Ergodic-type characterization of randomness

Laurent Bienvenu (LIAFA, Paris),
Adam Day (Victoria University, Wellington)
Ilya Mezhirov (Technical Univ., Kaiserslautern)
Alexander Shen (LIF, Marseille)

CiE 2010 (July 2010)

\(^1\)on leave from IITP, Moscow
Ergodic theorem

X: space with measure μ
$T: X \rightarrow X$: measure preserving
$x, T(x), T(T(x)), T^3(x), \ldots$
how often in A?
Ergodic theorem

X: space with measure μ
$T: X \to X$: measure preserving
$x, T(x), T(T(x)), T^3(x), \ldots$
how often in A?

Ergodic theorem: for almost every x there exists a limit frequency;
Ergodic theorem

X: space with measure μ

$T : X \to X$: measure preserving

$x, T(x), T(T(x)), T^3(x), \ldots$

how often in A?

Ergodic theorem: for almost every x there exists a limit frequency; it is $\mu(A)$ if T is ergodic (no invariant subspace)
Ergodic theorem

X: space with measure μ

$T: X \rightarrow X$: measure preserving

$x, T(x), T(T(x)), T^3(x), \ldots$

how often in A?

Ergodic theorem: for almost every x there exists a limit frequency; it is $\mu(A)$ if T is ergodic (no invariant subspace)

Example: how many powers of 2 start with digit 3?
Ergodic theorem

X: space with measure μ

$T: X \to X$: measure preserving

$x, T(x), T(T(x)), T^3(x), \ldots$

how often in A?

Ergodic theorem: for almost every x there exists a limit frequency; it is $\mu(A)$ if T is ergodic (no invariant subspace)

Example: how many powers of 2 start with digit 3?

answer: $\log_{10} 4 - \log_{10} 3$
Classical and algorithmic statements

Classical: “for almost every x...”
Classical and algorithmic statements

Classical: “for almost every x...”
Effective: “for every algorithmicall random x...”
Classical and algorithmic statements

Classical: “for almost every x...”
Effective: “for every algorithmicall random x...”
Effective ergodic theorems: if T and A are good enough, for every (Martin-Löf) random x the limit frequency exists and is equal to $\mu(A)$
Classical and algorithmic statements

Classical: “for almost every x . . .”
Effective: “for every algorithmicall random x . . .”
Effective ergodic theorems: if T and A are good enough, for every (Martin-Löf) random x the limit frequency exists and is equal to $\mu(A)$ (Vyugin, Hoyrup, Rojas et al.)
Classical and algorithmic statements

Classical: “for almost every x . . .”
Effective: “for every algorithmicall random x . . .”
Effective ergodic theorems: if T and A are good enough, for every (Martin-Löf) random x the limit frequency exists and is equal to $\mu(A)$ (Vyugin, Hoyrup, Rojas et al.)
What we do: wider class of As, but weaker statement:
$\mu(A) < 1 \Rightarrow$ for every random x at least one of $x, T(x), T^2(x), \ldots$ is not in A
Kucera’s theorem

\(\Omega \): Cantor space of infinite binary sequences

\[T : \text{left shift,} \quad T(x_0 x_1 x_2 \ldots) = x_1 x_2 x_3 \ldots \]

\(T \) preserves \(\mu \)

\(A \subset \Omega \): an effectively open set (union of a computable sequence of intervals); \(\mu(A) < 1 \).

Kucera’s theorem: if \(x \in \Omega \) is Martin-Löf random, some tail \(T_n(x) \) is outside \(A \).

\(\iff \)

If \(T_n(x) \in A \) for every \(n \), then \(x \) is not Martin-Löf random.
Kucera’s theorem

Ω: Cantor space of infinite binary sequences
µ: uniform Bernoulli measure on Ω (independent fair coins)

T preserves µ

A ⊂ Ω: an effectively open set (union of a computable sequence of intervals);
µ(A) < 1.

Kucera’s theorem: if x ∈ Ω is Martin-Löf random, some tail T_n(x) is outside A.
⇔ If T_n(x) ∈ A for every n, then x is not Martin-Löf random.
Kucera’s theorem

\[\Omega: \text{Cantor space of infinite binary sequences} \]
\[\mu: \text{uniform Bernoulli measure on } \Omega \text{ (independent fair coins)} \]
\[T: \text{left shift, } T(x_0x_1x_2\ldots) = x_1x_2x_3\ldots \]
Kucera’s theorem

\(\Omega \): Cantor space of infinite binary sequences
\(\mu \): uniform Bernoulli measure on \(\Omega \) (independent fair coins)
\(T \): left shift, \(T(x_0x_1x_2\ldots) = x_1x_2x_3\ldots \)
\(T \) preserves \(\mu \)
Kucera’s theorem

Ω: Cantor space of infinite binary sequences
μ: uniform Bernoulli measure on Ω (independent fair coins)
T: left shift, $T(x_0x_1x_2\ldots) = x_1x_2x_3\ldots$
T preserves μ
$A \subset \Omega$: an effectively open set (union of a computable sequence of intervals); $\mu(A) < 1$.

Kucera’s theorem: if $x \in \Omega$ is Martin-Löf random, some tail $T^n(x)$ is outside A.

\iff If $T^n(x) \in A$ for every n, then x is not Martin-Löf random.
Kucera’s theorem

Ω: Cantor space of infinite binary sequences
µ: uniform Bernoulli measure on Ω (independent fair coins)
T: left shift, \(T(x_0x_1x_2\ldots) = x_1x_2x_3\ldots \)
T preserves \(µ \)
\(A \subset Ω \): an effectively open set (union of a computable sequence of intervals); \(µ(A) < 1 \).

Kucera’s theorem: if \(x \in Ω \) is Martin-Löf random, some tail \(T^n(x) \) is outside \(A \).
Kucera’s theorem

Ω: Cantor space of infinite binary sequences
µ: uniform Bernoulli measure on Ω (independent fair coins)
T: left shift, \(T(x_0x_1x_2\ldots) = x_1x_2x_3\ldots \)
\(T \) preserves \(\mu \)
\(A \subset \Omega \): an effectively open set (union of a computable sequence of intervals); \(\mu(A) < 1 \).
Kucera’s theorem: if \(x \in \Omega \) is Martin-Löf random, some tail \(T^n(x) \) is outside \(A \).
\(\iff \) If \(T^n(x) \in A \) for every \(n \), then \(x \) is not Martin-Löf random
Martin-Löf randomness

effectively null set N: for every $\varepsilon > 0$ one can effectively generate a sequence of intervals that cover N and have total measure $< \varepsilon$
Martin-Löf randomness

effectively null set N: for every $\varepsilon > 0$ one can effectively generate a sequence of intervals that cover N and have total measure $< \varepsilon$

Martin-Löf random: a sequence x that does not belong to effectively null set.
effectively null set N: for every $\varepsilon > 0$ one can effectively generate a sequence of intervals that cover N and have total measure $< \varepsilon$.

Martin-Löf random: a sequence x that does not belong to effectively null set.

Reformulation of Kucera’s theorem: the set of all sequences x such that all tails of x are in A, is an effectively null set.
Variations on Kucera’s theme

Let A be an effectively open set in Cantor space; $\mu(A) < 1$. Then for every ML-random x one may:

▶ delete some prefix of x to get $x' \in A$
▶ change finitely many bits in x to get $x' \in A$ (effective Kolmogorov 0-1-law)
▶ add some finite prefix to x to get $x' \in A$

Each of these properties can be used as characterization of randomness.
Variations on Kucera’s theme

Let A be an effectively open set in Cantor space; $\mu(A) < 1$. Then for every ML-random x one may:

- (Kucera): delete some prefix of x to get $x' \notin A$

Each of these properties can be used as a characterization of randomness.
Variations on Kucera’s theme

Let A be an effectively open set in Cantor space; $\mu(A) < 1$. Then for every ML-random x one may:

- (Kucera): delete some prefix of x to get $x' \notin A$
- change finitely many bits in x to get $x' \notin A$

 (effective Kolmogorov 0-1-law)
Variations on Kucera’s theme

Let A be an effectively open set in Cantor space; $\mu(A) < 1$. Then for every ML-random x one may:

- (Kucera): delete some prefix of x to get $x' \notin A$
- change finitely many bits in x to get $x' \notin A$
 (effective Kolmogorov 0-1-law)
- add some finite prefix to x to get $x' \notin A$

Each of these properties can be used as characterization of randomness
General statement

Let $T: \Omega \to \Omega$ be a computable almost everywhere defined measure-preserving ergodic transformation of Cantor space (or the space of bi-infinite sequences) with a computable measure.
Let $T : \Omega \to \Omega$ be a computable almost everywhere defined measure-preserving ergodic transformation of Cantor space (or the space of bi-infinite sequences) with a computable measure. Let A be an effectively open subset of Ω and $\mu(A) < 1$. Then for every Martin-Löf random x there exists some $n \geq 0$ such that $T^n(x) \notin A$.
Let $T : \Omega \to \Omega$ be a computable almost everywhere defined measure-preserving ergodic transformation of Cantor space (or the space of bi-infinite sequences) with a computable measure. Let A be an effectively open subset of Ω and $\mu(A) < 1$. Then for every Martin-Löf random x there exists some $n \geq 0$ such that $T^n(x) \notin A$. \[\]
Let $T : \Omega \to \Omega$ be a computable almost everywhere defined measure-preserving ergodic transformation of Cantor space (or the space of bi-infinite sequences) with a computable measure. Let A be an effectively open subset of Ω and $\mu(A) < 1$. Then for every Martin-Löf random x there exists some $n \geq 0$ such that $T^n(x) \notin A$.

(In the proceedings T is required to be bijective; M. Hoyrup noted that it is not important.)
General statement and special cases

Changing bits: adding 1 in 2-adic notation (least significant bit is on the left)

Adding prefix: shifts in the space of biinfinite sequence (van Lambalgen theorem is also needed)

Stronger claims in special cases: there are infinitely many shifts that move x outside A among any enumerable sequence of integers; statements about density of terms outside A
General statement and special cases

Changing bits: adding 1 in 2-adic notation (least significant bit is on the left)
General statement and special cases

Changing bits: adding 1 in 2-adic notation (least significant bit is on the left)

Adding prefix: shifts in the space of biinfinite sequence (van Lambalgen theorem is also needed)
General statement and special cases

Changing bits: adding 1 in 2-adic notation (least significant bit is on the left)

Adding prefix: shifts in the space of biinfinite sequence (van Lambalgen theorem is also needed)

Stronger claims in special cases: there are infinitely many shifts that move x outside A among any enumerable sequence of integers; statements about density of terms outside A
Application: Mijabe’s result made easy

Theorem (Mijabe): let x^0 be a ML-random sequence, let x^1 be a ML-random sequence with oracle x^0, let x^2 be a ML-random sequence with oracle x^0, x^1 etc. Then one can change finitely many terms in each x^i in such a way that x^0, x^1, \ldots is a random element of $\Omega \times \Omega \times \ldots$
Application: Mijabe’s result made easy

Theorem (Mijabe): let x^0 be a ML-random sequence, let x^1 be a ML-random sequence with oracle x^0, let x^2 be a ML-random sequence with oracle x^0, x^1 etc. Then one can change finitely many terms in each x^i in such a way that x^0, x^1, \ldots is a random element of $\Omega \times \Omega \times \ldots$

Now an easy consequence of the result about finite changes
Application: Mijabe’s result made easy

Theorem (Mijabe): let \(x^0 \) be a ML-random sequence, let \(x^1 \) be a ML-random sequence with oracle \(x^0 \), let \(x^2 \) be a ML-random sequence with oracle \(x^0, x^1 \) etc. Then one can change finitely many terms in each \(x^i \) in such a way that \(x^0, x^1, \ldots \) is a random element of \(\Omega \times \Omega \times \ldots \)

Now an easy consequence of the result about finite changes

Finite changes can be replaced by adding/deleting prefixes
Proof sketch

Let \(A' = A \cap T^{-1}(A) \cap T^{-2}(A) \cap \ldots \).
Proof sketch

Let $A' = A \cap T^{-1}(A) \cap T^{-2}(A) \cap \ldots$.

It is enough to find for every interval I a covering of $I \cap A'$ that has measure at most $(1 - \varepsilon)\mu(I)$.
Proof sketch

Let $A' = A \cap T^{-1}(A) \cap T^{-2}(A) \cap \ldots$. It is enough to find for every interval I a covering of $I \cap A'$ that has measure at most $(1 - \varepsilon)\mu(I)$. We use effectively open set $I \cap (A \cap \ldots \cap T^{-N}(A))$ as this covering.
Proof sketch

Let $A' = A \cap T^{-1}(A) \cap T^{-2}(A) \cap \ldots$. It is enough to find for every interval I a covering of $I \cap A'$ that has measure at most $(1 - \varepsilon)\mu(I)$. We use effectively open set $I \cap (A \cap \ldots \cap T^{-N}(A))$ as this covering. Its measure is upperbounded by minimal $\mu(I \cap T^{-s}(A))$.
Proof sketch

Let \(A' = A \cap T^{-1}(A) \cap T^{-2}(A) \cap \ldots \).

It is enough to find for every interval \(I \) a covering of \(I \cap A' \) that has measure at most \((1 - \varepsilon)\mu(I)\).

We use effectively open set \(I \cap (A \cap \ldots \cap T^{-N}(A)) \) as this covering.

Its measure is upperbounded by minimal \(\mu(I \cap T^{-s}(A)) \)

which is upperbounded by the average taken over all \(s = 0, 1, \ldots, N \).
Proof sketch

Let $A' = A \cap T^{-1}(A) \cap T^{-2}(A) \cap \ldots$. It is enough to find for every interval I a covering of $I \cap A'$ that has measure at most $(1 - \varepsilon)\mu(I)$. We use effectively open set $I \cap (A \cap \ldots \cap T^{-N}(A))$ as this covering. Its measure is upperbounded by minimal $\mu(I \cap T^{-s}(A))$ which is upperbounded by the average taken over all $s = 0, 1, \ldots, N$ which is estimated using erdodic theorem for I and computability.