
Not Every Domain of a Plain Decompressor
Contains the Domain of a Prefix-Free One?

Mikhail Andreev1, Ilya Razenshteyn1, and Alexander Shen2

1 Moscow State Lomonosov University, Mathematics Department, Logic and
Algorithms Theory Division, Moscow, Russia, amishaa@mail.ru, ilyaraz@gmail.com
2 LIF Marseille, CNRS & University Aix–Marseille, France, on leave from Institute of

Information Transmission Problems, Moscow, Russia,
alexander.shen@lif.univ-mrs.fr, sasha.shen@gmail.com

Abstract. C. Calude, A. Nies, L. Staiger, and F. Stephan posed the fol-
lowing question about the relation between plain and prefix Kolmogorov
complexities (see their paper in DLT 2008 conference proceedings): does
the domain of every optimal decompressor contain the domain of some
optimal prefix-free decompressor? In this paper we provide a negative
answer to this question.

1 Introduction

Let D : {0, 1}∗ → {0, 1}∗ be a computable partial function (used as a decom-
pressor). Kolmogorov complexity of x ∈ {0, 1}∗ with respect to D is defined as
the length of its shortest D-description:

CD(x) := min
y:D(y)=x

l(y).

There exists an optimal decompressor U such that CU is minimal up to O(1).
CU (x) is called plain complexity of x and is usually denoted by C(x).

A decompressor is called prefix-free if its domain is prefix-free (if u is a prefix
of v, the decompressor cannot be defined on both u and v). Again it can be
proved that there exists an optimal (up to O(1)) prefix-free decompressor V .
CV (x) is called prefix complexity of x and is usually denoted by K(x). (See, e.g.,
[1] for more details.)

In [2] Calude et al. characterized domains of optimal plain and prefix de-
compressors. They did not show any relation between domains of optimal plain
decompressor and prefix one, but they posed the following question: is it true
that the domain of every optimal plain decompressor contains the domain of
some optimal prefix decompressor? We answer this question in the negative:

Theorem 1. There exist an optimal plain decompressor D with domain S such
that no set T ⊂ S is the domain of an optimal prefix-free decompressor.

? Supported by NAFIT ANR-08-EMER-008-0[1,2] and RFBR 09-01-00709-a grants.



Note that for every decidable set A that contains a fixed fraction (say, at least
one third) of n-bit strings for every n, there is an optimal plain decompressor
whose domain is a subset of A. Indeed, in this case there exists an injective
mapping p 7→ a(p) such that for every string p the string a(p) belongs to A
and is two bits longer than p. (Our assumption guarantees that there is enough
strings of this length in A.) Then let us take any optimal decompressor U and
replace k-bit descriptions by (k + 2)-bit descriptions inside A: let V (a(p)) be
equal to U(p). Then V is an optimal decompressor whose domain is a subset
of A. (A more general question: which sets are the domains of an optimal plain
decompressor? — is answered in [2].)

So it is enough to show that there exists a decidable set A with this prop-
erty (containing at least 1/3 of n-bit strings for every n) such that there is no
optimal prefix-free decompressor whose domain is a subset of A. From now on
we forget about plain decompressors: we need only to construct such a set A.
This construction is provided in the next section; in the rest of this section we
discuss the intuition behind it and the result itself.

The useful tool in the prefix complexity theory is provided by an observation
often called Kraft–Chaitin lemma. Consider the following “memory allocation”
game: at each round Alice gives a natural number n and Bob replies with a
string of length n. The restriction for Alice is that the sum of 2−n for all her
numbers does not exceed 1; the restriction for Bob is that none of his strings is
a prefix of another one. Kraft–Chaitin lemma says that Bob has a computable
winning strategy in this game. (See, e.g., [1], p. 28.)

Informally, the question posed in [2] asks whether this remains true if some
strings (a fixed fraction for every length) are forbidden for Bob (and the allowed
sum for Alice is adjusted accordingly). The answer is no: one can choose the
forbidden part of every {0, 1}n in such a way that it cripples Bob’s ability to
win. Technically, we need to consider a more complicated game, since complexity
is defined up to a constant. We do not explain this game in details (but note
that the game approach that goes back to Andrej Muchnik [3] was an important
tool for us). Instead, we give a self-contained proof that combines game-theoretic
and recursion-theoretic arguments.

Finally, one may say that the question itself is a bit artificial: one may ask
instead whether for every optimal plain decompressor there is some restriction
of it (on some smaller enumerable domain) that is an optimal prefix-free de-
compressor. In this form, however, the answer is negative for obvious reasons:
consider an optimal plain decompressor U where two different strings s and t
have unique descriptions (U -preimages) ps and pt, and, say, ps is a prefix of pt.

2 Construction

2.1 Definitions and notions

Describing the construction, we identify binary strings with vertices of the full
binary tree: empty string is the root, string x has children x0 and x1. The set



Ω = {0, 1}ω of infinite binary sequences is identified with [0, 1]. For each string
x we define an interval Ix ⊂ [0, 1]; empty string corresponds to the entire [0, 1];
the intervals Ix0 and Ix1 are left and right halves of Ix. In Ω the interval Ix
corresponds to the subtree that consists of binary sequences that have prefix x,
and we use the notation Ix both for intervals in [0, 1] and in Ω.

The intervals Ix are called basic intervals in the sequel. A basic subset of
Ω is a finite union of basic intervals; we may assume without loss of generality
that these intervals have the same length and are disjoint, i.e., correspond to
different vertices at the same level of the tree. (In [0, 1] we consider intervals
that share an endpoint as disjoint.) If a basic set V equals the union ∪x∈XIx
where X ⊂ {0, 1}n, we say that X represents V at level n. Each basic set can
be represented at all sufficiently high levels.

A function q : {0, 1}∗ → R+ is called lower semicomputable semimeasure if
the following holds:

–
∑

x q(x) ≤ 1,
– one can enumerate the set {(r, x) | x ∈ {0, 1}∗, r ∈ Q, r < q(x)}.

A lower semicomputable semimeasure m is called maximal if for every lower
semicomputable semimeasure q there exists a constant c > 0 such that for every
x q(x) ≤ c ·m(x). It can be shown that there exists such m.

The following theorem is a standard fact about prefix complexity:

Theorem 2. Let m be a maximal lower semicomputable semimeasure. Then
K(x) = − log2m(x) +O(1).

Corollary 1. Let q be a lower semicomputable semimeasure. Then K(x) ≤
− log2 q(x) +O(1).

2.2 Statement of the Lemma

As explained in the previous section, it is enough to prove the following lemma:

Lemma 1. There exists a decidable (synonyms: computable, recursive) set A of
strings with the following properties:

(1) For every n the set A contains at least 1/3 of all strings of length n;
(2) There is no optimal prefix-free decompressor whose domain is a subset

of A.

2.3 Constructing A

We construct the setA layer by layer in such a way that every basic set of measure
at least 1/3 is represented by some layer of A: for every basic set V of measure
at least 1/3 there exists n such that A ∩ {0, 1}n represents V at level n. (In a
sense, this makes A “universal”: every possible restriction appears somewhere.)
Moreover, every basic set V (of measure at least 1/3) should be represented
by infinitely many layers that form large groups of subsequent layers: there are



infinitely many n such that V is represented by A at levels n, n+ 1, . . . , 2n). It
is easy to find a decidable set A with this property (the family of all basic sets
is countable and can be effectively enumerated, so we allocate infinitely many
groups of layers for every basic set).

It remains to show (assuming that A has these properties) that no optimal
prefix-free decompressor can have a domain that is a subset of A.

2.4 Density

Assume that D is an optimal prefix-free decompressor whose domain is a subset
of A. The strings x where D is defined form a prefix-free set. The corresponding
intervals Ix are disjoint; let D ⊂ Ω be the union of these intervals.

Lemma 2 (Density). D intersects any basic set of measure at least 1/3.

Proof. Let V be a basic set of measure at least 1/3. According to the assumption,
there are infinitely many n such that V is represented by A at all levels n, n +
1, . . . , 2n. If D does not intersect V , this implies that D is undefined on strings
of lengths n . . . 2n, which is impossible for an optimal D (most of the strings of
length 1.5n have complexity between n and 2n for large values of n, so description
of those lengths should exist).

2.5 Splitting the task

Let D be an optimal prefix-free decompressor whose domain is a subset of A
(K(x) = CD(x) + O(1)). We want to get a contradiction with Corollary 1. For
this purpose we construct a lower semicomputable semimeasure q such that for
every c > 0 there exists x such that CD(x) ≥ − log2 q(x) + c.

Firstly, we construct for each c a lower semicomputable semimeasure qc such
that:

–
∑

x qc(x) ≤ 2−c,
– CD(x) ≥ − log2 q(x) + c for some x.

One can easily see that q = q1 + q2 + . . . is a desired lower semicomputable
semimeasure.

2.6 Constructing qc

It remains to show how one can enumerate the set {(r, x) | x ∈ {0, 1}∗, r ∈
Q, r < qc(x)} for some function qc with the required properties while watching
the enumeration of the graph of D. Here we use the game-theoretic approach.
Imagine that Alice is given some “capital” 2−c and is allowed to distribute this
amount between different strings x (note that we distribute capital between
strings that form the image of D, not domain); her goal is to allocate at least
2c · 2−CD(x) to some x. Of course, Alice does not know the final value of CD(x);
it can decrease later (after the allocation is made). So Alice needs to guarantee



that her allocation still prevails for some x independently of what happens after
the allocation is done. Moreover, her strategy must be computable.

How can Alice achieve this goal? To explain her strategy, let us introduce
some terminology. The vertices (strings) in A are allowed, and the strings outside
A are prohibited. (For each level at least 1/3 of all strings of this length are
allowed.)

These notions do not depend on time (i.e., on the number of steps in the
enumeration of the domain of D). The other notion is dynamic. Let D̄ be the
part of the domain of D that already appeared in the enumeration process. A
string u is free at that step if D̄ ∪ {u} is prefix-free. (A string that is not free
cannot appear later in the domain of D since this domain should remain prefix-
free.) In terms of Ω this definition can be reformulated as follows: u is free if Iu
and the set D of all sequences that have prefix in D̄ are disjoint.

If at some level there are no free allowed strings, this guarantees that no new
strings of this length will appear in the domain of D.

A free string can later become non-free but not vice versa. Note also that
an extension of a free string is free, so the fraction of free strings at level n is a
non-decreasing function of n (at any moment).

Only allowed free strings can be later used as descriptions, so if at some level
and at nearby levels they form a very small minority, Alice can use this fact to
achieve her goal. Let us make this statement more precise.

2.7 Winning case

Assume that at all levels in some interval (say, between l and L) the allowed
strings represent the same basic set. Then the fraction of free allowed strings
of length n increases as n increases (from l to L). Assume that at level L this
fraction is still less than some small ε > 0.

What can Alice do in this case? She can allocate 2c · 2−L to many (say, N ;
the value of N will be chosen later) different strings that have no description yet
(do not belong to the image of the current part of D). If this turns out to be
insufficient for her to win, each of theseN strings gets later a description of length
at most L (otherwise Alice still prevails on this string). These descriptions are
different (moreover, none of them is a prefix of another one). Only 2l descriptions
may have length less than l, so at least N − 2l of them are in our interval (have
lengths between l and L). All these descriptions were free when Alice made her
move, so at that moment the fraction of free allowed strings of length L is at
least

(N − 2l)/2L

(If a free allowed string appears at an intermediate level between l and L, this
can only increase the fraction, since it can be replaced by several free allowed
strings at level L.)

We come to a contradiction if

(N − 2l)/2L ≥ ε,



i.e.,
N ≥ ε · 2L + 2l

Recall that the total capital of Alice is bounded by 2−c, so the allocated amount
needed to win is

(ε · 2L + 2l) · 2c · 2−L = ε · 2c + 2c/2L−l.

Therefore, Alice wins if both ε · 2c and 2c/2L−l are bounded by 2−c/2. Both
conditions are satisfied, for example, if

ε = 2−3c and L− l ≥ 3c.

2.8 Strategy for Alice

We arrive to the following strategy for Alice.
For a given c, Alice waits until an interval [l, L] appears where

• L− l ≥ 3c;
• allowed strings represent the same basic set at all levels between l and L;
• the (current) fraction of free allowed strings at level L is less than ε = 2−3c.

As soon as such an interval appears, Alice allocates 2c · 2−L to N = ε ·
2L + 2l fresh strings (that have no descriptions yet). This strategy is obviously
computable.

As we have seen, this guarantees that Alice wins, i.e., that qc(u) ≥ 2c ·2−CD(u)

for one of these strings.

2.9 Why it helps

It remains to show that the event that Alice is waiting for will indeed happen.
Assume that it is not the case. Recall that (by our construction) every basic
set is represented infinitely many times by blocks of levels, and all these blocks
(except for finitely many of them) are thick enough (have L− l ≥ 3c). Therefore,
the fraction of free allowed vertices at the bottom line of each block never drops
below ε = 2−3c.

This leads to a contradiction in the following way. Fix some block (“the first
block”) that is thick enough and wait until the fraction of free allowed vertices
at its bottom level stabilizes. Let B0 be the basic set that is represented by the
set of free allowed vertices at this level; by assumption, its measure is at least ε.

If the measure of B0 is at least 1/3, we get a contradiction with density
lemma. So it is less than 1/3 (and therefore 2/3), so there exists second block
below the first one where prohibited (=not allowed) elements represent B0. At
the bottom line of this block the fraction of free allowed strings also never drops
below ε. Wait until it stabilizes and let B1 be the basic set that corresponds to
the free allowed strings at this level. By construction B0 and B1 are disjoint (we



considered only allowed strings while constructing B1, and B0 corresponds to
prohibited strings).

If the measure of B0 ∪ B1 is at least 1/3, we again get a contradiction with
density lemma (since B0 ∪ B1 and D are disjoint; recall that we wait for the
stabilization). So we can find a third block where B0 ∪B1 is prohibited, wait for
the stabilization at its bottom line, construct B3 etc.

Finally we get a contradiction since each block contributes at least ε to the
measure and at some point we exceed the threshold 1/3.

Technical remarks: (1) The threshold 1/3 can be replaced by any other value
not exceeding 1/2: we need to get a contradiction before the size of the prohibited
part becomes too large. In our argument we may prohibit up to 2/3 of all strings
and 1/3 is enough for a contradiction.

(2) The construction of B0, B1, . . . is not effective but this is not necessary
since we only prove the existence of a moment when the fraction of free allowed
strings drops below ε.

3 Acknowledgments

We thank all the participants of Kolmogorov seminar and Undergraduate Semi-
nar at the Logic and Theory of Algorithms division of Mathematics Department,
Moscow Lomonosov State University.

References

1. Alexander Shen, Algorithmic Information Theory and Kolmogorov Complexity.
Lecture notes of an introductory course at Uppsala university, available at
www.it.uu.se/research/publications/reports/2000-034.

2. Cristian S. Calude, André Nies, Ludwig Staiger, Frank Stephan, Universal recur-
sively enumerable sets of strings. In: Developments in Language Theory, 2008, Lec-
ture Notes in Computer Science, 5257 (2008), p. 170–182.

3. Andrej A. Muchnik, Ilya Mezhirov, Alexander Shen, Nikolay Vereshchagin, Game
interpretation of Kolmogorov complexity, arxiv:1003.4712


