log n) that ac-
cepts û and rejects all other candidates (no warranty about non-candidates: p′

may accept or reject any of them).
First part of the Arthur–Merlin protocol: Denote

ḡ =
∑
x,r

g(x, r)/2m−i.

This is the average number of strings x ∈ {0, 1}l such that g(x, 1r) = 1 for a
random r ∈ {0, 1}m−i.

At first Arthur chooses s random strings r(1), . . . , r(s) of length (m − i) (a
polynomial s = s(n) will be specified below). He asks Merlin to generate s·(ḡ−γ)
(γ = γ(n) is specified in what follows) certificates for the facts that different
tuples 〈x, 1r(j)〉 satisfy g(x, 1r(j)) = 1, and verifies these certificates. If at least
one certificate is false, Arthur stops without any answer. If the certificates are
OK, Arthur calculates z′1, . . . , z

′
s, where x-th bit of z′j is 1 iff Merlin provided a

certificate of the fact that g(x, 1r(j)) = 1.
We need the following probabilistic lemma:

Lemma 3. For some rational γ = n̄/poly(m) and integer s = poly(n), with
probability at least 2/3 Merlin can provide s · (ḡ − γ) certificates corresponding
to random r(1), . . . , r(s), and (whatever certificates are chosen by Merlin) the
following two conditions hold:

– At least (s/16m) of the strings z′r(1), . . . , z
′
r(s) (corresponding to the certifi-

cates given by Merlin) provide some (1/2 + 1/8m)-approximation to û.



– For every v, if at least 1/16m of the strings z′r(1), . . . , z
′
r(s) provide some

(1/2 + 1/8m)-approximation to v, then v is a candidate.

Proof: see Claims 17 and 18 in [9].
In our Arthur–Merlin protocol we use the parameters s and γ from Lemma 3.
Second part of the Arthur–Merlin protocol. Arthur does not need

anymore to communicate with Merlin. Now he composes the list of all codewords
v that are (1/2 + 1/8m)-close (coincide on a fraction at least (1/2 + 1/8m) of
bits) to at least s/16m of strings z′1, . . . , z

′
s. From Lemma 3 it follows that with

probability at least 2/3 all strings in this list are candidates, and the string û is
included in the list. The program p′ defined above can distinguish û from other
strings from the list.

Thus, Arthur can find û in polynomial time if he is given b, p and the fol-
lowing additional information: the index i, the bit ri, the mean value ḡ, and the
distinguishing program p′. In fact, it is enough to know not the exact value of ḡ
but only an approximation to this number; this approximation must be precise
enough so that Arthur can find the integer part of sḡ. Thus, the required addi-
tional information contains only O(log n) bits. Now it is not hard to check that
the described protocol of generating a satisfies the definition of CAM-complexity.

Let us summarize the argument. The CAM-program for a consists of (i) the
truth tables of û(y|s1), . . . , û(y|si−1) for u = a (this is the most important part;
we denoted it by p), (ii) the bit ri chosen so that (3) is true, (iii) a rational γ and
an approximation to a rational ḡ, and (iv) Sipser’s code p′ that distinguishes û
between all “candidates”. The Arthur–Merlin protocol works as follows. Arthur
chooses at random strings r(1), . . . , r(s). Merlin provides s · (ḡ − γ) certificates
corresponding to these r(j). Arthur computes the list of z′1, . . . , z

′
s (strings with

many approximations) corresponding to the obtained certificates. Then Arthur
selects û from the list of z′j using p′, and computes a = LDC−1

n,δ(û).
If Merlin is fair, this plan works OK with probability at least 2/3 (Lemma 3).

If Merlin wants to cheat, he has two options: provide a list of certificates such
that the required string û is not in the list of z′1, . . . , z

′
s, or such that at least

one of z′j is not a candidate (in these cases Arthur fails to select û using p′).
However from Lemma 3 it follows that for random r(1), . . . , r(s) both these
ways of cheating are impossible with probability at least 2/3. ut
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