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Ergodic theorem

T

TT

A
X : space with measure µ
T : X → X : measure preserving
x ,T (x),T (T (x)),T 3(x), . . .
how often in A?

Ergodic theorem: for almost every x there exists a
limit frequency; it is µ(A) if T is ergodic (no
invariant subspace)
Example: how many powers of 2 start with digit 3?
answer: log104− log10 3
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Classical and algorithmic statements

Classical: “for almost every x . . . ”

Effective: “for every algorithmicall random x . . . ”
Effective ergodic theorems: if T and A are good
enough, for every (Martin-Löf) random x the limit
frequency exists and is equal to µ(A)
(Vyugin, Hoyrup, Rojas et al.)
What we do: wider class of As, but weaker
statement:
µ(A) < 1 ⇒ for every random x at least one of
x ,T (x),T 2(x), . . . is not in A
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frequency exists and is equal to µ(A)
(Vyugin, Hoyrup, Rojas et al.)
What we do: wider class of As, but weaker
statement:
µ(A) < 1 ⇒ for every random x at least one of
x ,T (x),T 2(x), . . . is not in A



Classical and algorithmic statements

Classical: “for almost every x . . . ”
Effective: “for every algorithmicall random x . . . ”
Effective ergodic theorems: if T and A are good
enough, for every (Martin-Löf) random x the limit
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Kucera’s theorem

Ω: Cantor space of infinite binary sequences

µ: uniform Bernoulli measure on Ω (independent
fair coins)
T : left shift, T (x0x1x2 . . .) = x1x2x3 . . .
T preserves µ
A ⊂ Ω: an effectively open set (union of a
computable sequence of intervals); µ(A) < 1.
Kucera’s theorem: if x ∈ Ω is Martin-Löf random,
some tail T n(x) is outside A.
⇔ If T n(x) ∈ A for every n, then x is not
Martin-Löf random
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Martin-Löf randomness

effectively null set N : for every ε > 0 one can
effectively generate a sequence of intervals that
cover N and have total measure < ε

Martin-Löf random: a sequence x that does not
belong to effectively null set.
Reformulation of Kucera’s theorem: the set of all
sequences x such that all tails of x are in A, is an
effectively null set.
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Variations on Kucera’s theme

Let A be an effectively open set in Cantor space;
µ(A) < 1. Then for every ML-random x one may:

I (Kucera): delete some prefix of x to get x ′ /∈ A

I change finitely many bits in x to get x ′ /∈ A
(effective Kolmogorov 0-1-law)

I add some finite prefix to x to get x ′ /∈ A

Each of these properties can be used as
characterization of randomness
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General statement

Let T : Ω→ Ω be a computable almost everywhere
defined measure-preserving ergodic transformation
of Cantor space (or the space of bi-infinite
sequences) with a computable measure.

Let A be an effectively open subset of Ω and
µ(A) < 1.
Then for every Martin-Löf random x there exists
some n ≥ 0 such that T n(x) /∈ A.
(In the proceedings T is required to be bijective; M. Hoyrup noted that it is not
important.)
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Then for every Martin-Löf random x there exists
some n ≥ 0 such that T n(x) /∈ A.
(In the proceedings T is required to be bijective; M. Hoyrup noted that it is not
important.)



General statement

Let T : Ω→ Ω be a computable almost everywhere
defined measure-preserving ergodic transformation
of Cantor space (or the space of bi-infinite
sequences) with a computable measure.
Let A be an effectively open subset of Ω and
µ(A) < 1.
Then for every Martin-Löf random x there exists
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General statement and special cases

Changing bits: adding 1 in 2-adic notation (least
significant bit is on the left)

Adding prefix: shifts in the space of biinfinite
sequence (van Lambalgen theorem is also needed)

Stronger claims in special cases: there are infinitely
many shifts that move x outside A among any
enumerable sequence of integers; statements about
density of terms outside A
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Application: Mijabe’s result made easy

Theorem (Mijabe): let x0 be a ML-random
sequence, let x1 be a ML-random sequence with
oracle x0, let x2 be a ML-random sequence with
oracle x0, x1 etc. Then one can change finitely
many terms in each x i in such a way that x0, x1, . . .
is a random element of Ω× Ω× . . .

Now an easy consequence of the result about finite
changes

Finite changes can be replaced by adding/deleting
prefixes
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Proof sketch

Let A′ = A ∩ T−1(A) ∩ T−2(A) ∩ . . ..

It is enough to find for every interval I a covering of
I ∩ A′ that has measure at most (1− ε)µ(I )
We use effectively open set I ∩ (A ∩ . . . ∩ T−N(A))
as this covering
Its measure is upperbounded by minimal
µ(I ∩ T−s(A))
which is upperbounded by the average taken over all
s = 0, 1, . . . ,N
which is estimated using erdodic theorem for I and
computability
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