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Abstract

The aim of this paper is to present a nice series of results, obtained in the papers of
Chaitin [2], Solovay [5], Calude et al. [1], Kucera and Slaman [3]. This joint effort led
to a full characterization of lower semicomputable random reals, both as those that can
be expressed as a “Chaitin Omega” and those that are maximal for Solovay reducibility.
The original proofs were somewhat involved; in this paper, we present these results in an
elementary way, in particular requiring no prior knowledge of algorithmic randomness.
We add also several simple observations relating lower semicomputable random reals and
busy beaver functions.

1 Lower semicomputable reals and the �1-relation
A real number α is lower semicomputable if it is a limit of a computable increasing se-
quence of rational numbers. (Equivalent definition: if the set of all rational numbers less
than α is enumerable).

There exist lower semicomputable but not computable reals. Corresponding sequences
of rational numbers have non-computable convergence (there is no algorithm that produces
N(ε) given ε).

We want to classify computable sequences according to their convergence speed and
formalize the intuitive idea “one sequence converges better (not worse) than the other one”.

Definition 1 Let ai→ α and b j→ β be two computable strictly increasing sequences. We
say that (ai) [resp. (bi)] is a computable approximation from below of α [resp. of β ]. We
say that the approximation an→ α converges “better” (not worse) than the approximation
bn→ β if there exists a total computable function h such that

α−ah(i) 6 β −bi

for every i.

In other terms, we require that for each term of the second sequence one may algo-
rithmically find a term of the first one that approaches the limit as close as the given term
of the second sequence. Note that this relation is transitive (take the composition of two
reducing functions).

In fact, the choice of specific sequences that approximate α and β is irrelevant: any
two increasing computable sequences that have the same limit, are equivalent with respect
to this quasi-ordering. Indeed, we can just wait to get a term of a second sequence that
exceeds a given term of the first one. We can thus set the following definition.
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Definition 2 Let α and β be two lower semicomputable reals, and let (an), (bn) be ap-
proximations of α and β respectively. If (an) converges better than (bn), we write α �1 β

(by the above paragraph, this does not depend on the particular approximations we chose).

This definition can be reformulated in different ways. First, we can eliminate sequences
from the defintion and say that α �1 β if there exists a partial computable function ϕ

defined on all rational numbers r < β such that

ϕ(r) < α and α−ϕ(r)6 β − r

for all of them (below, we refer to ϕ as the reduction function).
The following lemma is yet another characterization of the order (perhaps less intuitive

but useful).

Lemma 3 α �1 β if and only if β −α is lower semicomputable (or said otherwise, if and
only if β = α +ρ for some lower semicomputable real ρ).

Proof. To show the equivalence, note first that for every two lower semicomputable
reals α and ρ we have α �1 α + ρ . Indeed, consider approximations (an) to α , (rn) to
ρ . Now, given a rational s < α + ρ , we wait for a stage n such that an + rn > s. Setting
ϕ(s) = an, it is easy to check that ϕ is a suitable reduction function witnessing α �1 α +ρ .

It remains to prove the reverse implication: if α �1 β then γ = β −α is lower semi-
computable. Indeed, if (bn) is a computable approximation (from below) of β and ϕ is the
reduction function that witnesses α �1 β , then all terms bn−ϕ(bn) are less than or equal
to β −α and converge to β −α . (The sequence may not be increasing, but still its limit is
lower semicomputable, since all its terms do not exceed the limit, and we may replace nth
term by the maximum of the first n terms.) �

A special case of this Lemma: let ∑ai and ∑bi are computable series with non-negative
terms (for i > 0; terms a0 and b0 are starting points and may be negative) that converge
to (lower semicomputable) α and β . If ai 6 bi for all i > 0, then α �1 β , since β −α =
∑i(bi−ai) is lower semicomputable.

The reverse statement is also true: if α �1 β , one can find series ∑ai = α and ∑bi = β

with these properties (0 6 ai 6 bi). Indeed, β = α + ρ for lower semicomputable ρ; take
α = ∑ai and ρ = ∑bi and let bi = ai + ri.

In fact, stronger statement is also true; one of the series can be chosen in an arbitrary
way. If α �1 β = ∑bi for bi > 0, then one can find a decomposition α = ∑ai where ai > 0
and ai 6 bi for i > 0. [Hint: we construct ai sequentially using the following invariant: the
current approximation A to α should be at least as close (to α) as the current approximation
of B (to β ). Getting a new B, we use reduction to find next candidate for A and use it if the
resulting ai does not exceed bi; if not, we let ai = bi and keep the invariant. The invariant
guarantees that the reduction will be used infinitely many times.]

The same is true for the other direction: if α = ∑ai �1 β (for ai > 0), then one can find
computable bi > ai such that β = ∑bi. (Again all inequalities are for i > 0.) [Hint: use
the same invariant; take bi = ai unless some bigger bi is found such the the reduction still
gives something less than current value of A.]

2 Solovay reducibility and complete reals
Let α be a lower semicomputable but not computable real. By the results of the previous
section, one has

α �1 2α �1 3α �1 . . .
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because for all k the difference (k +1)α− kα = α is lower semicomputable (so Lemma 3
applies). The reverse relations are not true, because kα − (k + 1)α = −α is not lower
semicomputable (if it were, then α would be computable).

One may argue that this relation is therefore a bit too sharp. For example, α and 2α

have essentially the same binary expansion (just shifted by one position), so one may want
α and 2α to be equivalent. In other words, one may look for a less fine-grained relation.
A natural candidate for this is Solovay reducibility.

Definition 4 (Solovay reducibility) We say that α � β if α �1 cβ for some positive inte-
ger c > 0.

(We may also say that α �c β if α �1 cβ . Then α � β if α �c β for some c.)
Like for lower semicomputable semimeasures, one can easily prove the existence of

maximal elements.

Theorem 5 There exists a �-biggest lower semicomputable real.

Proof. Indeed, we can enumerate all lower semicomputable reals αi in [0,1] and then
take their sum α = ∑wiαi with computable positive weights wi such that ∑wi converges.
This α can be represented as wiαi plus lower semicomputable real, so αi �1 (1/wi)α . �

The biggest elements in�-preorder are also called (Solovay) complete lower semicom-
putable reals. They have an alternative description:

Theorem 6 Complete semicomputable reals are sums of universal semimeasures on N and
vice versa.

(Here we do not require the sum of a semimeasure to be less than 1; only finiteness is
required.)

Proof. Any lower semicomputable real α is a sum of a computable series of rationals;
this series (up to a constant factor that does not matter due to the definition of Solovay
reducibility) is bounded by a universal semimeasure. The difference between the upper
bound and the series itself is a lower semicomputable semimeasure, and therefore α is
reducible to the sum of the universal semimeasure.

On the other hand, if m0,m1, . . . is a computable semimeasure and α is a (Solovay)
complete real, then m0 �1 cα , so α = m0/c + τ for some integer c > 0 and lower semi-
computable τ . Dividing m by c and then adding τ to one of the values, we get an universal
semimeasure with sum α . �

Chaitin denoted the sum of a universal semimeasure by Ω. Since there is no such
thing as the universal semimeasure, it is better to speak about Ω-reals defined as sums of
universal semimeasures. We have shown therefore that the class of Ω-reals coincides with
the class of complete lower semicomputable reals (with respect to Solovay reducibility).

It turns out that this class has third equivalent definition: Martin-Löf random semicom-
putable reals.

Theorem 7 A lower semicomputable real is complete if and only if it is Martin-Löf ran-
dom.

We provide the proof of this result below.
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3 Complete lower semicomputable reals are random
This in fact is Chaitin’s theorem (randomness of Ω) usually proved by using complexity
characterization of randomness. However, there is a direct argument that does not involves
complexity (it is in the footnote in Levin’s “Forbidden information” paper [4]; this footnote
compressed the most important facts about lower semicomputable random reals into few
lines!).

First, we prove that there exists a lower semicomputable random real. For that we
consider an effectively open set U of measure less than (say) 1/2 that covers all non-
random reals in [0,1]. (The definition of Martin-Löf randomness guarantees that for every
ε > 0 one can find an effectively open set that has measure less than ε and covers all non-
random reals. We need only one such set for some ε < 1, say, ε = 1/2.) Then take the
minimal element α in a closed set [0,1] \U . This number is random (by definition) and
lower semicomputable: compactness argument implies that any segment [0,r] with rational
r < α is covered by finitely many intervals of U and all those r’s can be enumerated.

Second, we prove that randomness is upward-closed: if α � β and α is random, then
β is random. We may assume without less of generality that α �1 β (randomness does not
change if we multiply the number by a rational factor).

So let bi→ β be a computable increasing sequence of rational numbers that converges
to β . Assume that somebody gives us a sequence of rational intervals and guarantees that
one of them covers β . How to transform it into a sequence of intervals that covers α (i.e.,
one of the intervals covers α) and has the same (or smaller) total length? If an interval
appears that is entirely on the left of the current approximation bi, it can be ignored (since
it cannot cover β anyway). If the interval is entirely on the right of bi, it can be postponed
until the current approximation b j enters it (this may happen or not, in the latter case the
interval does not cover β ). If the interval contains bi, we can convert it into the interval
of the same length that starts at a j, where a j is a rational approximation to α that has the
same or better precision as bi (as an approximation to β ): if β is in the original interval, α

is in the converted interval.
So randomness is upward-closed and therefore complete lower semicomputable reals

are random.
Remark. The second part can be refomulated: if α and β are lower semicomputable

reals and at least one of them is random, then the sum α + β is random, too. The reverse
is also true: if both α and β are non-random, then α +β is not random. (We will see later
different proofs of this statement.)

4 Randomness and prediction game
Before proving the reverse implication, let us make a digression and look more closely
on the last argument. Consider the following game: an observer watches the increasing
sequence of rationals (given one by one) and from time to time makes predictions of the
following type: “the sequence will never increase more than by δ” (compared to its current
value). Here δ is some non-negative rational. The observer wins this game if (1) one of
the predictions remains true forever; (2) the sum of all numbers δ used in the predictions
is small (less that some rational ε > 0 that is given to the observer in advance).

It is not required that at any moment a valid prediction exists, though one could guaran-
tee this by making predictions with zero or very small (and decreasing fast) δ at each step.
Note also that every prediction can be safely postponed, so we may assume that the next
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prediction is made only if the previous one becomes invalid. Then at any moment there is
only one valid prediction.

Theorem 8 Let ai be a computable increasing sequence of rational numbers that con-
verges to some (lower semicomputable) real α . The observer has a computable winning
strategy in the game if and only if α is not random.

Proof. A computable winning strategy gives us a computable sequence of prediction
intervals of small total measure and guarantees that one of these (closed) intervals con-
tains α . On the other hand, having a sequence of intervals that covers α and has small total
measure, we may use it for predictions. To make the prediction, we wait until the current
approximation ai gets into the already discovered part of the cover (this will happen since
the limit is covered). Then for prediction we use maximal δ such that (ai,ai + δ ) is cov-
ered completely at the moment, and then wait until this prediction becomes invalid. (Then
the same procedure is used again). At some point α is covered by some interval in the
sequence and the current approximation enters this interval; the prediction made after this
moment will remain valid forever. The total length of all prediction interval is bounded by
the measure of the cover (prediction intervals are disjoint and all are covered). �

A reformulation of the same observation that does not use game terminology:

Theorem 9 Let ai be a computable increasing sequence of rational numbers that con-
verges to α . The number α is non-random if and only if for every rational ε > 0 one can
effectively find a computable sequence h0,h1, . . . of non-negative rational numbers such
that ∑i hi < ε and α 6 ai +hi for some i.

(Here the predictions hi are made on every step; it does not matter since we may use
zeros.)

There is a Solovay criterion of randomness (a constructive version of Borel–Cantelli
lemma): a real number α is non-random if and only if there exists a computable sequence
of intervals that have finite total measure and cover α infinitely many times. It also can be
reformulated in the style of our previous theorem:

Theorem 10 Let ai be a computable increasing sequence of rational numbers that con-
verges to α . The number α is non-random if and only if there exists a computable sequence
h0,h1, . . . of non-negative rational numbers such that ∑i hi < ∞ and α 6 a+hi for infinitely
many i.

Proof. If α is non-random, we apply the preceding result for ε = 1,1/2,1/4,1/8, . . .
and then combine the resulting sequences (with shifts 0,1,2, . . . to the right). Each of
them provides one value of i such that α 6 a + hi, and these values cannot be bounded
due to shifts. On the other hand, if α 6 a + hi for infinitely many i, we get a sequence
of intervals with finite sum of measures that covers α infinitely many times (technically,
we should replace closed intervals by slightly bigger open intervals). It remains to use
Solovay’s criterion or recall its proof: the effectively open set of points that are covered
with multiplicity m has measure at most O(1/m). �

The randomness criterion given in this section implies the following observation (that
looks strange at first). Consider a sum of a computable series of positive rational numbers.
The randomness of the sum cannot change if all summands are changed by Θ(1)-factor.
(Indeed, all hi can be multiplied by a constant.)
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Now let us prove that if α and β are non-random lower semicomputable reals, their
sum α + β is non-random, too. (See the discussion in the previous section). The natural
idea: make prediction in the game for α and β , and then take their sum as prediction for
α + β , does not work. (The problem is that the same prediction for α can be combined
with many predictions for β and therefore will be counted many times in the sum.)

The solution is to make predictions for α and β of the same size. Let ai and bi be
computable increasing sequences that converge to α and β . To make a prediction for the
sequence ai + bi (after the previous prediction became invalid) we wait until the current
approximations ai and bi become covered by the sequences of intervals that have small
measures and cover α and β (such sequences exist since both α and β are non-random).
We take the maximal h and k such that (ai,ai +h) and (bi,bi + k) are entirely covered (by
the unions of currently appeared intervals). The prediction interval is then (ai + bi,ai +
bi +δ ) where δ = 2min(h,k).

Let us show that one of the predictions will remain valid. Indeed, the limit values α

and β are covered by some intervals. This interval appear in the sequences at some point
and cover α and β with some neighborhoods, say, σ -neighborhoods. If the prediction is
made after ai and bi enter these neighborhoods, δ is greater than 2σ and the prediction is
final: ai +bi never increases more than by δ .

It remains to estimate the sum of all δ s used during the prediction. It can be done using
the following observation: if a prediction interval (ai +bi,ai +bi +δ ) becomes invalid, this
means that either ai or bi increased by δ/2, so the total measure of the cover on the right
of ai and bi decreased at least by δ/2. (Here we use that (ai,ai + δ/2) and (bi,bi + δ/2)
are covered completely because δ/2 does not exceed both h and k: it is important here that
we take the minimum.)

Let us return to the criterion for randomness provided by Theorem 9. The condition
for non-randomness given there can be weakened in two aspects: first, we can replace
computable sequence by a semicomputable sequence; second, we can replace hi by the
entire tail hi +hi+1 + . . . of the corresponding series:

Theorem 11 Let ai be an increasing computable sequence of rational numbers that con-
verges to α . Assume that for every rational ε > 0 one can effectively find a lower semicom-
putable sequence hi of non-negative reals such that ∑i hi < ε and α 6 ai + hi + hi+1 + . . .
for some i. Then α is not random.

Proof. Assume that for every i there is a painter who get hi units of paint and the
instruction to paint the line starting at ai, going to the right and skipping the parts already
painted by other painters (but making no other gaps). (Since hi is only semicomputable, the
paint is provided step by step.) The painted zone is an effectively open set of total measure
∑i hi. If α < ai +hi +hi+1 + . . ., then α is painted since we cannot use hi +hi+1 + . . . paint
starting between ai and α and not crossing α . (In the condition we have 6 instead of <,
but this does not matter since we can increase all hi, say, twice.) �

This result implies one more criterion of randomness for lower semicomputable reals:

Theorem 12 Let α = ∑di be a computable series of non-negative rational numbers. The
number α is non-random if and only if for every ε > 0 one can effectively produce an
enumerable set W ⊂ N of indices such that (1) ∑i∈W di < ε and (2) W is co-finite, i.e.,
contains all sufficiently large integers.

Proof. If α is not random, it can be covered by intervals with arbitrarily small total
measure. It remains to consider the set W of all i such that (d0 + . . .+di−1,d0 + . . .+di−1 +
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di) is entirely covered by one of those intervals. In the other direction the statement is a
direct consequence of Theorem 11, just let ai = d0 + . . .+di−1 and hi = di. �

This result shows again that the sum of two non-random lower semicomputable reals is
not random (take the intersection of two sets W1 and W2 provided by this criterion for each
of the reals).

5 Random lower semicomputable reals are complete
To prove this stamement, consider two lower semicomputable reals α and β presented as
limits of increasing computable sequences ai→ α and bi→ β .

Let hi = ai+1−ai be the increases in the first sequence. We use hi for prediction game
against the second sequence. In other terms, we shift the interval (a1,a2) to get the interval
of the same length that starts at b1. Then we wait until bi at the right of this interval appears;
let it be bi1 . Then shift the interval (a2,a3) to get the interval of the same length that starts
at bi1 ; let bi2 be the first bi on the right of it, etc.

a1 a2 a3 a4 a5

b1 bi1 bi2 bi3

There are two possibilities: either
(1) observer wins in the prediction game, i.e., some of the shifted intervals covers the

rest of bi and the next bik is undefined, or
(2) this process continues indefinitely.
In the second case α �1 β since the difference β −α is represented as a sum of a com-

putable series (“holes” between neighbor intervals; note that the endpoints of the shifted
intervals also converge to β ).

So, if β is not complete, for complete α the second case is impossible, and the observer
wins. In other terms, we get a computable sequence of (closed) intervals that covers β .
Repeating the same argument for α/2, α/4,. . . (they are complete, too) we effectively get
a cover of β with arbitrary small measure (since α has a computable upper bound even
being non-computable), therefore β is not random.

Remark. This argument probably gives some quantitative connection between ran-
domness deficiency of a random lower semicomputable real and another parameter that
can be called completeness deficiency. It can be defined as follows: fix some complete α

and for every β consider the minimal c such that α �1 cβ . (The connection also involves
the complexity of the sequence of approximations to α .)

6 Slow convergence: Solovay functions
We have seen several results of the following type: the limit of an increasing computable
sequence of rationals is random if and only if the convergence is slow. In this section we
provide one more result of this type.

Consider a computable converging series ∑ri of positive rational numbers. Note that
ri is bounded by O(mi) where mi is an a priori probability of integer i, therefore prefix
complexity K(i) = − log2 mi is bounded by − log2 ri + O(1). We say that the series ∑ri
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converges slowly in Solovay sense (has Solovay property) if this bound is tight infinitely
often, i.e., if ri > εmi for some ε > 0 and for infinitely many i.

Historically the name Solovay function is used for a computable bound S(i) for prefix
complexity K(i) that is tight infinitely often, i.e., K(i)6 S(i)+O(1) for every i and K(i)>
S(i)− c for some c and for infinitely many values of i. Thus, a computable series ∑ai of
positive rational numbers has Solovay property if and only if i 7→ − log2 ai is a Solovay
function.

Theorem 13 Let α = ∑i ri be a computable converging series of positive rational num-
bers. The number α is random if and only if this series converges slowly in Solovay sense.

In other terms, the sum is non-random if and only if the ratio ri/mi tends to 0.
Proof. Assume that ri/mi→ 0. Then for every ε we can let hi = εmi and get a lower

semicomputable sequence that satisfies the conditions of Theorem 11. Therefore α is not
random.

We can also prove that α is not complete (thus providing an alternative proof of its
non-randomness). Recall the argument used in the proof of Theorem 6: if ri 6 mi, then
∑ri �1 ∑mi. And if ri 6 cmi, then ∑ri �c ∑mi. This remains true if the inequality ri 6 cmi

is true for all sufficiently large i. So for a fast (non-Solovay) converging series and its sum
α we have α �c ∑mi for every c. If α were complete, we would have also ∑mi �d α

for some d and therefore α �cd α for some d and all c > 0. For small enough c we have
cd < 1/2 and therefore α �1/2 α . Then α should be computable, since we know how to
find twice better approximation for any given one and can iterate this procedure.

It remains to show the reverse implication. Assuming that α = ∑ri is not random,
we need to prove that ri/mi→ 0. Consider the interval [0,α] split into intervals of length
r0,r1, . . .. Given an open cover of α with small measure, we consider those intervals (of
length r0,r1, . . .) that are completely covered (endpoints including). They form an enumer-
able set and the sum of their lengths does not exceed the measure of the cover. If the cover
has measure 2−2n for some n, we may multiply the corresponding ri by 2n and still their
sum remains at most 2−n. Note also that for large enough i the ith interval is covered (since
it is close to α and α is covered). So for each n we get a semimeasure Mn = Mn

0 ,Mn
1 , . . .

such that Mn
i /ri > 2n for sufficiently large i and ∑i Mn

i < 2−n. Taking the sum of all Mn,
we get a lower semicomputable semimeasure M such that ri/Mi→ 0. �

This result provides yet another proof that a sum of two non-random lower semicom-
putable reals is non-random (since the sum of two series that converge to 0 also converges
to 0).

It shows also that Solovay functions exist (which is not immediately obvious from the
definition; for comparison a direct proof is provided in the next section). Moreover, it
shows that there exist computable non-decreasing Solovay functions: take a computable
series of rational numbers with random sum and make this series non-increasing not chang-
ing the sum (by splitting too big terms into small pieces).

It also implies that slow convergence (in Solovay sense) is not a property of a series
itself, but only of its sum. It looks strange: some property of a computable series (of
positive rational numbers), infinitely many terms come close to the upper bound provided
by a priori probability, depends only on the sum of this series. At first it seems that by
splitting the terms into small parts we can destroy the property not changing the sum, but
it is not so. In the next section we try to understand this phenomenon providing a direct
proof for it (and as a byproduct get some improvements in the result of this section).
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7 Solovay property as a property of the sum
First, let us note Solovay property is invariant under computable permutations. Indeed,
computable permutation π changes a priori probability only by a constant factor: mπ(i) =
Θ(mi). Then let us consider grouping. Since we want to allow infinite groups, let us
consider a computable series ∑i, j ai j of non-negative rational numbers. Then

α = ∑
i, j

ai j = (a00 +a01 + . . .)+(a10 +a11 + . . .)+ . . . = ∑
i

Ai,

where Ai = ∑ j ai j.
We want to show that Ai and ai j are slowly converging series (in Solovay sense) at the

same time. Note that slow convergence is permutation-invariant, so it is well defined for
two-dimensional series.

However, some clarifications and restrictions are needed. First, ∑Ai in general is not
a computable series, it is only a lower semicomputable one. We can extend the definition
of Solovay property: still Ai = O(mi), and we can ask whether this bound is O(1)-tight
infinitely often. Second, such a general statement is not true: imagine that all non-negative
terms are in the first group A0 and all A1,A2, . . . are zeros. Then ∑Ai does not have Solovay
property while ∑ai j could have it.

Theorem 14 Assume that each group Ai contains only finitely many non-zero terms. Then
the properties Ai/mi→ 0 and ai j/mi j→ 0 are equivalent.

Here mi j is the a priori probability of pair 〈i, j〉 (or its number in some computable
numbering, this does not matter up to O(1)-factor). The convergence means that for every
ε > 0 the inequality ai j/mi j > ε is true only for finitely many pairs 〈i, j〉.

Proof. Let us recall first that mi = ∑ j mi j up to a O(1)-factor. (Indeed, the sum in the
right hand side is lower semicomputable, so it is O(mi) due to the maximality. On the other
hand, already the first term mi0 is Ω(mi).) So if ai j/mi j tends to zero, the ratio Ai/∑ j mi j

does the same (only finitely many pairs have ai j > εmi j and they appear only in finitely
many groups).

It remains to show that Ai/mi→ 0 implies ai j/mi j→ 0. (Here we need to use that only
finitely many terms in each group are non-zero.) For this it is enough to construct some
lower semicomputable m̃i j such that ai j/m̃i j→ 0, somehow using the fact that Ai/mi→ 0.
The natural idea would be to split mi between m̃i j in the same proportion as Ai is split
between ai j. However, for this we need to know how many terms among ai0,ai1, . . . are
non-zero, and in general this is a non-computable information. (For finite grouping this
argument indeed works.)

So we go in the other direction. For some constant c we may let m̃i j to be cai j while
this does not violate the property ∑ j m̃i j 6 mi. (When mi increases, we increase m̃i j when
possible.) If indeed Ai/mi → 0, for every constant c we have cAi 6 mi for large i, so
ai j/m̃i j 6 1/c for large i (and only finitely many pair 〈i, j〉 violate this requirement, because
each Ai has only finitely many non-zero terms). So we are close to our goal (ai j/m̃i j→ 0):
it remains to perform this construction for all c = 22n and combine the resulting m̃ with
coefficients 2−n. �

As a corollary of Theorem 14 we see (in an alternative way) that Solovay property
depends only on the sum of the series. Indeed, if ∑i ai = ∑ j b j, these two series could be
obtained by a different grouping of the third one (with combined partition points):

0
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In this way we get not only the alternative invariance proof, but also can strengthen
Theorem 13. It dealt with computable series of rational numbers. Now we consider series
of rational terms but the summands are presented as lower semicomputable numbers and
each has only finitely many different approximations. (So ri = limn r(i,n) where r is a
computable function of i and n with rational values which is non-decreasing as a function
of n and for every i there are only finitely many different values r(i,n).)

Theorem 15 Let α = ∑i ri be a converging semicomputable series of rational numbers in
the sense explained above. The number α is random if and only if this series converges
slowly in Solovay sense (i.e., ri/mi does not converge to 0).

Proof. Indeed, each ri is a sum of a computable series of non-negative rational numbers
with only finitely many non-zero terms. So we can split ∑ri into a double series not
changing the sum (evidently) and Solovay property (due to Theorem 14). �

In particular, we get the following corollary: an upper semicomputable function n 7→
f (n) with integer values is an upper bound for K(n) if and only if ∑n 2− f (n) is finite; this
bound is tight infinitely often if and only if this sum is random.

Now we can show an alternative proof that all complete reals have Solovay property.
First we observe that Solovay property is upward closed with respect to Solovay reducibil-
ity. Indeed, if ∑ai and ∑bi are computable series of non-negative rational numbers, and ai

converges slowly, then ∑(ai +bi) converges slowly, too (its terms are bigger). So it remains
to prove directly that at least one slowly converging series (or, in other terms, computable
Solovay function) exists. To construct it, we watch how the values of a priori probability
increase (it is convenient again to consider a priori probability of pairs):

m00 m01 m02 m03 . . .
m10 m11 m12 m13 . . .
m20 m21 m22 m23 . . .
. . . . . . . . . . . . . . .

and fill a similar table with rational numbers ai j in such a way that ai j/mi j 6→ 0. How do
we fill this table? For each row we compute the sum of current values mi,∗; if it crosses one
of the thresholds 1/2,1/4,1/8 . . ., we put the crossed threshold value into a-table (filling
it with zeros from left to right while waiting for the next threshold crossed). In this way
we guarantee that ai j is a computable function of i and j; the sum of a-values is at most
twice bigger than the sum of m-values; finally, in every row there exists at least one a-value
that is at least half of the corresponding m-value. Logarithms of a-values form a Solovay
function (and ai j itself form a slowly convergent series).

Note that this construction does not give a nondecreasing Solovay function directly (it
seems that we still need to use the arguments from the preceding section).

8 Busy beavers and convergence regulators
We had several definitions that formalize the intuitive idea of a “slowly converging series”.
However, the following one (probably the most straightforward) was not considered yet.
If an → a, for every ε > 0 there exists some N such that |a− an| < ε for all n > N. The
minimal N with this property (considered as a function of ε) is called modulus of conver-
gence. A sequence (or a series) should be considered slowly converging if this function
grows fast. Indeed, slow convergence (defined as Solovay property) could be equivalently
characterized in these terms.
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Definition 16 Let m be a natural number. Define BP(m) as the minimal value of N such
that K(n) > m for all n > N.

In other terms, BP(m) is the maximal number n whose prefix complexity K(n) does
not exceed m. Let us recall a natural interpretation of BP(m) in terms of “busy beavers”:

Theorem 17 Fix an optimal prefix-free universal machine M. Let T (m) be the maximal
time needed for termination of (terminating) programs of length at most m. Then

BP(m− c)6 T (m)6 BP(m+ c)

for some c and all m.

Proof. First we prove that for all t > T (m) the compexity of t is at least m−O(1),
thus showing that T (m) > BP(m− c). Indeed, let K(t) = m− d. Appending the shortest
program for t to the prefix-free description of d, we get a prefix free description of the
pair 〈t,m〉. Indeed, we can reconstruct t and m− d from the shortest program of t (the
second is its length) and then add d and get m. Then, knowing t and m, we wait t steps
for all programs of length at most m, and then look for the first string that is not among
their outputs. This string by construction has prefix complexity greater than m, and it is
(prefix-freely) described by m−d +O(logd) bits, so d = O(1).

On the other hand, T (m) can be (prefix-freely) described by most long-playing program
of size at most m (program determines its execution time), so K(T (m)) 6 m + O(1) and
therefore T (m)6 BP(m+O(1)). �

Now we can prove the equivalence of two notions of “slow convergence”:

Theorem 18 The computable series of non-negative rational numbers ∑ri has Solovay
property (⇔ has a random sum) if and only its modulus of convergence satisfies the in-
equality N(2−m) > BP(m− c) for some c and for all m.

Proof. Let α = ∑ri = limai, where ai = r0 + . . . + ri−1. Assume that α is random.
We have to show that |α − ai| < 2−m implies K(i) > m−O(1) (and therefore N(2−m) >
m−O(1)). Since K(i) = K(ai) + O(1), it is enough to show that every rational 2−m-
approximation to α has complexity at least m−O(1). This is a bit stronger condition than
the condition K(α0 . . .αm−1) > m−O(1) (used in Levin–Schnorr theorem) since now we
consider all approximations, not only the prefix of the binary expansion. However, it can
be proven in a similar way.

Let c be some integer. Consider an effectively open set Uc constructed as follows.
For every rational r we consider neighborhood around r of radius 2−K(r)−c; the set Uc

is the union of these neighborhoods. (Since K(r) is upper semicomputable, it is indeed
an effectively open set.) The total length of all intervals is 2 · 2−c

∑r 2−K(r) 6 2−(c−1).
Therefore, Uc form a Martin-Löf test, and random α does not belong to Uc for some c.
This means that complexity of 2−m-approximations of α is at least m−O(1).

In the other direction we can use Schnorr–Levin theorem without any changes: if
N(2−m) > BP(m− c), then K(i) > m−O(1) for every i such that ai is a 2−m-approxi-
mation to α . Therefore m-bit prefix of α has complexity at least m−O(1), since knowing
this prefix we can effectively find ai that exceeds it (and the corresponding i). �

Question. Note that this theorem shows equivalence between two formalizations of an
intuitive idea of “slowly converging series” (or three, if we consider Solovay reducibility
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as a way to compare the rate of convergence). However, the proof goes through Martin-
Löf randomness of the sum (where the series itself disappears). Can we have a more direct
proof? Can we connect Solovay reducibility (not only completeness) to the properties of
the modulus of convergence?

Reformulating the definition of BP(m) in terms of a priori probability, we say that
BP(m) is the minimal N such that all n > N have a priori probability less than 2−m. How-
ever, in terms of a priori probability the other definition looks more natural: let BP′(m) be
the minimal N such that the total a priori probability of all n > N is less than 2−m. Gener-
ally speaking, BP′(m) can be greater that BP(m), but it turns out that it still can be used to
characterize randomness in the same way:

Theorem 19 Let ai be a computable increasing sequence of rational numbers that con-
verges to a random number α . Then N(2−m)> BP′(m− c).

Proof. Since all i > N(2−m) have the same a priori probability as the corresponding
ai (up to O(1)-factor), it is enough to show that the sum of a priori probabilities of all
rational numbers in 2−m-neighborhood of a random α is O(2−m) (recall for all i > N(2−m)
corresponding ai belong to this neighborhood).

As usual, we go in the other direction and cover all α such that the required inequality
is not true for some m by a set of small measure. Let us fix some c and consider all intervals
with rational endpoints that have the following property: the sum of a priori probabilities
of all rational numbers in this interval is at least c times bigger than its length. It is enough
to show that the union of all such intervals has measure O(1/c), in fact, at most 2/c.

It is enough to consider a finite union of intervals with this property. Moreover, we may
assume that this union does not contain redundant intervals (that can be deleted without
changing the union). Let us order all the intervals according to their left endpoints:

(l0,r0),(l1,r1),(l2,r2), . . .

where l06 l16 l26 . . . It is easy to see that right endpoints go in the same order (otherwise
one of the intervals would be redundant). So r06 r16 r26 . . . Now note that ri6 li+2, oth-
erwise the interval (li+1,ri+1) would be redundant. Therefore, intervals with even numbers
(l0,r0),(l2,r2),(l4,r4) . . . are disjoint, and for each of them the length is c times less than
the sum of a priori probabilities of rational numbers inside it. Therefore, the total length
of these intervals does not exceed 1/c, since the sum of all priori probabilities is at most 1.
The same is true for intervals with odd numbers, so in total we get the bound 2/c. �

Questions: how much could BP and BP′ differ? How the last result follows from
Schnorr–Levin theorem with a priori complexity? How all this can help to prove that
∑x∈X 2−|x| is random for every enumerable prefix-free X that contains the domain of an
optimal prefix-free function?
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