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AN X: space with measure p
T T: X — X: measure preserving

x, T(x), T(T(x)), T3(x), ...

how often in A?
Ergodic theorem: for almost every x there exists a
limit frequency; it is u(A) if T is ergodic (no
invariant subspace)
Example: how many powers of 2 start with digit 37

answer: logio4 — logg 3
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Classical and algorithmic statements

Classical: “for almost every x. ..’
Effective: “for every algorithmicall random x. ..’
Effective ergodic theorems: if T and A are good
enough, for every (Martin-Lof) random x the limit
frequency exists and is equal to p(A)

(Vyugin, Hoyrup, Rojas et al.)

What we do: wider class of As, but weaker
statement:

1(A) < 1 = for every random x at least one of
x, T(x), T?(x),...is not in A
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2. Cantor space of infinite binary sequences

p: uniform Bernoulli measure on Q (independent
fair coins)

T: left shift, T(xpx1x2...) = x1x0%3. ..

T preserves 1

A C Q: an effectively open set (union of a
computable sequence of intervals); u(A) < 1.
Kucera's theorem: if x € € is Martin-Lof random,
some tail T"(x) is outside A.

& If T"(x) € A for every n, then x is not
Martin-Lof random
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Martin-Lof randomness

effectively null set N: for every € > 0 one can
effectively generate a sequence of intervals that
cover N and have total measure < ¢

Martin-Lof random: a sequence x that does not
belong to effectively null set.

Reformulation of Kucera's theorem: the set of all
sequences x such that all tails of x are in A, is an
effectively null set.
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Let A be an effectively open set in Cantor space;
((A) < 1. Then for every ML-random x one may:
» (Kucera): delete some prefix of x to get x' ¢ A
» change finitely many bits in x to get x' ¢ A
(effective Kolmogorov 0-1-law)

» add some finite prefix to x to get x' ¢ A

Each of these properties can be used as
characterization of randomness
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General statement

Let T: Q — Q be a computable almost everywhere
defined measure-preserving ergodic transformation
of Cantor space (or the space of bi-infinite
sequences) with a computable measure.

Let A be an effectively open subset of €2 and

p(A) < 1.

Then for every Martin-Lof random x there exists
some n > 0 such that T"(x) ¢ A.

(In the proceedings T is required to be bijective; M. Hoyrup noted that it is not
important.)
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General statement and special cases

Changing bits: adding 1 in 2-adic notation (least
significant bit is on the left)

Adding prefix: shifts in the space of biinfinite
sequence (van Lambalgen theorem is also needed)

Stronger claims in special cases: there are infinitely
many shifts that move x outside A among any
enumerable sequence of integers; statements about
density of terms outside A



Application: Mijabe’s result made easy

Theorem (Mijabe): let x° be a ML-random
sequence, let x! be a ML-random sequence with
oracle x°, let x> be a ML-random sequence with
oracle x%, x! etc. Then one can change finitely
many terms in each x’ in such a way that x°, x*
is a random element of 2 x Q2 x ...

g 0.



Application: Mijabe’s result made easy

Theorem (Mijabe): let x° be a ML-random
sequence, let x! be a ML-random sequence with
oracle x°, let x> be a ML-random sequence with
oracle x%, x! etc. Then one can change finitely
many terms in each x’ in such a way that x°, x*
is a random element of 2 x Q2 x ...

g 0.

Now an easy consequence of the result about finite
changes



Application: Mijabe’s result made easy

Theorem (Mijabe): let x° be a ML-random
sequence, let x! be a ML-random sequence with
oracle x°, let x> be a ML-random sequence with
oracle x%, x! etc. Then one can change finitely
many terms in each x’ in such a way that x°, x!, ...

is a random element of Q2 x Q x ...

Now an easy consequence of the result about finite
changes

Finite changes can be replaced by adding/deleting
prefixes
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Proof sketch

Let A=ANT YA)NT2A)N....

It is enough to find for every interval | a covering of
I N A’ that has measure at most (1 — &) u(/)

We use effectively open set I N (AN ...N T-N(A))
as this covering

Its measure is upperbounded by minimal

u(1 0 T5(A))

which is upperbounded by the average taken over all
s=01,....N

which is estimated using erdodic theorem for / and

computability



