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Abstract—This paper offers some new results on randomness with respect to classes of mea-
sures, along with a didactic exposition of their context based on results that appeared elsewhere.
We start with the reformulation of the Martin-Löf definition of randomness (with respect to
computable measures) in terms of randomness deficiency functions. A formula that expresses
the randomness deficiency in terms of prefix complexity is given (in two forms). Some ap-
proaches that go in another direction (from deficiency to complexity) are considered. The
notion of Bernoulli randomness (independent coin tosses for an asymmetric coin with some
probability p of head) is defined. It is shown that a sequence is Bernoulli if it is random with
respect to some Bernoulli measure Bp. A notion of “uniform test” for Bernoulli sequences is
introduced which allows a quantitative strengthening of this result. Uniform tests are then
generalized to arbitrary measures. Bernoulli measures Bp have the important property that
p can be recovered from each random sequence of Bp. The paper studies some important
consequences of this orthogonality property (as well as most other questions mentioned above)
also in the more general setting of constructive metric spaces.
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1. INTRODUCTION

This paper, though intended to be rather self-contained, can be seen as a continuation of [11]
(which itself built on earlier work of Levin) and [13].

Our enterprise is to develop the theory of randomness beyond the framework where the underly-
ing probability distribution is the uniform distribution or a computable distribution. A randomness
test t(ω,P ) of an object ω with respect to a measure P is defined to be a function of both the
measure P and the point ω.

In some later parts of the paper, we will also go beyond the case where the underlying space is
the set of finite or infinite sequences: rather, we take a constructive metric space with its algebra
of Borel sets.
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ALGORITHMIC TESTS AND RANDOMNESS 35

We will apply the above notion of test to define, following the ideas of [16], for a class C of
measures having some compactness property, a “class test” tC(ω). This is a test to decide whether
an object ω is random with respect to some measure P in the class C. We will show that in the
case of the class of Bernoulli measures over binary sequences, this notion is equivalent to the class
tests introduced by Martin-Löf in [20].

In case there is an effective sense in which the elements of the class are mutually orthogonal, we
obtain an especially simple separation of the randomness test t(ω,P ) into two parts: the class test
and an arbitrarily simple test for “typicality” with respect to the measure P . In some natural special
cases, the typicality test corresponds to a convergence property of relative frequencies, allowing one
to apply the theory to any general effectively compact class of ergodic stationary processes.

Generally speaking, our tests do not necessarily possess some properties of randomness tests
t(ω,P ) that depend on the measure P , for example, a kind of monotonicity in P . It is therefore
notable that in the case of orthogonal classes, randomness is equivalent to a “blind” notion of
randomness, which only considers randomness tests that do not depend on the measure P .

Here is an outline of the paper. We start with the reformulation of the Martin-Löf definition of
randomness (with respect to computable measures) in terms of tests. A randomness test provides
a quantitative measure of non-randomness, called “randomness deficiency”; it is finite for random
sequences and infinite for nonrandom ones. There are two versions of these tests (“average-bounded”
and “probability-bounded” ones); a relation between them is established.

A formula that expresses the (average-bounded) randomness deficiency in terms of prefix com-
plexity is given (in two forms). It implies the Levin–Schnorr criterion of randomness (with prefix
complexity, as in the special case first announced in Chaitin’s paper [4]). Some approaches that go
in another direction (from deficiency to complexity) are considered.

The notion of Bernoulli sequence (looking like the outcome of independent coin tosses for an
asymmetric coin) is defined. It is shown that the set of Bernoulli sequences is the union (over all
p ∈ [0, 1]) of the sets of sequences that are random with respect to Bp, the Bernoulli measure with
probability p; here we assume that p is given as an oracle). A notion of “uniform test” for Bernoulli
sequences is introduced. Then the statement above is proved in the following quantitative form:
the Bernoulli deficiency is the infimum of Bp deficiencies over all p ∈ [0, 1].

The notion of general uniform test (not restricted to the class of Bernoulli measures) is intro-
duced. It is shown that it generalizes Martin-Löf’s earlier definition of randomness (which was given
only for computable measures).

Bernoulli measures Bp have the important property that p can be recovered from each random
sequence of Bp. The paper studies some important consequences of this orthogonality property
(as well as most other questions mentioned above) also in the more general setting of constructive
metric spaces.

The following notation is useful, since inequalities hold frequently only within an additive or
multiplicative constant.

Notation 1.1. We will write f(x)
∗
< g(x) for an inequality between positive functions within

a multiplicative constant, that is, for the relation f(x) = O(g(x)); more precisely, if there is a
constant c with f(x) ≤ cg(x) for all x. The relation f ∗= g means f

∗
< g and f

∗
> g. Similarly, f

+

< g

and f
+= g mean inequalities within additive constants.

Let Λ denote the empty string. Logarithms are taken, by default, to base 2. We use |x| to
denote the length of a string x. For a finite string x and a finite or infinite string y, let x � y
denote that x is a prefix of y. If x is a finite or infinite sequence, then its elements are written as
x(1), x(2), . . . , and its prefix of size n will be denoted by x(1 : n).

Let R+ = [0,∞] be the set of nonnegative reals, with the special value ∞ added. The binary
alphabet {0, 1} will also be denoted by B.
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36 L. BIENVENU et al.

2. RANDOMNESS ON SEQUENCES, FOR COMPUTABLE MEASURES

In the first sections, we will study randomness over infinite binary sequences.

2.1. Lower semicomputable functions on sequences.
Definition 2.1 (binary Cantor space, Baire space). We will denote by Ω the set of infinite

binary sequences, and also call it the binary Cantor space. For a finite string x let xΩ be the set of
all infinite sequences that have the finite prefix x. These sets will be called basic open sets, and the
set of all basic open sets is called the basis of Ω (as a topological space). A subset of Ω is open if it
is the union of a set of basis elements.

The set of infinite sequences of natural numbers will be called the Baire space. Basic open sets
and open sets can be defined for it analogously.

A notion somewhat weaker than computability will play a crucial role.
Definition 2.2. An open set G ⊆ Ω is called effectively open, or lower semicomputable open,

or c.e. open, or r.e. open if it is the union of a computable sequence xiΩ of basic elements. A set is
upper semicomputable closed, or effectively closed if its complement is effectively open.

A set Γ is called effectively Gδ if there is a sequence of sets Uk, k = 1, 2, . . . , effectively open
uniformly in k such that Γ =

⋂
k Uk.

A function t : Ω → [0,∞] is lower semicomputable if

(a) for any rational r the set {ω : r < t(ω)} is open in Ω, that is, is a union of intervals xΩ;
(b) moreover, this set is effectively open uniformly in r; that is, there exists an algorithm that

gets r as an input and generates strings x0, x1, . . . such that the union of intervals xiΩ is
equal to {ω : r < t(ω)}.

This definition is a constructive version of the classical notion of lower semicontinuous function
as in requirement (a). The same class of lower semicomputable functions has other (equivalent)
definitions; here is one of them.

Definition 2.3. A function u defined on Ω and having rational values is called basic if the
value u(ω) is determined by some finite prefix of ω.

If this prefix has length N , the function can be presented as a table with 2N rows; each row
contains N bits (the values of the first N bits of ω) and a rational number (the value of the function).
Such a function is a finite object.

The proof of the following proposition is a simple exercise:
Proposition 2.4. The (pointwise) limits of monotonic sequences of basic functions are exactly

the lower semicomputable functions on Ω.
Since the difference of two basic functions is a basic function, we can reformulate this criterion

as follows: lower semicomputable functions are (pointwise) sums of computable series made of
nonnegative basic functions.

One more way to define a lower semicomputable function goes as follows.
Definition 2.5 (generating). Let T be a lower semicomputable function on the set {0, 1}∗ of

finite sequences of zeros and ones with nonnegative (finite or infinite) values. This means that the
set of pairs (x, r) such that r < T (x) is enumerable. Then the function t defined as

t(ω) = sup
x�ω

T (x)

is a lower semicomputable function on Ω. We will say that the function T (·) generates the function
t(·) if it is also monotone: T (x) ≤ T (y) if x � y.

The monotonicity requirement can always be satisfied by taking T ′(x) = maxz�x T (z).
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Proposition 2.6. Any lower semicomputable function t on Ω is generated by an appropriate
function T on {0, 1}∗ in this way.

We may also assume that T is a computable function with rational values. Indeed, since only
the supremum of T on all the prefixes is important, instead of increasing T (x) for some x we may
increase T (y) for all y � x of large length; this delay allows T to be computable.

For a given lower semicomputable function t on Ω there exists a maximal monotonic function T
on finite strings that generates t (in the sense just described). This maximal T can be defined as
follows:

T (x) = inf
ω�x

t(ω). (1)

Let us now exploit the finiteness of the binary alphabet {0, 1}, which implies that the space Ω is a
compact topological space.

Proposition 2.7. The function T defined by (1) is lower semicomputable. In the definition,
we can replace inf by min.

Proof. Evidently, the function generated by T does not exceed t. On the other hand, if
t(ω) > r, the semicontinuity property guarantees that the same is valid in some neighborhood of ω,
so T (x) ≥ r for some prefix x � ω. Therefore, T generates t.

It remains to show that T is lower semicomputable. Indeed, r < infω�x t(ω) if and only if there
exists some rational r′ > r with r′ < t(ω) for all ω � x. The latter condition can be reformulated:
the open set of all sequences ω such that t(ω) > r′ is a superset of xΩ. This open set is a union
of an enumerable family of intervals; if these intervals cover xΩ, compactness implies that this is
revealed at some finite stage, so the condition is enumerable (and the existential quantifier over r′

keeps it enumerable).
Since the function t(ω) is lower semicontinuous, it actually reaches its infimum on the compact

set xΩ, so inf can be replaced with min. �
2.2. Randomness tests. We assume that the reader is familiar with the basic concepts of

measure theory and integration, at least in the space Ω of infinite binary sequences. A measure P
on Ω is determined by the values

P (x) = P (xΩ),

which we will denote by the same letter P , without danger of confusion. Moreover, any function
P : {0, 1}∗ → [0, 1] with the properties

P (Λ) = 1, P (x) = P (x0) + P (x1) (2)

uniquely defines a measure (this is a particular case of Carathéodory’s theorem).
Definition 2.8 (computable measure). A real number x is called computable if there is an

algorithm that for all rational ε > 0 returns a rational approximation of x with error not greater
than ε. Computable numbers can also be determined as limits of computable sequences of rational
numbers x1, x2, . . . such that |xn − xn+k| ≤ 2−n. An infinite sequence s1, s2, . . . of real numbers is
a strong Cauchy sequence if we have |sm − sn| ≤ 2−m for all m < n.

A real-valued function defined on words (or other constructive objects) is computable if its values
are computable uniformly from the input, that is, there is an algorithm that for each input and
ε > 0 returns an ε-approximation of the function value on this input.

A measure P over Ω is said to be computable if the function P : {0, 1}∗ → [0, 1] is computable.
Definition 2.9 (randomness test, computable measure). Let P be a computable probability

distribution (measure) on Ω. A lower semicomputable function t on Ω with nonnegative (possibly
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infinite) values is an (average-bounded) randomness test with respect to P (or a P -test) if the
expected value of t with respect to P is at most 1, that is,∫

t(ω) dP ≤ 1.

A sequence ω passes a test t if t(ω) < ∞. A sequence is called random with respect to P if it passes
all P -randomness tests (as defined above).

The intuition: when t(ω) is large, this means that the test t finds a lot of “regularities” in ω.
Constructing a test, we are allowed to declare whatever we want to be a “regularity”; however, we
should not find too many of them on average: if we declare too many sequences to be “regular,” the
average becomes too big.

This definition turns out to be equivalent to randomness as defined by Martin-Löf (see below).
But let us start with the universality theorem:

Theorem 2.10. For any computable measure P there exists a universal (maximal) P -test u:
this means that for any other P -test t there exists a constant c such that

t(ω) ≤ cu(ω)

for every ω ∈ Ω.
In particular, u(ω) is finite if and only if t(ω) is finite for every P -test t, so the sequences that

pass the test u are exactly the random sequences.
Proof. Let us enumerate the algorithms that generate all lower semicomputable functions.

Such an algorithm produces a monotone sequence of basic functions. Before letting through the
next basic function of this sequence, let us check that its P -expectation is less than 2. If the
algorithm considered indeed defines a P -test, this expectation does not exceed 1, so by computing
the values of P with sufficient precision we are able to guarantee that the expectation is less than 2.
If this checking procedure does not terminate (or gives a negative result), we just do not let the
basic function through.

In this way we enumerate all tests as well as some lower semicomputable functions that are not
exactly tests but are at most twice bigger than tests. It remains to sum up all these functions with
positive coefficients whose sum does not exceed 1/2 (say, 1/2i+2). �

This is the definition of a randomness test in the form used in [9]. It is equivalent to the classical
Martin-Löf definition of a randomness test:

Definition 2.11. Let P be a computable distribution over Ω. A sequence of open sets
U1, U2, . . . is called a Martin-Löf test for P if the sets Ui are effectively open in a uniform way
(that is, Ui =

⋃
j xijΩ where the double sequence xij of strings is computable) and, moreover,

P (Uk) ≤ 2−k for all k.
A set N is called a constructive (effective) null set for the measure P if there is a Martin-Löf

test U1, U2, . . . with the property N =
⋂

k Uk. Note that effective null sets are constructive Gδ sets.
A sequence ω ∈ Ω is said to pass the test U1, U2, . . . if it is not in N . It is Martin-Löf random

with respect to the measure P if it is not contained in any constructive null set for P .
The following theorem is not new (see, for example, [19]).
Theorem 2.12. A sequence ω passes all average-bounded P -tests (= passes the universal

P -test) if and only if it is Martin-Löf random with respect to P .
Proof. If t is a test, then the set of all ω such that t(ω) > N is an effectively open set that can

be found effectively given N . This set has P -measure at most 1/N (by Chebyshev’s inequality), so
the set of sequences ω that do not pass t (that is, t(ω) is infinite) is an effectively P -null set.
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On the other hand, let us show that for every effectively null set Z there exists an average-
bounded test that is infinite at all its elements. Indeed, for every effectively open set U the
function 1U that is equal to 1 inside U and to 0 outside U is lower semicomputable. Then we
can get a test

∑
i 1Ui . The average of this test does not exceed

∑
i 2

−i = 1, while the sum is infinite
for all elements of

⋂
i Ui. �

When talking about randomness for a computable measure, we will write randomness from now
on, understanding Martin-Löf randomness, since no other kind will be considered.

Sometimes it is useful to switch to the logarithmic scale.
Definition 2.13. For every computable measure P , we will fix a universal P -test and denote

it by tP (ω). Let dP (ω) be the logarithm of the universal test tP (ω):

tP (ω) = 2dP (ω).

With other kinds of test, it will also be our convention to use t (boldface) for the universal test and
d (boldface) for its logarithm.

In a sense, the function dP measures the randomness deficiency in bits.
The logarithm, along with the requirement

∫
tP (ω) dP ≤ 1, implies that dP (ω) may have some

negative values, and even values −∞. By just choosing a different universal test we can always
make dP (ω) bounded below by, say, −1, and also integer-valued. On the other hand, if we want to
make it nonnegative, we will have to lose the property

∫
2dP (ω)dP ≤ 1, though we may still have∫

2dP (ω) dP ≤ 2. It will still have the following property:
Proposition 2.14. The function dP (·) is lower semicomputable and is the largest (up to an

additive constant) among all lower semicomputable functions such that the P -expectation of 2dP (·)

is finite.
As we have shown, for any fixed computable measure P the value dP (ω) (and tP (ω)) is finite if

and only if the sequence ω is Martin-Löf random with respect to P .
Remarks 2.15. 1. Each Martin-Löf’s test (U1, U2, . . . ) is more directly related to a lower

semicomputable function F (ω) = supω∈Ui
i. This function has the property P [F (ω) ≥ k] ≤ 2−k.

Such functions will be called probability-bounded tests; they were used in [30]. We will return to
such functions later (Subsection 2.3).

2. We have defined dP (ω) separately for each computable measure P (up to a constant). We will
later give a more general definition of randomness deficiency d(ω,P ) as a function of two variables
P and ω that coincides with dP (ω) for every computable P up to a constant depending on P .

2.3. Average-bounded and probability-bounded deficiencies. Let us refer, for example,
to [19, 26] for the definition and basic properties of plain and prefix (Kolmogorov) complexity. We
will define prefix complexity in Definition 2.18 below, though. We will not use complexities explicitly
in the present section, but just refer to some of their properties by analogy.

The definition of a test given above resembles the definition of prefix complexity; we can give
another one which is closer to plain complexity. These tests are called probability-bounded tests.
For them we use a weaker requirement: we require that the P -measure of the set of all sequences ω
such that t(ω) > c does not exceed 1/c. (This property is true if the integral does not exceed 1,
due to Chebyshev’s inequality.)

In the logarithmic scale this requirement can be restated as follows: the P -measure of the set of
all sequences whose deficiency is greater than n does not exceed 2−n. If we restrict tests to integer
values, we arrive at the classical Martin-Löf tests (see also Remark 2.15.1).

While constructing a universal test in this sense, it is convenient to use the logarithmic scale and
consider only integer values of n. As before, we enumerate all tests and “almost-tests” di (where
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the measure is bounded by a twice bigger bound) and then take the weighted maximum in the
following way:

d(ω) = max
i

[di(ω) − i] − c.

Then d is less than di only by i + c, and the set of all ω such that d(ω) > k is the union of sets
where di(ω) > k + i + c. Their measures are bounded by O(2−k−i−c), and for a suitable c the sum
of measures is at most 2−k, as required.

In this way we get two measures of non-randomness that can be called “average-bounded de-
ficiency” daver (the first one, related to the tests called “integral tests” in [19]) and “probability-
bounded deficiency” dprob (the second one). It is easy to see that they define the same set of
nonrandom sequences (= sequences that have infinite deficiency). Moreover, the finite values of
these two functions are also rather close to each other:

Proposition 2.16. daver(ω)
+

< dprob(ω)
+

< daver(ω) + 2 log daver(ω).

Proof. Any average-bounded test is also a probability-bounded test, so daver(ω)
+

< dprob(ω).
For the other direction, let d be a probability-bounded test (in the logarithmic scale). Let us

show that d − 2 log d is an average-bounded test. Indeed, the probability of the event “d(ω) is
between i − 1 and i” does not exceed 1/2i−1, the integral of 2d−2 log d over this set is bounded by
2−i+12i−2 log i = 2/i2, and therefore the integral over the entire space converges.

It remains to note that the inequality a
+

< b + 2 log b follows from b
+

> a − 2 log a. Indeed, we
have b ≥ a/2 (for large enough a), hence log a ≤ log b+1, and then a

+

< b+2 log a
+

< b+2 log b. �
In the general case the question of the connection between boundedness in average and bound-

edness in probability is addressed in paper [24]. It is shown there (and this is not difficult) that if
u : [1,∞] → [0,∞] is a monotonic continuous function with

∫ ∞
1 (u(t)/t2) dt ≤ 1, then u(t(ω)) is an

average-bounded test for every probability-bounded test t, and that this condition for u cannot be
improved. (Our estimate is obtained by choosing u(t) = t/ log2 t.)

Remark 2.17. This statement resembles the relation between the prefix and plain descrip-
tion complexity. However, now the difference is bounded by the logarithm of the deficiency (that
is, bounded independently of the length for the sequences that are close to random), not of the
complexity (as usual), which would be normally growing with the length.

Question 1. It would be interesting to understand whether the two tests differ only by a shift
of scale or in some more substantial way. Such a more substantial difference could be confirmed by
two families of sequences ωi and ω′

i for which

daver(ωi) − daver(ω′
i) → +∞

as i → ∞, while

dprob(ωi) − dprob(ω′
i) → −∞.

The authors do not know whether such families exists.

2.4. A formula for average-bounded deficiency. Let us recall some concepts connected
with the prefix description complexity. For reference, consult, for example, [19, 26].

Definition 2.18. A set of strings is called prefix-free if no element of it is a prefix of another
element. A computable partial function T : {0, 1}∗ → {0, 1}∗ is called a self-delimiting interpreter
if its domain of definition is a prefix-free set. We define the complexity KpT (x) of a string x
with respect to T as the length of a shortest string p with T (p) = x. It is known that there is
an optimal (self-delimiting) interpreter, that is, a (self-delimiting) interpreter U with the property
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that for every self-delimiting interpreter T there is a constant c such that for every string x we have
KpU (x) ≤ KpT (x)+ c. We fix an optimal self-delimiting interpreter U and denote Kp(x) = KpU (x).

We also denote m(x) = 2−Kp(x) and call it the discrete a priori probability.
The “a priori” name comes from some interpretations of a property that distinguishes the function

m(x) among certain “weight distributions” called semimeasures.
Definition 2.19. A function f : {0, 1}∗→ [0,∞) is called a discrete semimeasure if

∑
x f(x)≤ 1.

Lower semicomputable semimeasures arise as the output distribution of a randomized algorithm
using a source of random numbers and outputting some word (provided the algorithm halts; with
some probability, it may not halt).

It is easy to check that m(x) is a lower semicomputable discrete semimeasure.
Recall the following fact.
Proposition 2.20 (coding theorem). Among lower semicomputable discrete semimeasures,

the function m(x) is maximal within a multiplicative constant ; that is, for every lower semicom-
putable discrete semimeasure f(x), there is a constant c such that cm(x) ≥ f(x) for all x.

The universal average-bounded randomness test tP (the largest lower semicomputable function
with bounded expectation) can be expressed in terms of the a priori probability (and therefore
prefix complexity):

Proposition 2.21. Let P be a computable measure and let tP be the universal average-bounded
randomness test with respect to P . Then

tP (ω) ∗=
∑
x�ω

m(x)
P (x)

.

(If P (x) = 0, then the ratio m(x)/P (x) is considered to be infinite.)
Proof. A lower semicomputable function on sequences is a limit of an increasing sequence of

basic functions.
Without loss of generality, we may assume that each increase is made on some cylinder xΩ. In

other terms, we increase the “weight” w(x) of x and let our basic function on ω be the sum of the
weights of all prefixes of ω. The weights increase gradually: at any moment, only finitely many
weights differ from zero. In terms of weights, the average-boundedness condition translates into∑

x

P (x)w(x) ≤ 1,

so, after multiplying the weights by P (x), this condition corresponds exactly to the semimeasure
requirement. Let us note that due to the computability of P , the lower semicomputability is
conserved in both directions (when multiplying or dividing by P (x)). More formally, the function∑

x�ω

m(x)
P (x)

is a lower semicomputable average-bounded test: its integral is exactly
∑

x m(x). On the other
hand, every lower semicomputable test can be presented in terms of an increase of weights, and
the limits of these weights, multiplied by P (x), form a lower semicomputable semimeasure. (Note
that the latter transformation is not unique: we can redistribute the weights among a string and
its continuations without altering the sum over the infinite sequences.) �

Note that we used that both P (in the second part of the proof) and 1/P (in the first part) are
lower semicomputable.
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In Proposition 2.21, we can replace the sum with the least upper bound. This way, the following
theorem connects three quantities, tP , the supremum and the sum, all of which are equal within a
multiplicative constant.

Theorem 2.22. We have tP (ω) ∗= supx�ω
m(x)
P (x)

∗=
∑

x�ω
m(x)
P (x) , or in logarithmic notation

dP (ω) += sup
x�ω

(− log P (x) − Kp(x)). (3)

Proof. The supremum is now smaller, so only the second part of the proof of Proposition 2.21
should be reconsidered.

For a given test t we consider functions ti (for all i ∈ Z) defined as follows: ti(ω) = 2i if
ti(ω) > 2i, and ti(ω) = 0 otherwise. All ti are uniformly lower semicomputable, and their sum
coincides with t (up to factor 2 in both directions). Also for every ω the sum

∑
i ti(ω) exceeds

supi ti(ω) at most by a factor of 2.
Let us convert every ti into a sum of weights (as described above). Since ti has only two values

(zero and some other value), we may assume that the vertices of nonzero weight form a prefix-free
set (each path meets at most one such vertex).

Summing the weights along every path, we get
∑

i ti(ω), or the universal test t(ω) (up to a
constant factor). And if we replace the sum by the supremum, we get a smaller function, but at
most twice smaller (since the summands are different powers of 2). Note that for each ti the sum is
equal to the supremum since only one term is nonzero (for each ω).

More formally, the lower semicomputable function 	dP (ω)
 can be obtained as the supremum
of a sequence of integer-valued basic functions of the form kigxi(ω), where gx(ω) = 1xΩ(ω) = 1 if
x � ω and 0 otherwise. We can also require that if i �= j and xi � xj , then ki �= kj: indeed, suppose
ki = kj . If i < j, then we can delete the jth element, and if i > j, then we can replace 2kigxi with
the sequence of all functions 2kigz where z has the same length as xj but differs from it. We have

2tP (ω) ≥ 2�dP (ω)� = sup
i

2kigxi(ω) = sup
xi�ω

2ki ≥ 2−1
∑

i : xi�ω

2ki = 2−1
∑

i

2kigxi(ω).

The last inequality holds since, according to our assumption, all the values ki belonging to pre-
fixes xi of the same sequence ω are different, and the sum of different powers of 2 is at most twice
larger than its largest element. Integrating with respect to P , we obtain 4 ≥

∑
i 2kiP (xi); hence

2kiP (xi)
∗
< m(xi) by the maximality of m(x), so 2ki

∗
< m(xi)

P (xi)
. We found

tP (ω)
∗
< sup

i : xi�ω

m(xi)
P (xi)

≤ sup
x�ω

m(x)
P (x)

. �

Here is a reformulation:

dP (ω) += sup
n

(
− log P (ω(1 : n)) − Kp(ω(1 : n))

)
.

This reformulation can be generalized:
Theorem 2.23. Let n1 < n2 < . . . be an arbitrary computable sequence of natural numbers.

Then
dP (ω) += sup

k

(
− log P (ω(1 : nk)) − Kp(ω(1 : nk))

)
.

The constant in += depends on the sequence nk.
Proof. Every step of the proof of Theorem 2.22 generalizes to this case straightforwardly. �
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This theorem has interesting implications in the case when instead of a sequence ω we consider
an infinite two-dimensional array of bits. (From the topological and measure-theoretical viewpoints
there is no difference between one-dimensional and two-dimensional bit arrays, so the notion of
randomness is naturally defined for two-dimensional arrays.) Then for the randomness deficiency,
it is sufficient to compare complexity and probability of squares starting at the origin.

Historical digression. The above formula for the randomness deficiency is a quantitative re-
finement of the following criterion.

Theorem 2.24 (criterion of randomness in terms of prefix complexity). A sequence ω is ran-
dom with respect to a computable measure P if and only if the difference − log P (x) − Kp(x) is
bounded above for its prefixes.

(Indeed, the last theorem says that the maximum value of this difference over all prefixes is
exactly the average-bounded randomness deficiency.) This characterization of randomness was first
announced, without proof, in [4], with the proof attributed to Schnorr. The first proof, for the case
of a computable measure, appeared in [9].

The historically first clean characterizations of randomness in terms of complexity were given
by Levin and Schnorr independently in [16] and [23]. They have a similar form, but use complexity
and a priori probability coming from a different kind of interpreter called “monotonic.” (In the cited
work, Schnorr uses a slightly different form of complexity, but later he also adopted the version
introduced by Levin.)

Definition 2.25 (monotonic complexity). Let us call two strings compatible if one is the prefix
of the other. An enumerable subset A ⊆ {0, 1}∗×{0, 1}∗ is called a monotonic interpreter if for any
p, p′, q and q′, if (p, q) ∈ A, (p′, q′) ∈ A and p is compatible with p′, then q is compatible with q′.
For an arbitrary finite or infinite p ∈ {0, 1}∗ ∪ Ω, we define

A(p) = sup{x : ∃p′ � p (p′, x) ∈ A}.

The monotonicity property implies that this limit, also in {0, 1}∗ ∪ Ω, is well defined.
We define the (monotonic) complexity KmA(x) of a string x with respect to A as the length

of a shortest string p with A(p) � x. It is known that there is an optimal monotonic interpreter,
where optimality has the same sense as above, for prefix complexity. We fix an optimal monotonic
interpreter V and denote Km(x) = KmV (x).

Remark 2.26 (oracle computation). A monotonic interpreter is a slightly generalized version
of what can be accomplished by a Turing machine with a one-way read-only input tape containing
a finite or infinite string p. The machine also has a working tape and a one-way output tape. In
the process of work, a finite or infinite sequence T (p) appears on this tape. The work may stop, if
the machine halts or passes beyond the limit of the input word; it may continue forever otherwise.
It is easy to check that the map p �→ T (p) is a monotonic interpreter (though not all monotonic
interpreters correspond to such machines, resulting in a somewhat narrower class of mappings).

These machines can be viewed as the definition of what we will later call oracle computation,
namely, a computation that uses p as an oracle.

In our applications, such a machine would have the form T (p, ω) where the machine works on
both infinite strings p and ω as an input, but considers p the oracle and ω the string it is testing
for randomness.

The class of mappings is narrower indeed. Let S be an undecidable recursively enumerable set
of integers. Set T (0n1) = 0 for all n ∈ S, and T (0n10) = 0 for all n. Now, after reading 0n1,
the machine T has to decide whether to output a 0 before reading the next bit, which is deciding
the undecidable set S. It is unknown to us whether this class of mappings also yields a different
monotonic complexity.
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A monotonic interpreter will also give rise to something like a distribution over the set of finite
and infinite strings.

Definition 2.27. Let us feed a sequence of independent random bits into a monotonic inter-
preter A and consider the output distribution on the finite and infinite sequences. Denote by MA(x)
the probability that the output sequence begins with x. Denote KMA(x) = − log MA(x).

Recall that Λ denotes the empty string. A function µ : {0, 1}∗ → [0, 1] is called a continuous
semimeasure over the Cantor space Ω if µ(Λ) = 1 and µ(x) ≥ µ(x0) + µ(x1) for all x ∈ {0, 1}∗.

It is easy to check that MA(x) is a lower semicomputable continuous semimeasure.
Using the same construction as for the optimal interpreter, we can easily prove the following

statement (see [30]):

Proposition 2.28. (a) Every lower semicomputable continuous semimeasure is the output dis-
tribution of some monotonic interpreter.

(b) Among lower semicomputable continuous semimeasures, there is one that is maximal within
a multiplicative constant.

Definition 2.29 (continuous a priori probability). Let us fix a maximal lower semicomputable
continuous semimeasure and denote it M(x). We sometimes call M(x) the continuous a priori
probability or the a priori probability on a tree.

The relation between the continuous a priori probability and monotone complexity is similar in
form to the relation between the discrete a priori probability and prefix complexity. However, in
this case the function 2−Km(x), still being a lower semicomputable continuous semimeasure, is not
maximal (as shown in [10]). In other terms, KM(x) = − log M(x) does not exceed Km(x), but can
be smaller (the difference is unbounded).

Now, the characterization by Levin (and a similar one by Schnorr) is the following. Its proof,
technically not difficult, can be found in [7, 19, 26].

Proposition 2.30. Let P be a computable measure over Ω. Then the following properties of
an infinite sequence ω are equivalent :

(i) ω is random with respect to P ;

(ii) lim supx�ω[− log P (x) − Km(x)] < ∞;

(iii) lim infx�ω[− log P (x) − Km(x)] < ∞;

(iv) lim supx�ω[− log P (x) − KM(x)] < ∞;

(v) lim infx�ω[− log P (x) − KM(x)] < ∞.

Theorem 2.24 proved above adds to this one more equivalent characterization, namely, that
− log P (x) − Kp(x) is bounded above. It is different in nature from the one in Proposition 2.30:
indeed, the expressions − log P (x)−Km(x) and − log P (x)−KM(x) are always bounded from below
by a constant depending only on the measure P (and not on x or ω), while − log P (x) − Kp(x)
is not.

Moreover, in the latter we cannot replace lim sup with lim inf, as the following example shows.
Note that we can add to every string x some bits to achieve Kp(y) ≥ |y| (where |y| is the length of
the string y). Indeed, if this was not so, then for the continuations of the string x we would have
m(y) ≥ 2−|y|, and the sum

∑
y m(y) would be infinite. Let us build a sequence, adding alternatingly

long stretches of zeros to make the complexity substantially less than the length, and then bits that
again bring the complexity up to the length (as shown, this is always possible). Such a sequence will
not be random with respect to the uniform measure (since the lim sup of the difference is infinite),
but has infinitely many prefixes for which the complexity is not less than the length, making the
lim inf finite.
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The following statement is interesting since no direct proof of it is known: the proof goes through
applying Theorem 2.23 and noting that since the permutation of terms of the sequence does not
change the coin-tossing distribution, it does not change the notion of randomness. More general
theorems of this type, under the name of randomness conservation, can be found in [17, 18, 11].

Corollary 2.31. Consider the uniform distribution (coin-tossing) P over binary sequences.
The maximal difference between |x| and Kp(x) for prefixes x of a random sequence is invariant (up
to a constant) under any computable permutation of the sequence terms. (The constant depends on
the permutation, but not on the sequence.)

Here is another corollary, a reformulation of Proposition 2.21:
Corollary 2.32 (Miller–Yu “ample excess” lemma). A sequence ω is random with respect to

a computable measure P if and only if∑
x�ω

2− log P (x)−Kp(x) < ∞.

This corollary also implies the fact already mentioned above:
Corollary 2.33. Every finite sequence x has an extension y with Kp(y) > |y|.
Proof. Take ω random. Then xω is random, and therefore by the Miller–Yu lemma xω has

arbitrarily long prefixes whose complexity is larger than the length. �
2.5. Game interpretation. The formula for the average-bounded deficiency can be inter-

preted in terms of the following game. Alice and Bob make their moves having no information
about the opponent’s move. Alice chooses an infinite binary sequence ω, Bob chooses a finite
string x. If x turns out to be a prefix of ω, then Alice pays Bob 2n where n is the length of x. (This
version of the game corresponds to the uniform Bernoulli measure; in the general case Alice pays
1/P (x).) Recall the game-theoretic notions of pure strategy, as a deterministic choice by a player,
and mixed strategy, as a probability distribution over deterministic choices.

Bob has a trivial strategy (choosing the empty string) that guarantees him 1 whatever Alice
does. Also Alice has a mixed strategy (the uniform distribution, or, in the general case, P ) that
guarantees her the average loss 1 whatever Bob does. Bob can devise a strategy that will benefit
him in case (for whatever reason) Alice brings a nonrandom sequence.

A randomized algorithm that has no input and produces a string (or nothing) can be considered
a mixed strategy for Bob (if the algorithm does not produce anything, Bob gets no money). For
any such algorithm D the expected payment (if Alice produces ω according to the distribution P )
does not exceed 1. Therefore, the set of sequences ω where the expected payment (averaged over
Bob’s random bits) is infinite, is a null set. Observe the following:

(i) For every probabilistic strategy of Bob, his expected gain (as a function of Alice’s sequence)
is an average-bounded test. (From here it already follows that this expected value will be finite, if
Alice’s sequence is random in the sense of Martin-Löf.)

(ii) If m(x) is the probability of x as Bob’s move with algorithm D, his expected gain against ω
is equal to ∑

x�ω

m(x)
P (x)

.

(iii) Therefore, if we take the algorithm outputting the discrete a priori probability m(x), then
Bob’s expected gain will be a universal test (by the proved formula for the universal test).

Using the a priori probability as a mixed strategy enables Bob to punish Alice with an infinite
penalty for any non-randomness in her sequence.
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One can consider more general strategies for Bob: he can take as a pure strategy not only a
string x, but some basic function f on Ω with nonnegative values. Then his gain for the sequence ω
brought by Alice is set to f(ω)/

∫
f(ω) dP . (The denominator makes the expected return equal

to 1.) To the move x corresponds the basic function that assigns 2|x| to extensions of x and zero
elsewhere. This extension does not change anything, since this move is a mixed strategy and we
allow Bob to mix his strategies anyway. (After producing f , Bob can make one more randomized
step and choose some of the intervals on which f is constant, with an appropriate probability.) In
this way we get another formula for the universal test:

tP (ω) ∗=
∑

f

m(f)f(ω)∫
f(ω) dP

,

where the sum is taken over all basic functions f . This formula might be useful in more general
situations (not for the Cantor space) where we do not work with intervals and consider some class
of basic functions instead.

On concluding this part, let us point to a similar game-theoretical interpretation of probability
theory developed in book [25] by Shafer and Vovk. There, the randomness of an object is not its
property but, roughly speaking, a kind of guarantee with which it is being sold.

3. FROM TESTS TO COMPLEXITIES

Formula (3) expresses the randomness deficiency (the logarithm of the universal test) of an
infinite sequence in terms of complexities of its finite prefixes. A natural question arises: can we go
in the other direction? Is it possible to express the complexity of a finite string x, or some kind of
“randomness deficiency” of x, in terms of the deficiencies of x’s infinite extensions? Proposition 2.6
and the discussion following it already brought us from infinite sequences to finite ones. This can
also be done for the universal test:

Definition 3.1. Fix some computable measure P , and let t be any (average-bounded) test
for P . For any finite string x let t̄(x) be the minimal deficiency of all infinite extensions of x:

t̄(x) = inf
ω�x

t(ω).

By Proposition 2.7, t̄ is a lower semicomputable function defined on finite strings, and the
function t can be reconstructed back from t̄; so if tP is our fixed universal test, then tP can be
considered as a version of randomness deficiency for finite strings.

The intuitive meaning is clear: a finite sequence z looks nonrandom if all infinite sequences that
have prefix z look nonrandom.

Question 2. Kolmogorov [14] had a somewhat similar suggestion: for a given sequence z we
may consider the minimal deficiency (with respect to the uniform distribution, i.e., a difference
between length and complexity) of all its finite extensions. Are there any formal connections?

Let us spell out what we found, in more general terms.

Definition 3.2 (extended test for a computable measure). A lower semicomputable monotonic
(with respect to the prefix relation) function T : {0, 1}∗ → [0,∞] is called an extended test for a
computable measure P if for all N the average over words of length N is bounded by 1:∑

x : |x|=N

P (x)T (x) ≤ 1.
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Monotonicity guarantees that the sum over words of a given length can be replaced by the sum
over an arbitrary finite (or even infinite) prefix-free set S:∑

x∈S

P (x)T (x) ≤ 1. (4)

(Indeed, extend the words of S to some common greater length.)
Proposition 3.3. Every extended test generates (in the sense of Definition 2.5) some average-

bounded test on the infinite strings. Conversely, every average-bounded test on the infinite sequences
is generated by some extended test.

Proof. The first part follows immediately from the definition (and the theorem of monotone
convergence under the integral sign). In the opposite direction, we can set, for example, T (x) = t̄(x),
or refer to Proposition 2.4 if we do not want to rely on compactness. �

The existence of a universal extended test is proved by the usual methods:
Proposition 3.4. Among the extended tests T (x) for a computable measure P (x), there is a

maximal one, up to a multiplicative constant.
Definition 3.5. Let us fix some dominating extended test and call it the universal ex-

tended test.
Proposition 3.6. The universal extended test coincides with tP (x) to within a bounded factor.
Proof. Since tP is an extended test, it is not greater than the universal test (to within a

bounded factor). On the other hand, the universal extended test generates a test on the infinite
sequences; it just remains to compare it with the maximal one. �

If our space is not compact (say, it is the set of infinite sequences of integers), then tP (x) is not
defined, but there is still a universal extended test, which we will denote by tP (x).

Warning: not all extended tests generating tP (ω) are maximal. (For example, one can make
the test equal to zero on all short words, transferring its values to its extensions.)

The advantage of the function tP (x) is that it is defined on finite strings; condition (4) (for finite
sets S) imposed on it is also more elementary than the integral condition, but clearly implies that
it generates a test.

The method just shown is not the only way to move to tests on prefixes from tests on infinite
sequences:

Definition 3.7. Assume that the computable measure P is positive on all intervals: P (x) > 0
for all x. Let t̂P (x) be the conditional expected value of tP (ω) if a random variable ω ∈ Ω has
distribution P and the condition is ω � x. In other terms: let t̂P (x) be the average of tP on the
interval xΩ, that is, let t̂P (x) = U(x)/P (x) where

U(x) =
∫
xΩ

tP (ω) dP (ω).

The function U is a lower semicomputable semimeasure. (It is even a measure, but the measure
is not guaranteed to be computable and the measure of the entire space Ω is not necessarily 1. In
other words, we get a measure on Ω that has density tP with respect to P .) This implies that the
function t̂P (x) is a martingale, according to the following definition.

Definition 3.8. A function g : {0, 1}∗ → R is called a martingale with respect to the proba-
bility measure P if

P (x)g(x) = P (x0)g(x0) + P (x1)g(x1)

for any string x. It is a supermartingale if at least the inequality ≥ holds here.
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Note that, as a martingale, the function t̂P (x) is not monotonically increasing with respect to
the prefix relation.

Theorem 3.9.
m(x)
P (x)

∗
< tP (x)

∗
< t̂P (x)

∗
<

M(x)
P (x)

, (5)

where m is the a priori probability on strings as isolated objects (whose logarithm is minus the prefix
complexity) and M is the continuous a priori probability as introduced in Definition 2.29.

Proof. In fact, the first inequality can be made stronger: we can replace m(x)/P (x) by∑
t�x m(t)/P (t). Indeed, this sum is a part of the expression for tP (ω) for every ω that starts

with x.
The second inequality uses Proposition 3.6 and relates the minimal and average values of a

random variable. The third inequality just compares the lower semicomputable semimeasure U(x)
and the maximal semimeasure M(x). �

Note that while t̂P (x) is a martingale, M(x)
P (x) is a supermartingale; it is actually maximal up to

a multiplicative constant among the lower semicomputable supermartingales for P .
Remarks 3.10. 1. We may insert

∗
< max

t�x

m(t)
P (t)

∗
<

∑
t�x

m(t)
P (t)

∗
< (6)

between the first and the second terms of (5).
2. Using the logarithmic scale, we get

− log P (x) − Kp(x)
+

< log tP (x)
+

< log t̂P (x)
+

< − log P (x) − KM(x).

3. The measure U depends on P (recall that U is a maximal measure that has density with
respect to P ), so for different P ’s, for example with different supports, like the Bernoulli measures
with different parameters, we get different measures. But this dependence is bounded by the
inequality above: it shows that the possible variations do not exceed the difference between Kp(x)
and KM(x).

4. The rightmost inequality cannot be replaced by an equality. For example, let P be the
uniform (coin-tossing) measure. Then the value of U(x) tends to 0 when x is an increasing prefix of
a computable sequence (we integrate over decreasing intervals whose intersection is a singleton that
has zero uniform measure). On the other hand, the value M(x) is bounded by a positive constant
for all these x.

5. We used compactness (the finiteness of the alphabet {0, 1}) in proving Proposition 2.7. But
we could have used Proposition 2.6 and the discussion following it for a starting point, obtaining
analogous results for the Baire space of infinite sequences of natural numbers.

All quantities listed in Theorem 3.9 can be used to characterize randomness: a sequence ω is
random if the values of the quantity in question are bounded for its prefixes. Indeed, the Levin–
Schnorr theorem guarantees that for a random sequence the right-hand side is bounded, and for a
nonrandom one the left-hand side is unbounded. The monotonicity of the second term guarantees
that all expressions except the first one tend to infinity. As we already mentioned above, one cannot
say this about the first quantity.

Question 3. Some quantities used in the theorem (tP (x) and two added ones in (6)) are
monotonic (with respect to the prefix partial order of x) by definition. We have seen that t̂P (x), as
a martingale, is not monotonic. What can be said about M(x)

P (x) ?
All these quantities are “almost monotonic” since they do not differ much from the mono-

tonic ones.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 274 2011



ALGORITHMIC TESTS AND RANDOMNESS 49

4. BERNOULLI SEQUENCES

One can try to define randomness not only with respect to some fixed measure but also with
respect to some family of measures. Intuitively a sequence is random if we can believe that it is
obtained by a random process that respects one of these measures. As we show later, this definition
can be given for any effectively compact class of measures. But to make it more intuitive, we start
with a specific example, Bernoulli measures.

4.1. Tests for Bernoulli sequences. The Bernoulli measure Bp arises from independent
tossing of a nonsymmetric coin, where the probability of success p is some real number in [0, 1] (the
same for all trials). Note that we do not require p to be computable.

Definition 4.1 (average-bounded Bernoulli test). A lower semicomputable function t on infi-
nite binary sequences is a Bernoulli test if its integral with respect to any Bp does not exceed 1.

Proposition 4.2 (universal Bernoulli test). There exists a universal (maximal up to a con-
stant factor) Bernoulli test.

Proof. A lower semicomputable function is the monotonic limit of basic functions. If the
integral of a given basic function with respect to every Bp is less than or equal to 1 for all p, this
fact can be established effectively (indeed, the integral is a polynomial in p with rational coefficients).
This allows us to eliminate all functions unfit to be tests, and to list all Bernoulli tests. Adding
these up with appropriate coefficients, we obtain a universal one. �

Definition 4.3. We fix a universal Bernoulli test and denote it tB(ω). Its logarithm will be
called the Bernoulli deficiency dB(ω). A sequence is called a Bernoulli sequence if its Bernoulli
deficiency is finite.

Again, we may modify the definition to within an additive constant, to make it nonnegative and
integer.

The informal motivation is the following: ω is a Bernoulli sequence if the claim that it is obtained
by independent coin tossing (coin symmetry is not required) looks plausible. And this statement
is not plausible if one can formulate some property that is true for ω but defines an “effectively
Bernoulli null set” (we did not formally introduce this notion, but could, analogously to effective
null sets).

Analogously to the case of computable measures, we can extend the class test to finite sequences:
Definition 4.4 (extended Bernoulli test). A lower semicomputable monotonic function T :

{0, 1}∗ → [0,∞] is called an extended Bernoulli test if for all natural numbers N and for all p ∈ [0, 1]
the inequality

∑
x : |x|=N Bp(x)T (x) ≤ 1 holds.

As for computable measures, there is a connection between tests for finite and tests for infinite
sequences:

Proposition 4.5. Every extended Bernoulli test generates a Bernoulli test over Ω. On the
other hand, every Bernoulli test over Ω is generated by some extended Bernoulli test.

There is a dominating universal extended Bernoulli test: it generates a universal Bernoulli test
on Ω. As earlier, we will use the same notation tB for the maximal tests on the finite and on the
infinite sequences. Of course, it generates a universal Bernoulli test.

4.2. Other characterizations of the Bernoulli property. Just as for the randomness with
respect to computable measures, several equivalent definitions exist. One may consider probability-
bounded tests (the probability of the event t(ω) > N on any of the measures Bp must be not greater
than 1/N). Following Martin-Löf’s definition for the computable measures, by a test one may mean
any computable sequence of effectively open sets Ui with Bp(Ui) ≤ 2−i for all i and all p ∈ [0, 1].
All these variant definitions are equivalent (and this is proved just as for randomness with respect
to computable measures).
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In fact, the initial definition of Bernoulli sequences given by Martin-Löf in [20] was a bit different.
We will show now that in fact it gives an equivalent notion, but this equivalence requires some work.

Notation 4.6. Let B(n, k) denote the set of binary strings of length n with k ones (and n− k
zeros).

Martin-Löf defined a Bernoulli test as a family of sets of words U1 ⊇ U2 ⊇ U3 ⊇ . . . ; each of
these sets is hereditary upward, that is, for every word contains all of its extensions. The following
restriction is imposed on these sets: consider arbitrary integer n ≥ 0 and k from 0 to n; it is required
that for all i the share of words in B(n, k) belonging to Ui is not greater than 2−i.

For convenience of comparison let us replace the sets Ui with an integer-valued lower semicom-
putable function d for which Ui = {x : d(i) ≥ i}. The hereditary property of the sets Ui implies
the monotonicity of this function d with respect to the prefix relation. Besides this, it is required
that the probability of the event d ≥ i within each set B(n, k) is not greater than 2−i. Clearly,
these requirements correspond to probability-bounded extended tests (in the logarithmic scale),
only in place of the class Bp on words of length n another set of measures is considered, namely,
those concentrated on words of a given length with a given number of ones. The measures in the
class Bp take equal values on words of equal lengths with equal number of ones, and are therefore
representable by a mixture of uniform measures on B(n, k) with some coefficients. Replacing Bp

with these measures makes the condition stronger.
Let us show that, nonetheless, the set of Bernoulli sequences does not change under such a

replacement; moreover, the universal test (as a function on infinite sequences) does not change
(as usual, to within a bounded factor). We will show this for the average-bounded variant of tests
(changing Martin-Löf’s definition accordingly); this does not change the class of Bernoulli sequences.
The reasoning is analogous for the probability-bounded tests.

Definition 4.7. A combinatorial Bernoulli test is a function f : {0, 1}∗ → [0,∞] with the
following constraints:

(a) it is lower semicomputable;
(b) it is monotonic with respect to the prefix relation;
(c) for all integer n and k with 0 ≤ k ≤ n, the average of the function f on the set B(n, k)

remains below 1:
|B(n, k)|−1

∑
x∈B(n,k)

f(x) ≤ 1.

The last condition says that not only is the average of f(x) bounded by 1 over the set {0, 1}n, as
in extended tests for the unbiased coin-tossing measure, but its average is bounded by 1 separately
in each of the sets B(n, k), whose union is {0, 1}n.

Having such a test for words of bounded length, one can continue it by monotonicity:
Proposition 4.8. If a combinatorial Bernoulli test f(x) is given on strings x of length less

than n, then, extending it to longer strings using monotonicity, we get a function that is still a
combinatorial Bernoulli test.

Proof. We extend f to words of length n, setting f(x0) = f(x1) = f(x) for words x of length
n−1. The set B(n, k) consists of two parts: words ending with zero and words ending with one. The
first part is in a one-to-one correspondence with B(n−1, k), and the second part, with B(n−1, k−1).
The function conserves the values in this correspondence; therefore, the average in both parts is not
greater than 1. Hence, the average over the whole B(n, k) is not greater than 1. �

The following is obtained by standard methods:
Proposition 4.9 (universal combinatorial Bernoulli test). Among combinatorial Bernoulli

tests, there is one that is maximal to within a bounded factor.
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Definition 4.10. Let us fix a universal combinatorial Bernoulli test b(x) and extend it to
infinite sequences ω by

b(ω) = sup
x�ω

b(x).

We will call the function obtained this way a universal combinatorial test on Ω and will also denote
it by b.

By monotonicity, the least upper bound in this definition can be replaced with a limit. Let us
show that this test coincides (to within a bounded factor) with the Bernoulli tests introduced earlier
in Definition 4.3.

Theorem 4.11. b(ω) ∗= tB(ω).
Proof. We have already seen that b(x) is an extended Bernoulli test (the bounds on the average

on each part B(n, k) imply the bound on the expected value with respect to the measure Bp, since
this measure is constant on each part). Consequently, b(ω)

∗
< tB(ω).

The converse is not true: an extended Bernoulli test may not be a combinatorial test. However,
it is possible to construct a combinatorial test that takes the same values (to within a bounded
factor) on the infinite sequences, and only this is asserted in the theorem.

Here is the idea. Consider an extended Bernoulli test t on words of length n and transfer it
to words of much greater length N (applying the old test to their beginnings of length n). We
obtain a certain function t′. We have to show that t′ is close to some combinatorial test (that is,
only exceeds it by a constant factor). For this, t′ must be averaged over the set B(N,K) for an
arbitrary K between 0 and N . In other words, we must average t with respect to the probability
distribution on the n-bit prefixes of sequences of length N containing K ones. With N � n this
distribution will be close to the Bernoulli one with distribution p = K/N .

In terms of elementary probability theory, we have an urn with N balls K of which are black,
and take out from it n balls. We must compare the probability distribution with the Bernoulli one
that would have been obtained at sampling with replacement. Let us show that

for N = n2 the distribution without replacement does not exceed the one with replace-
ment more than O(1) times.

(The inequality does not hold in the other direction: for K = 1 without replacement we cannot
obtain a word with two ones, and with replacement we can. But we only need the inequality in the
given direction.)

Indeed, in sampling without replacement the probability that a ball of a given color will be
drawn is equal to the quotient

The number of remaining balls of this color
The number of all remaining balls

.

The number of balls of this color is not more than in the case with replacement; on the other hand,
the denominator is at least N − n. Therefore, the probability of any combination during sampling
without replacement is at most the probability of the same combination with replacement, multiplied
by N/(N − n) to the power n. For N = n2 the multiplier (1 + O(1/n))n = O(1) is obtained.

This way, taking the extended Bernoulli test t and then defining t′(x) on a word x of length N
as t on the prefix of x of length �

√
N�, the obtained function t′ will be a combinatorial test to within

a bounded factor. (Note that its monotonicity follows from that of t.) �

4.3. Criterion for Bernoulli sequences. It is natural to compare the notion of Bernoulli
sequence (a sequence for which the Bernoulli test is finite) with the notion of a sequence random with
respect to the measure Bp. But Martin-Löf’s definition of randomness assumes that the measure
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is computable. Therefore, it cannot be applied directly to Bp if p is noncomputable. However,
this definition can be relativized, and if (the binary expansion of) p is given as an oracle (see
Remark 2.26), then the measure Bp becomes computable and randomness is well defined. The
following theorem supports an intuitive idea of Bernoulli sequence as a sequence that is random
with respect to some Bernoulli measure:

Theorem 4.12. A sequence ω is a Bernoulli sequence if and only if it is random with respect
to some measure Bp, with oracle p ∈ [0, 1].

By “with oracle p,” we understand the possibility to obtain from each i the ith bit in the binary
expansion of the real number p (which is essentially unique, except in those cases when p is binary-
rational, and in these cases both expansions are computable, and the oracle is trivial).

Before proving the theorem (even in a stronger quantitative form), we introduce a new notion
of a test depending explicitly on the parameter p of the Bernoulli measure Bp, which will be later
extended to arbitrary (not just Bernoulli) measures. The required result will be obtained as the
combination of the following claims:

(a) Among the “uniform” randomness tests, there exists a maximal test t(ω, p).
(b) The function ω �→ infp t(ω, p) coincides (as usual, to within a bounded factor) with the

universal Bernoulli test.
(c) For a fixed p, the function ω �→ t(ω, p) coincides (to the same precision) with the maximal

randomness test for the (p-computable) measure Bp, relativized to p.
These three assertions imply Theorem 4.12 easily: a sequence ω is Bernoulli if the Bernoulli

test is finite; the latter is equal to the greatest lower bound of t(ω, p); hence its finiteness means
t(ω, p) < ∞ for some p, which is equivalent to the relativized randomness with respect to the
measure Bp.

We need some technical preparation. The randomness tests (as functions of two variables)
will also be lower semicomputable, but the definition of this concept needs to be extended, since an
additional real parameter is involved. (In what follows we will also consider a more general situation
in which the second argument is a measure.)

Definition 4.13. In the space Ω× [0, 1], let us call all sets of the form xΩ×(u, v), where u < v
are rational numbers, basic rectangles. (A technical point: we allow u and v to be outside [0, 1], but
in this case the rectangle we mean is xΩ × ([0, 1] ∩ (u, v)).)

A function f : Ω× [0, 1] → [−∞,∞] is called lower semicomputable if there is an algorithm that,
given a rational r on its input, enumerates a sequence of basic rectangles whose union is the set of
all pairs (ω, p) with f(ω, p) > r.

The notion of upper semicomputability is defined analogously, and is equivalent to the lower
semicomputability of −f . A function with finite real values is called computable if it is both upper
and lower semicomputable.

This definition, as earlier, requires that the preimage of (−∞, r) be an effectively open set
uniformly in r, only now we consider effectively open sets in Ω × [0, 1], defined in a natural way.

Since the intersection of effectively open sets is effectively open, the following—more intuitive—
formulation is obtained for computability:

Proposition 4.14. A real function f : Ω × [0, 1] → R is computable if and only if for every
rational interval (u, v) its preimage is the union of a sequence of basic rectangles that are effectively
enumerated, uniformly in u and v.

The intuitive meaning of this characterization will become clearer after observing that to “give
approximations to α with any given precision” is equivalent to “enumerate all intervals containing α.”
Therefore, for a computable function f we can find approximations to f(ω, p), if we are given
appropriate approximations to ω and p.
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We can reformulate the definition of (nonnegative) lower semicomputable function, introducing
the notion of basic functions. It is important for us that the basic functions are continuous; therefore,
the dependence on the real argument will be piecewise linear, without jumps.

Definition 4.15 (basic functions, Bernoulli case). We define an enumerated list of basic func-
tions E = {e1, e2, . . .} over the set Ω × [0, 1] as follows. For x ∈ {0, 1}∗, a positive integer k and
rational numbers u and v with u + 2−k < v − 2−k, define the function gx,u,v,k(ω, p) as follows. If
x �� ω, then it is 0. Otherwise, its value does not depend on ω and depends piecewise linearly on p:
it is 0 if p /∈ (u, v), is 1 if u + 2−k ≤ p ≤ v − 2−k, and varies linearly in between. Now E is the
smallest set of functions containing all gx,u,v,k and closed under maxima, minima and rational linear
combinations.

Lower semicomputable functions admit the following equivalent characterization:
Proposition 4.16. A function f : Ω× [0, 1] → [0,∞] is lower semicomputable if and only if it

is the pointwise limit of an increasing computable sequence of basic functions. (It follows that basic
functions are computable.)

Proof. This would be completely clear if for basic functions we also allowed the indicator
functions of basic rectangles and the maxima of such functions. But we want the basic functions to
be continuous (this will be important in what follows). One must note therefore that for k → ∞
the function gx,u,v,k converges to the indicator function of a rectangle. �

The continuity of the basic functions guarantees the following important property:
Proposition 4.17. Let f : Ω × [0, 1] → R be a basic function. The integral

∫
f(ω, p)Bp(dω)

is a computable function of the parameter p, uniformly in the code of the basic function f .
(Computability is understood in the above described sense; we remark that every computable

function is continuous. An analogous statement holds for an arbitrary computable function f , not
only for basic functions, but we do not need this.)

The following fact, proved in [13], will be used in the present paper a number of times, also in
generalizations, but with essentially the same proof.

Proposition 4.18 (trimming). Let ϕ : Ω× [0, 1] → [0,∞] be a lower semicomputable function.
There is a lower semicomputable function ϕ′(ω, p) not exceeding ϕ(ω, p) with the property that
for all p

(a)
∫

ϕ′(ω, p)Bp(dω) ≤ 2;

(b) if
∫

ϕ(ω, p)Bp(dω) ≤ 1, then ϕ′(ω, p) = ϕ(ω, p) for all ω.

Proof. By Proposition 4.16, we can represent ϕ(ω, p) as a sum of a series of basic functions
ϕ(ω, p) =

∑
n hn(ω, p). The integral ∫ ∑

i≤n

hi(ω, p)Bp(dω)

is computable by Proposition 4.17, as a function of p (uniformly in n); therefore, the set Sn of all p
where this integral is less than 2 is effectively open, uniformly in n.

Define now h′
n(ω, p) as hn(ω, p) for all p ∈ Sn and 0 otherwise. The function h′

n(ω, p) is lower
semicomputable, and the integral

∫ ∑
i≤n h′

i(ω, p)Bp(dω) will be less than 2 for all p. Defining
ϕ′ =

∑
n h′

n, we obtain a lower semicomputable function, and the theorem on the integral of
monotonic limits implies that

∫
ϕ′(ω, p)Bp(dω) is less than 2 for all p.

It remains to note that if for some p the integral
∫

ϕ(ω, p)Bp(dω) does not exceed 1, then this p
enters all sets Sn, and the change from hn to h′

n, as well as the change from ϕ to ϕ′, does not
change it. �
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Now we are ready to introduce tests depending explicitly on p:
Definition 4.19. A uniform test for Bernoulli measures is a function t of two arguments

ω ∈ Ω and p ∈ [0, 1]; informally, t(ω, p) measures the amount of nonrandomness (“regularity”) in
the sequence ω with respect to the distribution Bp. We require the following:

(a) t(ω, p) is lower semicomputable jointly as a function of the pair (ω, p);
(b) for every p ∈ [0, 1] the expected value of t(ω, p) (that is,

∫
t(ω, p)Bp(dω)) does not exceed 1.

It remains to prove the three assertions promised earlier:
Lemma 4.20. There exists a universal uniform test t(ω, p), that is, a test that multiplicatively

dominates all uniform tests for Bernoulli measures.
Lemma 4.21. For the universal uniform test t of Lemma 4.20, the function t′(ω) = infp t(ω, p)

coincides (to within a bounded factor in both directions) with the universal Bernoulli test of Defini-
tion 4.3.

This lemma implies that ω is a Bernoulli sequence if and only if t′(ω) is finite, that is, t(ω, p) is
finite for some p ∈ [0, 1].

Lemma 4.22. For a fixed p the function tp(ω) = t(ω, p) coincides (to within a bounded factor)
with the universal randomness test with respect to Bp relativized with oracle p.

Proof of Lemma 4.20. Generate all lower semicomputable functions; using Proposition 4.18,
they can then be trimmed to guarantee that all expectations do not exceed, say, 2, and all uniform
tests should get through unchanged. Sum up all the trimmed functions with coefficients whose sum
is less than 1/2. �

Proof of Lemma 4.21. Let us show that t′(ω) is a universal Bernoulli test. The integral of
this function with respect to Bp does not exceed 1 since this function does not exceed t(ω, p) for
that p. The statement that this function is lower semicomputable (as a function of ω) is analogous
to Proposition 2.7, and the proof is also analogous, relying on compactness. Both are special cases
of the general theorem given in Proposition 7.20.

Therefore, the function infp t(ω, p) is a Bernoulli test. The universality (maximality) follows
obviously, since any Bernoulli test can be considered a uniform Bernoulli test of two variables that
does not depend on the variable p. �

A similar argument shows that for the universal extended uniform Bernoulli test t(x, p) (defined
in a natural way; the first argument x is a binary string) the infimum infp t(x, p) is a universal
extended Bernoulli test.

Proof of Lemma 4.22. Consider first the case when p is a computable real number. Then
the function tp : ω �→ t(ω, p) (where t is a uniform randomness test for Bernoulli measures) is lower
semicomputable (we can enumerate all intervals that contain p and combine this with an algorithm
for t; in this way we represent tp as the least upper bound of the computable sequence of basic
functions).

A similar argument works for an arbitrary p and shows that tp is lower semicomputable with a
p-oracle. Thus, tp does not exceed the universal relativized test with respect to Bp.

The reverse implication is a bit more difficult. Assume that t is a lower semicomputable (with
oracle p) randomness test with respect to Bp. We need to find a uniform Bernoulli test t′ that
majorizes it (for a given p). This t′ must be lower semicomputable, but now (a subtle but important
point) with p as an argument of the function t′, not as an oracle. In other words, one has to extend
a function defined initially only for a single p to all values of p, while also guaranteeing the bound
on the integral.

As a warm-up consider the case of computable p. Then no oracle is needed, and t is lower
semicomputable. Adding a dummy variable p, we get a lower semicomputable function of two
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arguments. But this function may not be a uniform test since its expectation with respect to Bq

may be arbitrary if q �= p. However, Proposition 4.18 helps transform it into a t′ (which will now
really depend on q) with

∫
t′(ω, q)Bq(dω) ≤ 2 for all q and t′(·, p) = t(·, p). Halving t′ provides a

uniform test.
Now consider the case of noncomputable p. In this case p is irrational, so the bits of its binary

expansion can be obtained from any sequence of decreasing rational intervals that converge to p.
Therefore, an oracle machine that enumerates approximations for t from below (having p as an
oracle) can be transformed into a machine that enumerates from below some function t̃(ω, q) that
coincides with t(ω) if q = p. The function t̃ may not be a uniform Bernoulli test (its expectations
for q �= p can be arbitrary); but it again can be trimmed with the help of Proposition 4.18. �

5. ARBITRARY MEASURES OVER BINARY SEQUENCES

In this section, we generalize the theory to arbitrary measures, not only Bernoulli ones, but still
stay in the space Ω of binary sequences.

Notation 5.1. The set of all probability measures over the space Ω is denoted by M(Ω).
(Recall that the measure of the whole space Ω is equal to 1.)

5.1. Uniform randomness tests.
Definition 5.2 (uniform tests). A uniform test is a lower semicomputable function t(ω,P ) of

two arguments (ω is a sequence and P is a measure on Ω) with∫
t(ω,P )P (dω) ≤ 1

for every measure P .
However, we have to define carefully the notion of lower semicomputability in this case. The set

M(Ω) of all measures is a closed subset of the infinite (countable) product

Ξ = [0, 1] × [0, 1] × [0, 1] × . . .

(the measure is defined by the values P (x) for all strings x; these values should satisfy equations (2),
so we get a closed subset).

Let us introduce basic open sets and computability notions for the set Ω ×M(Ω).
Definition 5.3. An (open) interval (basic open set) in the space of measures is given by a

finite set of conditions of type u < P (y) < v where y is some binary string and u and v are some
rational numbers; the basic open set consists of the measures P that satisfy these conditions. A basic
open set in Ω×M(Ω) has the form xΩ× β (the product of intervals in Ω and M(Ω)), where β is a
basic open set of measures. Now lower and upper semicomputability and computability are defined
in terms of these basic open sets just as they were defined for Ω × [0, 1] in Definition 4.13.

In much of what follows, we will exploit the fact that, due to the finiteness of the alphabet
{0, 1}, the space Ω of infinite binary sequences is compact, and also the set of measures M(Ω) is
compact. Recall that a set C is compact if every cover of C by open sets contains a finite subcover.
We need, however, an effective version of compactness:

Definition 5.4 (effective compactness). A compact subset C of M(Ω) is called effectively
compact if the set {

S : S is a finite set of basic open sets and
⋃

E∈S

E ⊇ C

}

is enumerable.
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The set M(Ω) itself is easily seen to be compact and effectively compact. It is compact, as
said above, as a closed set in the product of compact spaces, and the effectivity follows from the
fact that we can check whether some given basic sets cover the whole space (we are dealing with
linear equations and inequalities in a finite number of variables, where everything is algorithmically
decidable). This also implies the following:

Proposition 5.5. Every effectively closed subset of M(Ω) is effectively compact.
Proof. Let an effectively closed subset C of M(Ω) be the complement of the union of a list

B1, B2, . . . of basic open sets. Then a finite set S of basic open sets covers C if and only if, together
with a finite set of the Bi, it covers the whole space. And this property is decidable. �

Effective compactness implies effective closedness. This results from the following two properties
of our space and our basic open sets:

(a) For every closed set F and every point x outside F there are two disjoint open sets containing
F and x.

(b) For every pair of basic open sets, it is uniformly decidable whether they are disjoint.

Let F be an effectively compact set. We call a basic open set B manifestly disjoint from F
if there is a finite set of basic open sets S disjoint from B that cover F . Due to the effective
compactness of F and property (b), the set of all basic open sets manifestly disjoint from F is
enumerable. Property (a) implies that it covers the complement of F .

In view of later generalization to cases where the space itself may not be compact, we will refer
to some effectively closed sets of M(Ω) as effectively compact.

Now we introduce a dense set of computable functions called basic functions on the set Ω×M(Ω),
similarly to Definition 4.15. Their specific form is not too important.

Definition 5.6 (basic functions for binary sequences and arbitrary measures). The set of basic
functions over the set Ω×M(Ω) is defined analogously to Definition 4.15, starting from the functions

gx,y,u,v,k : Ω ×M(Ω) → [0, 1]

with x, y ∈ {0, 1}∗ defined as follows. If x �� ω, then gx,y,u,v,k(ω,P ) = 0. Otherwise, its value does
not depend on ω and depends piecewise linearly on P (y) in a way that it is 0 if P (y) /∈ (u, v) and 1
if u + 2−k ≤ P (y) ≤ v − 2−k.

The analogue of Proposition 4.16 holds again: a lower semicomputable function is the monotonic
limit of a computable sequence of basic functions (which themselves are computable).

The analogue of Proposition 4.17 also holds: the integral
∫

f(ω,P )P (dω) of a basic function is
computable as a function of the measure P , uniformly in the number of the basic function.

Finally, the analogue of Proposition 4.18 holds again:
Theorem 5.7 (trimming). Let ϕ(ω,P ) be a lower semicomputable function. Then there exists

a lower semicomputable function ϕ′(ω,P ) such that for all P

(a)
∫

ϕ′(ω,P )P (dω) ≤ 2;
(b) if

∫
ϕ(ω,P )P (dω) ≤ 1, then ϕ′(ω,P ) = t(ω,P ) for all ω.

The proof is completely analogous to the proof we gave for Proposition 4.18.
This allows one to construct a universal test as a function of a sequence and an arbitrary measure

over Ω:
Theorem 5.8. There exists a maximal (to within a bounded factor) uniform randomness test.
Proof. We use the same approach as before: we trim a lower semicomputable function in such

a way that it becomes a test (or almost a test) and remains untouched if it were a test in the first
place. �
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Definition 5.9. Let us fix a universal uniform randomness test t(ω,P ).
We call a sequence ω uniformly random with respect to a (not necessarily computable) measure P

if t(ω,P ) < ∞.
Let us show that for computable measures, the new definition coincides with the old one (Defi-

nition 2.13).
Proposition 5.10. Let P be a computable measure, let tP (ω) be a universal (average-bounded)

randomness test for P, and t(ω,P ) the universal uniform test defined above. Then there are con-
stants c1, c2 > 0 such that c1tP (ω) ≤ t(ω,P ) ≤ c2tP (ω).

The constants c1 and c2 here depend on the choice of the measure P and on the choice of the
test tP for this measure (this choice was done in an arbitrary way for each computable measure).

This proposition shows that in the case of computable measures, uniform randomness coincides
with randomness in the sense of Martin-Löf.

Proof. Let us show t(ω,P ) ≤ c2tP (ω) first. The function ω �→ t(ω,P ) is lower semicomputable
since we can effectively enumerate all intervals in the space of measures that contain P ; therefore,
it is dominated by tP (ω).

To prove t(ω,P ) ≥ c1tP (ω), consider the lower semicomputable function

t(ω,Q) = tP (ω).

The function (ω,Q) �→ t(ω) is not guaranteed to be a uniform randomness test, since its integral
can be greater than 1 if Q �= P . However, it can be trimmed without changing it at P , and then it
still remains an (almost) test. �

We are also interested in tests defined just for one, not necessarily computable, measure P :
Definition 5.11. We will call a function f : Ω → [0,∞] lower semicomputable relative to a

measure P if it is obtained from a lower semicomputable function on the set Ω×M(Ω) after fixing
the second argument at P .

For a measure P ∈ M(Ω), a P -test of randomness is a function f : Ω → [0,∞] lower semicom-
putable relative to P with the property

∫
f(ω) dP ≤ 1.

It seems as if a P -test may capture some nonrandomnesses that uniform tests cannot; however,
this is not so, since trimming (see Theorem 5.7) generalizes.

Theorem 5.12. Let P be some measure along with some P -test tP (ω). There is a uniform
test t′(·, ·) with tP (ω) ≤ 2t′(ω,P ). On the other hand, the restriction of any uniform test to the
measure P is a P -test.

The notion of extended text can be generalized to uniform tests:
Definition 5.13 (extended uniform test). A lower semicomputable function T : {0, 1}∗ ×

M(Ω) → [0, 1] monotonic with respect to the prefix relation is called an extended uniform test
if for all n and all distributions P we have

∑
x : |x|=n T (x, P )P (x) ≤ 1.

As earlier, due to monotonicity, we could sum not only over words of a given length, but over
an arbitrary prefix-free set.

The following is a corollary to the analogue of Proposition 4.16 (representing a nonnegative
lower semicomputable function as a sum of nonnegative basic functions):

Proposition 5.14. Every uniform test t(ω,P ) can be generated by an extended uniform test
in the sense that

t(ω,P ) = sup
x�ω

T (x, P ).

Conversely, every extended uniform test T generates a uniform test t.
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Among the uniform extended tests, it is also possible to select a maximal one (using an analogous
trimming method and summing the results). We fix an extended uniform test and denote it t(x, P )
(where x ∈ {0, 1}∗ and P is a measure over Ω). It generates a maximal uniform test t(ω,P ) (to
within a bounded factor).

Remark 5.15. Much of the theory worked out at the beginning of this paper for 0–1 sequences
also holds for sequences whose elements are arbitrary natural numbers. The extended tests of
Definition 5.13 generalize, and the existence of a uniform universal extended test is proved in the
same way. But it becomes important to define extended tests directly, not via tests for infinite
sequences, since compactness may not hold.

Proposition 5.10 allows us to generalize a result about Bernoulli measures:
Theorem 5.16. Let P be a measure computable with some oracle A. Assume also that A can

be effectively reconstructed as the values of the measure are provided with more and more precision.
Then a sequence ω is uniformly random with respect to P if and only if it is random with respect
to P with oracle A.

(Since the oracle A makes P computable, the notion of Martin-Löf randomness is well defined.)
Proof. Assume that t(ω,P ) = ∞ for the universal uniform test t. Note that t(·, P ) is an

A-lower semicomputable function and is a P -test, so ω is nonrandom with respect to P with
oracle A.

On the other hand, let t(ω,A) be some A-lower semicomputable P -test with t(ω,A) = ∞. That
A can be reconstructed from P means that there is a computable mapping f from measures to binary
sequences (oracles) defined at least over P , with A = f(P ). But then (ω,P ) �→ t(ω, f(P )) is a P -test.
The uniformization Theorem 5.12 converts it into a uniform test that is infinite on (ω,P ). �

Let us note that not all measures P satisfy the condition of the theorem (it means that the
mass problem of “show approximations to the values of P ” is equivalent to the decision problem
of some set; on the degrees of such mass problems, see [22]). Later, in Theorem 5.36, we show a
characterization of uniform randomness for arbitrary measures (in terms of Martin-Löf randomness
with oracle).

Another application of the trimming technique: let us show that the notion of uniform random-
ness test is indeed a generalization of the notion of a uniform Bernoulli test we introduced earlier
in Definition 4.19.

Theorem 5.17. Let t(ω,P ) be the universal uniform test and let t(ω, p) be the universal
uniform Bernoulli test defined in Lemma 4.20. Then t(ω,Bp)

∗= t(ω, p).
(Here Bp is the Bernoulli measure with parameter p.)

Proof. For the inequality
∗
< note that the function (ω, p) �→ t(ω,Bp) is a uniform Bernoulli

test, since the mapping p �→ Bp is a computable mapping (in a natural sense).
For the other direction, there exists a computable function on measures that maps Bp to p (just

take the probability of the one-bit string). Combining this function with t(ω, p), we get a lower
semicomputable function f(ω,P ) on general measures P with f(ω,Bp) = t(ω, p). The function
f(ω, p) is not a uniform test yet, but again the trimming technique given by Proposition 4.18 yields
the desired result. �

5.2. A priori probability with an oracle, and uniform tests. For a computable measure,
we had an expression for the universal test via a priori probability in Proposition 2.21. An analogous
expression also exists for the universal uniform test:

Theorem 5.18.

t(ω,P ) ∗=
∑
x�ω

m(x|P )
P (x)

.
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To be honest, we still owe the reader the definition of the concept of a priori probability with
respect to a measure, that is, the quantity m(x|P ). We do this right away, before returning to the
proof.

Definition 5.19. A nonnegative function t(x, P ) whose arguments are the binary word x and
the measure P will be called a uniform lower semicomputable semimeasure if it is lower semicom-
putable and

∑
x t(x, P ) ≤ 1 for all measures P over Ω.

Proposition 5.20. Among the uniform lower semicomputable semimeasures, there is a largest
one to within a multiplicative constant.

This is proved by the same method as the existence of a universal test (and even simpler, since
the constraints on the values of the test do not depend on the measure).

Definition 5.21. We will fix one such largest semimeasure, and call it the a priori probability
with respect to P . We will denote it by m(x|P ).

(The vertical bar in place of a comma emphasizes the similarity to the conditional a priori
probability normally considered.)

Proof of Theorem 5.18. We need to check two things. First we need to convince ourselves
that the right-hand side of the formula defines a uniform test. Every member of the sum can be
considered to be a function of two arguments, equal to 0 outside the cone of extensions of x and
equal to m(x|P )/P (x) inside the cone. For every x, the functions m(x|P ) and 1/P (x) are lower
semicomputable (uniformly in x), and the sum gives a lower semicomputable function. The integral
of this function with respect to any measure P is equal to the sum of the integrals of the members,
that is,

∑
x m(x|P ), and therefore does not exceed 1.

There is a special case, when P (x) = 0 for some x. In this case the corresponding member of
the sum becomes infinite for any ω extending x. But since the measure of this cone is zero, the
integral with respect to this measure is by definition zero, and therefore the additive term, if is not
equal to m(x|P ), is simply smaller. This way, the right-hand side of the formula is a uniform test,
and therefore it does not exceed the universal uniform test: we proved the inequality

∗
>.

The second part of the proof is not so simple: observing the increase of the values of the uniform
test, we must distribute this increase among the different members of the sum on the right-hand side,
while preserving lower semicomputability. The difficulty is that if, say, the lower semicomputable
function was 1 on some effectively open set A, was zero outside it, and then this set was changed to
a larger set B, then the difference (the characteristic function of B \A) will not in general be lower
semicomputable since in the set of measures (just as on a segment) the difference of two intervals
will not be open.

This problem is solved by moving to continuous functions. Let us be given an arbitrary uniform
test t(ω,P ). Since it is lower semicomputable, it can be represented as the limit of a nondecreasing
sequence of basic functions, or—passing to differences—in the form of a sum of a series of nonnegative
basic functions: t(ω,P ) =

∑
i ti(ω,P ).

Being basic, the function ti of ω depends only on a finite prefix of the sequence ω; denote
the length of this prefix by ni. For every word x of length ni we get some lower semicomputable
function ti,x(P ), where ti(ω,P ) = ti,x(P ) if ω begins with x. Now define mi(x, P ) = ti,x(P )P (x)
if x has length ni (for the other lengths, it is zero). The function mi is lower semicomputable
(as the product of two lower semicomputable functions) uniformly in i, and therefore the sum
m(x, P ) =

∑
i mi(x, P ) will be lower semicomputable.

Let us show that m is a semimeasure, that is,
∑

x m(x, P ) ≤ 1 for all P . Indeed, in
∑

i mi(x, P )
the nonzero terms correspond to words of length ni, and this sum is equal to

∑
x ti,x(P )P (x), that

is, exactly to the integral
∫

ti(ω,P )P (dω), and the sum of these integrals does not exceed 1 by our
condition.
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Moreover, if for all prefixes x of the sequence ω the measure P (x) is not equal to zero, then∑
x�ω

mi(x, P )
P (x)

=
ti,xi(P )P (xi)

P (xi)
= ti(ω,P )

(here xi is the prefix of length ni of ω); hence after summing over i∑
x�ω

m(x, P )
P (x)

= t(ω,P ),

and it just remains to apply the maximality of the a priori probability to obtain the
∗
<-inequality

in the case when all prefixes of ω have nonzero P -measure. On the other hand, if one of these has
zero P -measure, then the right-hand side is infinite, and so here the inequality is also satisfied. �

Question 4. For the universal randomness test with respect to a computable measure, in this
formula one could replace the sum with a maximum. Is this possible for uniform tests? (The reason-
ing applied there encounters difficulties in the uniform case.) Can one define the a priori probability
on the tree in a reasonable way, and prove a uniform variant of the Levin–Schnorr theorem?

We return to the notion of a priori probability with oracle (and its relation to prefix complexity)
in Subsection 7.4.

5.3. Effectively compact classes of measures. We have considered Bernoulli tests, that
is, lower semicomputable functions t(ω) that are tests with respect to all Bernoulli measures. In
this definition, in place of Bernoulli measures, an arbitrary effectively compact class can be taken:

Definition 5.22. Let C be an effectively compact class of measures over Ω. We say that a
lower semicomputable function t on Ω is a C-test if

∫
t(ω) dP ≤ 1 for every P ∈ C.

Theorem 5.23. Let C be an effectively compact class of measures.

(a) There exists a universal C-test tC(·).
(b) tC(ω) = infP∈C t(ω,P ).

Proof. Both of these statements are proved analogously to Lemmas 4.20 and 4.21. �
Remark 5.24. Since C is compact and the function t(ω,P ) is lower semicomputable, the

inf-operation can be replaced by the min-operation.
Question 5. Can we give criteria for randomness with respect to natural closed classes of

measures (for example, in terms of complexity)? How can we describe Bernoulli sequences in
terms of complexities of their initial segments? It is known that the main term of the randomness
deficiency is

log
(

n

k

)
− Kp(x|n, k)

for the beginning of x of length n with k ones. The lecture notes [7] contain a characterization of
Bernoulli sequences, but it is rather messy.

What about Markov measures? Shift-invariant measures?

5.4. Sparse sequences. There are several situations closely related to some intuitive under-
standing of randomness, but not fitting directly into the framework of the question of randomness
of a given outcome ω relative to a given model (measure P ). Our example here is a natural notion
of sparsity, introduced in [3], but another example, online tests, will be considered in Section 9.

It is natural to call a sequence ω “p-sparse” if its 1’s come from some p-random sequence ω′,
but we allow some of its 0’s to also come from the 1’s of ω′. For example, the 1’s of ω′ may be a
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sequence of miracles, and ω is the sequence of those miracles that have been reported. The tacit
hypothesis is, of course, that all reported miracles actually happened.

Definition 5.25 (sparse sequences). Let us introduce a coordinate-wise order between infinite
binary sequences (or binary sequences of the same length): we say that ω ≤ ω′ if this is true
coordinate-wise, that is, ω(i) ≤ ω′(i) for all i: in other words, ω′ is obtained from ω by replacing
some 0’s with 1’s.

Let Bp be a Bernoulli measure with some computable p. We say that a binary sequence ω is
p-sparse if ω ≤ ω′ for some Bp-random sequence ω′. (In terms of sets, p-sparse sets are subsets of
p-random sets.)

We will show that in the definition of sparsity, the existential quantifier can be eliminated, giving
a criterion in terms of monotonic tests.

Definition 5.26. A real function f on Ω is called monotonic if ω′ ≥ ω implies f(ω′) ≥ f(ω).
A monotonic lower semicomputable function t : Ω → [0,∞] is a p-sparsity test if

∫
t(ω) dBp ≤ 1.

A p-sparsity test is universal if it multiplicatively dominates all other sparsity tests for p.
The monotonicity of tests guarantees, informally speaking, that only the presence of some 1’s is

counted as regularity, not their absence. (Note that earlier we spoke of an entirely different kind of
monotonicity, while defining extended tests: there we compared the values of a function on a finite
word and its extension.)

Proposition 5.27. Consider the universal test t(ω,P ). The expression

rp(ω) = min
ω′≥ω

t(ω′, Bp)

defines a universal p-sparsity test.
Proof. Each p-sparsity test is by definition a test with respect to the measure Bp. Using its

monotonicity and comparing it with the universal test, we find that no sparsity test exceeds rp (to
within a bounded factor).

In the other direction it must be shown that the minimum in the expression for rp is achieved,
and that this function is a p-sparsity test. The lower semicomputability is proved using the fact
that the property ω ≤ ω′ gives an effectively closed set of the effectively compact space Ω × Ω (cf.
Proposition 7.20 below). The monotonicity and the integral inequality follow immediately from the
definition. �

This implies the following characterization in terms of tests:
Theorem 5.28. A sequence ω is p-sparse (is obtained from a p-random one by replacing some

1’s with zeros) if and only if the universal sparsity test rp(ω) is finite.
Sparsity is equivalent to randomness with respect to a certain class of measures. To define this

class, we introduce the notion of coupling of measures.
Definition 5.29. For measures P and Q we write P � Q and say that P can be coupled

below Q if there exists a probability distribution R on pairs of sequences (ω, ω′) such that
(a) the first projection (marginal distribution) of R is P and the second one is Q;
(b) the measure R is entirely concentrated on pairs (ω, ω′) with ω ≤ ω′ (the probability of this

event with respect to the measure R is 1).
The following characterization of coupling is well known; it has many proofs, but all seem to go

back to [28, Theorem 11, p. 436]. A proof can be found in [3].
Proposition 5.30. The property P � Q is equivalent to the following: for all monotonic basic

functions f the following inequality holds:∫
f(ω) dP ≤

∫
f(ω) dQ.
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In this characterization, we could have said “all monotonic integrable functions” as well (on the
other hand, we could also consider only indicator functions of upward closed sets).

Notation 5.31. Let Sp be the set of measures that can be coupled below Bp.
Proposition 5.32. The set Sp of measures is effectively closed (and thus effectively compact).
Proof. For each function f in Proposition 5.30, the condition defines an effectively closed set,

and their intersection will also be effectively closed. �
Theorem 5.33. The universal p-test rp(ω) is a universal class test for the class Sp.
Thus, a sequence is p-sparse if and only if it is random with respect to some measure that can

be coupled below Bp.
The following lemma will be key to the proof.
Lemma 5.34 (monotonization). Let t : Ω → R be a basic function with

∫
t(ω) dQ ≤ 1 for all

Q ∈ Sp. Define the monotonic function t̂(ω) = maxω′≤ω t(ω′) (the maximum is achieved since t(ω)
depends only on finitely many positions of ω). Then

∫
t̂(ω) dBp ≤ 1.

Proof. Let the function t depend only on the first n coordinates. For each x ∈ {0, 1}n fix
x′ ≤ x for which t(x′) reaches the maximum (among all such x′). Besides the distribution Bp,
consider a distribution Q in which the Bernoulli measure of x is transferred to x′ (the measures of
several x may be transferred to the same x′ and then be added). We described the behavior of Q
on the first n bits; the following bits are chosen independently, and the probability of 1 in each
position is equal to p. Note also that for the expected values of the functions t and t̂ only the first
n bits count.

By the construction, Q � Bp (essentially, we described a measure on pairs); therefore,∫
t(ω) dQ ≤ 1. But this integral is equal to

∫
t̂(ω) dBp. �

Proof of Theorem 5.33. Every p-sparsity test t is a class test for Sp. Indeed, its integral with
respect to a measure in the class Sp does not exceed its integral with respect to the measure Bp, by
the monotonicity of the test and the possibility of coupling.

On the other hand, let us show that for every test t and for the class Sp, there is a p-sparsity test
that is not smaller. Indeed, the test t is the limit of an increasing sequence tn of basic functions.
Applying to them the monotonization Lemma 5.34, we obtain a sequence of basic functions t̂n that
are everywhere greater than or equal to tn and have integrals bounded by 1 with respect to the
measure Bp. Their limit is the needed p-sparsity test. �

5.5. Different kinds of randomness. There are several ways to define randomness with
respect to an arbitrary (not necessarily computable) measure. We have already defined uniform
randomness. Here are some other ways.

Oracles. We can use the Martin-Löf definition (or its average-bounded version) with oracles.
We would call a sequence ω random with respect to P if there exists an oracle A that makes P
computable such that ω is Martin-Löf random with respect to P with oracle A. (We say “there
exists an oracle that makes P computable” but not “for all oracles that make P computable”; indeed,
some powerful oracle can always make ω computable and therefore nonrandom, unless ω is an atom
of P .) As Adam Day and Joseph Miller have shown [6], this definition turns out to be equivalent
to uniform randomness. The proof of this equivalence needs some preparation.

First let us look into why it is not possible to take as an oracle the measure itself (as was
done for the Bernoulli measures, where we chose a binary expansion of the number p as an oracle).
Well, the choice of such a representation is not unique (0.01111 . . . = 0.10000 . . . ). When all we
have is a single number p, this is not important, as the nonuniqueness arises only for rational p,
and in this case both representations are computable. But for measures this is not so: a measure
is represented by a countable number of reals (say, the probabilities of individual words, or the
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conditional probabilities), and the arbitrariness in the choice of a representation is not reduced to
a finite number of variants.

Definition 5.35. Fix some representation of measures by infinite binary sequences, that is,
a computable (and therefore continuous) mapping π �→ Rπ of Ω onto the space of measures. For
example, we may split the binary sequence π into countably many parts and use these parts as
binary representations of the probability that the sequence continues with 1 after a certain prefix.

Define an r-test (representation test, test of randomness relative to a given representation of the
measure) as a lower semicomputable function t(ω, π) with

∫
t(ω, π)Rπ(dω) ≤ 1 for all π.

This notion of r-test depends on the representation method chosen; there are no intuitive reasons
to choose one specific representation and declare it to be “natural,” but any representation is good
for the argument below and we assume some representation fixed. The following statements can be
proved just as similar statements before:

(a) Every lower semicomputable function t(ω, π) can be trimmed and thus made not greater
than twice an r-test (without changing it for those π where it already was an r-test).

(b) There exists a universal (maximal to within a bounded factor) r-test t(ω, π).

For a fixed π, the function t(·, π) is universal among the π-computable average-bounded tests
with respect to the measure Rπ. Indeed, it is such a test; on the other hand, any such test can be
lower semicomputed by the oracle machine. This machine is applicable to any oracle (though may
not give a test), giving a lower semicomputable function t′(ω, π) that is equal to the starting test
for the given π. It remains to apply property (a).

As a consequence of this simple reasoning, we find that the quantity t(ω, π) is finite if and only
if the sequence ω is random relative to the oracle π, with respect to the measure Rπ.

Theorem 5.36 (Day–Miller). A sequence ω is uniformly random with respect to a measure P
if and only if there is an oracle computing P that makes ω random (in the original Martin-Löf
sense). More precisely,

t(ω,P ) ∗= inf
Rπ=P

t(ω, π).

Proof. Let us prove the equality shown in the theorem. Note that if t is a uniform test, then
t(ω,Rπ) as a function of ω and π is an r-test and is therefore dominated by the universal r-test.

The other direction is somewhat more difficult. We have to show that the function on the
right-hand side is lower semicomputable as a function of the sequence ω and the measure P . (The
integral condition is obtained easily afterwards, as the measure P has at least one representation π.)
This can be proved using the effective compactness of the set of pairs (P, π) with P = Rπ. In the
general form (for constructive metric spaces) this statement forms the content of Lemma 7.21.

It remains to explain the connection between the given equality and randomness relative to an
oracle. If t(ω,P ) is finite, then by the proved equality a π exists with Rπ = P and finite t(ω, π).
As we have seen, this in turn means that ω is random with respect to the measure P , with an
oracle π that makes P computable. Conversely, if t(ω,P ) is infinite and some oracle A makes P
computable, then the function t(·, P ) becomes A-lower semicomputable and its integral with respect
to the measure P does not exceed 1; hence the sequence ω will not be random relative to the oracle A
and with respect to the measure P . �

Blind (oracle-free) tests. We can define the notion of an effectively null set as before, even
if the measure is not computable. The maximal effectively null set may not exist. For example,
if a measure P may be concentrated on some noncomputable sequence π, then all intervals not
containing π will be effective null sets, and their union (the complement of the singleton {π}) will
not be, since otherwise π would be computable.
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However, we can still define a random sequence as a sequence that does not belong to any
effectively null set. Kjos-Hanssen suggested the name “Hippocratic randomness” for this definition
(referring to a certain legend about the doctor Hippocrates), but we prefer the more neutral name
“blind randomness.”

Definition 5.37 (blind tests). A lower semicomputable function t(ω) with
∫

t(ω) dP (ω) ≤ 1
will be called a blind, or oracle-free, test for the measure P . A sequence ω is blindly random with
respect to the measure P if t(ω) < ∞ for all such blind tests.

As we have seen, there may not exist a maximal blind test.
This oracle-free notion of randomness can be characterized in the terms introduced earlier:
Theorem 5.38. A sequence ω is blindly random with respect to a measure P if and only if ω

is random with respect to any effectively compact class of measures that contains P .
Proof. Assume first that ω is not random with respect to some effectively compact class of

measures that contains P . Then the universal test with respect to this class is a blind test that
shows that ω is not blindly random with respect to P .

Now assume that there exists some blind test t for the measure P with t(ω) = ∞. Then just
consider the class C of measures Q with

∫
t(ω) dQ ≤ 1. This class is effectively closed (and thus

effectively compact). Indeed, t is the supremum of a computable sequence of basic functions tn. The
class of measures Q with

∫
tn(ω) dQ > 1 is effectively open, uniformly in n, and C is the complement

of the union of these sets. �
It is easy to see from the definition (or from the preceding theorem) that uniform randomness

implies blind randomness. The converse statement is not true:
Theorem 5.39. There exist a sequence ω and a measure P such that ω is blindly random with

respect to P but not uniformly random.
Proof. Indeed, blind randomness does not change if we change the measure slightly (up to an

O(1)-factor). On the other hand, the changed measure may have much more oracle power that makes
a sequence nonrandom. For example, we may start with the uniform Bernoulli random measure B1/2

(coin tosses with probabilities 1/2, 1/2, 1/2, . . . ) and fix some random sequence ω = ω(1)ω(2) . . . .
Then consider a (slightly) different measure B′ with probabilities 1/2 + ω(1)ε1, 1/2 + ω(2)ε2, . . .
where ε1, ε2, . . . are so small and converge to zero so fast that they do not change the measure
more than by an O(1)-factor while being all positive. Then B′ encodes ω, which makes it easy to
construct a uniform test t with t(ω,B′) = ∞. �

However, there are some special cases (including Bernoulli measures) where uniform and blind
randomness are equivalent. In order to formulate the sufficient conditions for such a coincidence,
let us start with some definitions.

Definition 5.40 (effective orthogonality). For a probability measure P , let Randoms(P ) de-
note the set of sequences uniformly random with respect to P . A class of measures is called effectively
orthogonal if Randoms(P ) ∩ Randoms(Q) = ∅ for any two different measures in it.

Theorem 5.41. Let C be an effectively compact and effectively orthogonal class of measures.
Then for every measure P in C the uniform randomness with respect to P is equivalent to the blind
randomness with respect to P .

The statement looks strange: we claim something about randomness with respect to a mea-
sure P , but the condition of the claim is that P can be included into a class of measures with some
properties. (It would be natural to have a more direct requirement for P instead.) The theorem
implies that the measures of Theorem 5.39 do not belong to any such class.

Proof. We have already noted that in one direction the statement is obviously true. Let us
prove the converse. Assume that a sequence ω is blindly random with respect to a measure P . By
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Theorem 5.38, it is random with respect to the class C. So, ω is uniformly random with respect to
some measure P ′ from the class C. It remains to show P = P ′.

Imagine that this is not the case. Then we can construct an effectively compact class of mea-
sures C′ that contains P but not P ′. Indeed, since P and P ′ are different, they assign different
measures to some finite string, and this fact can be used, in the form of a closed condition separating
P from P ′, to construct C′. Consider now the effectively compact class C ∩ C′. It contains P , and
therefore ω will be random with respect to this class. Hence the class contains some measure P ′′ with
respect to which ω is uniformly random. But P ′ �= P ′′ (one measure is in C′, while the other one is
not), so we get a contradiction with the assumption on the effective orthogonality of the class C. �

Remark 5.42. The proved theorem is applicable in particular to the class of Bernoulli mea-
sures. It is tempting to think that there is a simpler proof, at least for this case: if ω is random
with respect to p, we can compute p from ω as the limit of the relative frequency, and no additional
oracle is needed. This is not so: though p is determined by ω, it does not even depend continuously
on ω. Indeed, no initial segment of the sequence guarantees that its limiting frequency is in some
given interval. However, we can apply an analogous reasoning to sequences ω with the randomness
deficiency bounded by some constant. (See [12], which introduces the notion of layerwise com-
putability.) In particular, it can be shown that if ω is random with respect to the measure Bp, then
p is computable with oracle ω.

6. NEUTRAL MEASURE

The following theorem, first published in [17] and then again in [11], points to a curious property
of uniform randomness which distinguishes it from randomness using an oracle.

Definition 6.1. A measure is called neutral if every sequence is uniformly random with re-
spect to it.

Theorem 6.2. There exists a neutral measure; moreover, there is a measure N such that
t(ω,N) ≤ 1 for all sequences ω.

Before proving this theorem we note that all computable sequences are atoms of any neutral
measure (have positive probability). Indeed, a test can be constructed that is looking for long
segments of the computable sequence that have small measure (one can achieve this having the
sequence and the measure as arguments), and assigns them large values of deficiency.

It follows that a neutral measure cannot be computable. Indeed, for a computable measure
there exists a computable sequence that is not an atom (adding bits sequentially, we choose the
next bit in such a way that its conditional probability is at most 2/3). Such a sequence cannot be
random with respect to N . For the same reason a neutral measure cannot be equivalent to an oracle
(for a neutral measure N one cannot find an oracle A that makes it computable and at the same
time can be uniformly reconstructed from every approximation of N). Indeed, in this case uniform
randomness (as we have shown) is equivalent to randomness with respect to N with oracle A, and
the same argument works.

A neutral measure cannot be lower or upper semicomputable either, but this statement does
not seem interesting, since here a semicomputable measure over Ω is also computable. Some more
meaningful (and less trivial) versions of this fact are proved in [11].

Proof of Theorem 6.2. Consider the universal test t(ω,P ). We claim that there exists a
measure N with t(ω,N) ≤ 1 for every ω. In other terms, for every ω we have a condition on N
saying that t(ω,N) ≤ 1 and we need to prove that these conditions (there is a continuum of them)
have nonempty intersection. Each of these conditions is a closed set in a compact space (recall that
t is lower semicontinuous), so it is enough to show that finite intersections are nonempty.
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So let ω1, . . . , ωk be k sequences. We want to prove that there exists a measure N such that
t(ωi, N) ≤ 1 for every i. This measure will be a convex combination of measures concentrated on
ω1, . . . , ωk. So we need to prove that k closed subsets (corresponding to k inequalities) of a k-vertex
simplex have a common point. It is a direct consequence of the classical topology result formulated
in the following lemma (which is used in the standard proof of Brouwer’s fixed-point theorem).

Lemma 6.3 (Knaster–Mazurkievicz–Kuratowski). Let a simplex with vertices 1, . . . , k be cov-
ered by closed sets A1, . . . , Ak in such a way that the vertex i belongs to Ai (for every i), the
edge i–j is covered by Ai∪Aj , and so on (formally, the face (i1, . . . , is) of the simplex is a subset of
Ai1 ∪ . . . ∪ Ais ; in particular, the union A1 ∪ . . . ∪ Ak is the entire simplex). Then the intersection
A1 ∩ . . . ∩ Ak is not empty.

For completeness, let us reproduce the standard proof of this lemma.

Proof. Consider a simplicial subdivision of the simplex into smaller simplices of the same
dimension and mark every vertex of this subdivision by a number i from 1 to k with the condition
that this vertex is in Ai. Moreover, we require that the vertex i of the original simplex be marked
by number i, the vertices on the segment i–j be marked either by number i or by number j, and so
on. Sperner’s combinatorial lemma implies that there is a simplex in the subdivision whose vertices
are labeled with all k colors. Decreasing to null the size of the maximal simplex of the subdivision
and selecting a limit point in the sequence of the obtained many-colored simplices, we find a point
in the intersection of all Ai. �

To show that the lemma gives us what we want, consider any point of some face. For example,
let X be a measure that is a mixture of, say, ω1, ω5 and ω7. We need to show that X belongs to
A1 ∪ A5 ∪ A7; in our terms, this means that one of the numbers t(ω1,X), t(ω5,X) and t(ω7,X)
does not exceed 1. This is easy since we know

∫
t(ω,X) dX(ω) ≤ 1 (by the definition of the test),

and this integral is a convex combination of the above three numbers with some coefficients (the
weights of ω1, ω5 and ω7 in X). �

7. RANDOMNESS IN A METRIC SPACE

Most of the theory presented above for infinite binary sequences generalizes to infinite sequences
of natural numbers. Much of it generalizes even further, to an arbitrary metric space. In what
follows below we not only generalize; some of the results are new also for the binary sequence case.

7.1. Constructive metric spaces. We rely on the definition of a constructive metric space
and the space of measures on it, as defined in [11] and [13] (the lecture notes [7] are also recom-
mended).

Definition 7.1. A constructive metric space is a tuple X = (X, d,D,α) where (X, d) is a
complete separable metric space, with a countable dense subset D and an enumeration α (a total
function mapping natural numbers onto D). It is assumed that the real function d(α(v), α(w)) is
computable. Open balls with center in D and rational radius are called ideal balls, or basic open
sets, or basic balls. The (countable) set of basic balls will also be called the canonical basis in the
topology of the metric space.

An infinite sequence s1, s2, . . . with si ∈ D is called a strong Cauchy sequence if for all m < n
we have d(sm, sn) ≤ 2−m. Since the space is complete, such a sequence always has a (unique) limit,
which we will say is represented by the sequence.

We will generally use the notational convention of this definition: if there is a constructive
metric space with an underlying set X, then we will use X (boldface) to denote the whole structure
(X, d,D,α). But frequently, we just use X when the structure is automatically understood.
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Examples 7.2. 1. A set X = {s1, s2, . . .} can be turned into a constructive discrete metric
space by making the distance between any two different points equal to 1. The set D consists of all
points α(i) = si.

2. The set N = N ∪ {∞} can be turned into a constructive metric space by measuring the
distance between any two different points with the distance function d(x, y) =

∣∣ 1
x − 1

y

∣∣, where of
course, 1

∞ = 0. The set D consists of all points of N. This metric space is called the one-point
compactification, in a topological sense, of the discrete metric space N of Example 1.

3. The real line R with the distance d(x, y) = |x − y| is a constructive metric space, and so is
R+ = [0,∞). We can add the element ∞ to get R+ = [0,∞]. This is not a metric space now, but
is still equipped with a natural constructive topology (see Remark 7.4 below). It could be equipped
with a new metric in a way that would not change this constructive topology.

4. If X and Y are constructive metric spaces, then we can define a constructive metric space
Z = X × Y with one of its natural metrics, for example, the sum of distances in both coordinates.
In the case when X = Y = R, this is called the L1 metric. Let DZ be the product DX × DY.

5. Let X be a finite or countable (enumerated) alphabet, with a fixed numbering, and let XN

be the set of infinite sequences x = (x(1), x(2), . . .) with distance function dN(x, y) = 2−n where n
is the first i with x(i) �= y(i). This space generalizes the binary Cantor space of Definition 2.1 to
the case mentioned in Remark 5.15. The balls in it are cylinder sets: for a given finite sequence z,
we take all continuations of z.

Remark 7.3. Each point x of a constructive metric space X can be viewed as an “approxi-
mation mass problem”: its solutions are total functions that for any given rational ε > 0 produce
an ε-approximation to x by a point of the canonical dense set D. This is a mass problem in the
sense of [21]. One can also note that this mass problem is Medvedev equivalent to the enumeration
problem: enumerate all basic balls that contain x.

Remark 7.4. A constructive metric space is a special case of a more general concept, a con-
structive topological space, which is often useful.

A constructive topological space X = (X, τ, ν) is a topological space over a set X with a basis τ
effectively enumerated (not necessarily without repetitions) as a list τ = {ν(1), ν(2), . . .}.

For every nonempty subset Z of the space X, we can equip Z with a constructive topology: we
intersect all basic sets with Z, without changing their numbering. On the other hand, not every
subset of a constructive metric space naturally has the structure of a constructive metric space (the
everywhere dense set D is not inherited).

But instead of introducing constructive topological spaces formally, we prefer not to burden the
present paper with more abstractions, and will speak about some concepts like effective open sets
and continuous functions, as defined on an arbitrary subset Z of the constructive metric space X.

Definition 7.5. An open subset of a constructive metric space is lower semicomputable open
(or r.e. open, or c.e. open), or effectively open if it is the union of an enumerable set of elements
of the canonical basis. It is upper semicomputable closed, or effectively closed if its complement is
effectively open. Given any set A ⊆ X, a set U is effectively open on A if there is an effectively
open set V such that U ∩ A = V ∩ A.

Note that in the last definition U is not necessarily a part of A, but only its intersection with A
matters.

Computable functions can be defined in terms of effectively open sets.

Definition 7.6 (computable function). Let X and Y be constructive metric spaces and
f : X → Y a function. Then f is continuous if for each element U of the canonical basis of Y
the set f−1(U) is an open set. It is computable if f−1(U) is also an effectively open set, uniformly
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in U . A partial function f : X → Y defined at least on a set A is computable on A if for each
element U of the canonical basis of Y the set f−1(U) is effectively open on A, uniformly in U .

An element x ∈ X is called computable if the function f : {0} → X with f(0) = x is computable.
When f(x) is defined only at a single point x0, we say that the element y0 = f(x0) is x0-com-

putable. When f : X × Z → Y , defined on X × {z0}, is computable, we say that the function
g : X → Y defined by g(x) = f(x, z0) is z0-computable, or computable from z0.

There are several alternative characterizations of a computable element.

Proposition 7.7. The following statements are equivalent for an element x of a constructive
metric space X = (X, d,D,α):

(i) x is computable;
(ii) the set of basic balls containing x is enumerable;
(iii) there is a computable sequence z1, z2, . . . of elements of D with d(x, zn) ≤ 2−n.

The following proposition connects computability with a more intuitive concept based on rep-
resentation by strong Cauchy sequences.

Proposition 7.8. Let X and Y be constructive metric spaces and f : X → Y a function. Then
f is computable if and only if there is a computable transformation that turns each strong Cauchy
sequence s1, s2, . . . with si ∈ DX converging to a point x ∈ X into a strong Cauchy sequence
t1, t2, . . . with ti ∈ DY converging to f(x).

If f is a partial function with domain Z, then f is computable if and only if there is a computable
transformation that turns each strong Cauchy sequence s1, s2, . . . with si ∈ DX converging to some
point x ∈ Z into a strong Cauchy sequence t1, t2, . . . with ti ∈ DY converging to f(x).

We omit the proof of this statement, which is not difficult.

Remark 7.9. Though x0-computability means computability from a strong Cauchy sequence
s1, s2, . . . converging to x0, it should not be considered the same as computability using a machine
that treats this sequence as an “oracle.” In case of x0-computability, the resulting output must be
independent of the strong Cauchy sequence s1, s2, . . . representing x0.

The following definition of lower semicomputability is also a straightforward generalization of
the special case in Definition 2.2.

Definition 7.10 (lower semicomputability). Let X = (X, d,D,α) be a constructive metric
space. A function f : X → [−∞,∞] is lower semicontinuous if the sets {x : f(x) > r} are open, for
every rational number r (this implies that they are open for all r, not only rational).

It is lower semicomputable if these sets are effectively open, uniformly in the rational number r.
It is upper semicomputable if −f is lower semicomputable.

A partial function f : X → Y defined at least on a set A is lower semicomputable on A if the
sets {x : f(x) > r} are effectively open in A, uniformly for every rational number r.

It is easy to check that a real function over a constructive metric space is computable if and only
if it is lower and upper semicomputable. As before, one can define semicomputability equivalently
with the help of basic functions.

Let us introduce an everywhere dense set of simple functions.

Definition 7.11 (hat functions, basic functions). We define an enumerated list of basic func-
tions E = {e1, e2, . . .} in the constructive metric space X = (X, d,D,α) as follows. For each point
u ∈ D and positive rational numbers r and ε let us define the hat function gu,r,ε: its value at x is
determined by the distance from x to u and is equal to 1 if this distance is at most r, equal to zero
if the distance is not less than r + ε, and varies linearly as the distance runs through the segment
[r, r + ε] (see the figure).
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� �

gu,r,ε(x)

0 r r + ε

A hat function.

Let E be the smallest set of functions containing all hat functions that is closed under min, max
and rational linear combinations.

Proposition 7.12. A function f : X → [0,∞] defined on a constructive metric space is lower
semicomputable if and only if it is the limit of a computable increasing sequence of basic functions.

Note that the above characterization also holds for lower semicontinuous functions, if we omit
the requirement that the sequence is computable.

Definition 7.13. We can introduce the notion of lower semicomputability from z0, or z0-lower
semicomputability, similarly to the z0-computability of Definition 7.6, as the lower semicomputability
of a function defined on the set X × {z0}.

Sometimes two metrics on a space are equivalent from the point of view of computability ques-
tions. Let us formalize this notion.

Definition 7.14 (uniform continuity, equivalence). Let X and Y be two metric spaces and
f : X → Y a function. We say that f is uniformly continuous if for each ε > 0 there is a δ > 0 such
that dX(x1, x2) ≤ δ implies dY (f(x1), f(x2)) ≤ ε.

If X and Y are constructive metric spaces and a function f is computable, we will call it
effectively uniformly continuous if δ can be computed from ε effectively.

Two metrics d1 and d2 over the same space are (effectively) equivalent if the identity map is
(effectively) uniformly continuous in both directions.

For example, the Euclidean metric and the L1 metric introduced in Example 7.2.4 are equivalent
in the space R

2.
Effective compactness was introduced in Definition 5.4; this generalizes immediately to arbitrary

metric spaces. A weaker notion, local compactness, also has an effective version.
Definition 7.15 (effective compactness and local compactness). A compact subset C of a

constructive metric space X = (X, d,D,α) is called effectively compact if the set{
S : S is a finite set of basic open sets and

⋃
E∈S

E ⊇ C

}

is enumerable.
A subset C of a metric space is called locally compact if it is covered by the union of a set of

balls B such that B ∩ C is compact. Here B is the closure of B. It is effectively locally compact if it
is covered by the union of an enumerated sequence of basic balls Bk such that Bk ∩C is effectively
compact, uniformly in k.

Examples 7.16. 1. The countable discrete space of Example 7.2.1 is effectively compact if it
is finite, and effectively locally compact otherwise.

2. The segment [0, 1] is effectively compact. The line R is effectively locally compact.
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3. If the alphabet X is finite, then the space XN of infinite sequences is effectively compact.
Otherwise it is not even locally compact.

4. Let α ∈ [0, 1] be a lower semicomputable real number that is not computable. (It is known
that there are such numbers, for example,

∑
x∈N

2−Kp(x).) The lower semicomputability of α allows
one to enumerate the rationals less than α and allows the segment [0, α] to inherit the constructive
metric (and topology) from the real line. This space is compact, but not effectively compact.

The following is a useful characterization of effective compactness.
Proposition 7.17. (a) A compact subset C of a constructive metric space X = (X, d,D,α)

is effectively compact if and only if from each (rational) ε one can compute a finite set of ε-balls
covering C.

(b) For an effectively compact subset C of a constructive metric space, in every enumerable set
of basic open sets covering C one can effectively find a finite covering.

Proof. Assume that for all ε we can show a finite covering Sε of the set C by balls of radius ε.
Along with such a covering, we can enumerate all coverings with manifestly large balls (this means
that for any ball B(x, ε) in the covering Sε there is a ball B(y, σ) in the new covering with σ >
ε+ d(x, y)). The compactness of C guarantees that while Sε runs through all ε-coverings of C, this
way all coverings of C will be enumerated. (Indeed, if there is some covering S′ not falling into the
enumeration, then for all ε there is a ball of the covering Sε not manifestly contained in any ball
of S′. Applying compactness and taking a limit point of the centers of these non-contained balls,
we obtain a contradiction.)

The remaining statements are proved quite easily. �
The following statement generalizes Proposition 5.5, with the same proof.
Proposition 7.18. Every effectively closed subset E of an effectively compact set C is also

effectively compact.
According to our definitions, this means that the intersection of an effectively compact subset

of X with an effectively closed subset of X is effectively compact.
As earlier, the converse also holds: every effectively compact subset of a constructive metric

space is effectively closed. Indeed, we can consider all possible coverings of this set by basic balls,
as well as outside balls that are manifestly (by the relation between the distances from their centers
and their radii) disjoint from the balls of the covering. The union of all these outside balls provides
the complement of our effectively compact set.

It is known that a continuous function maps compact sets into compact ones. This statement
also has a constructive counterpart, also provable by a standard argument:

Proposition 7.19. Let C be an effectively compact subset of a constructive metric space X,
and f a computable (on C) function from C into another constructive metric space Y . Then f(C)
is effectively compact.

The statement that a lower semicontinuous function on a compact set reaches its minimum also
has a computable analog (we provide a parametrized variant):

Proposition 7.20 (parametrized minimum). Let Y and Z be constructive metric spaces ; let
f : Y ×Z → [0,∞] be a lower semicomputable function and C an effectively closed subset of Y ×Z.
If it is also effectively compact, then the function

g(y) = inf
z : (y,z)∈C

f(y, z)

is lower semicomputable (and the inf can be replaced with min due to compactness; the minimal
element of the empty set is +∞ by definition).
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Instead of effective compactness of C, it is sufficient to require that its projection CY =
{y : ∃z (y, z) ∈ C} is effectively closed and covered by a computable sequence of basic balls Bk

such that (Bk × Z) ∩ C is effectively compact, uniformly in k.

The weaker condition formulated at the end holds, for example, if Y is effectively locally compact
and Z is effectively compact.

Proof. To begin with, we reproduce the classical proof of lower semicontinuity. One needs to
check that the set {y : r < g(y)} is open for all r. This set can be represented in the form of a
union, since the condition r < g(y) is equivalent to the condition

(∃r′ > r)∀z
[
(y, z) ∈ C ⇒ f(y, z) > r′

]
,

and it is sufficient to check the openness of the set

U =
{
y : ∀z

[
(y, z) ∈ C ⇒ f(y, z) > r′

]}
.

Now, U = (Y \CY )∪
⋃

k(Bk ∩U). Since Y \CY is assumed to be open, it is sufficient to show that
each Bk ∩U is open. Let Fk = Bk ×Z; then, by the assumption, Fk ∩C is compact. The condition
f(y, z) > r′ by the assumption defines a certain open set V of pairs; hence Fk ∩C \V is closed and,
as a subset of a compact set, compact. It follows that its projection{

y ∈ Bk : ∃z (y, z) ∈ Fk ∩ C \ V
}
,

as a continuous image of a compact set, is also compact, and so closed. Its complement in Bk,
which is Bk ∩ U , is then open.

Now this argument must be translated into an effective language. First of all, note that it is
sufficient to consider rational r and r′. Then the set V is effectively open, and the set Fk ∩ C \ V
is effectively closed and, as a subset of an effectively compact set, also effectively compact. Its
projection, as a computable image of an effectively compact set, is also effectively compact and so
effectively closed. The complement of the projection is then effectively open. �

The following lemma is an application:

Lemma 7.21. Let X, Z and Z ′ be metric spaces, where X is locally compact and Z is compact.
Let f : Z → Z ′ be continuous and surjective, and t : X × Z → [0,∞] a lower semicontinuous
function. Then the function tf : X × Z ′ → [0,∞] defined by the formula

tf (x, z′) = inf
z : f(z)=z′

t(x, z)

is lower semicontinuous.
If X, Z and Z ′ are constructive metric spaces, X is effectively locally compact, Z is effectively

compact, f is computable, and t is lower semicomputable, then tf is lower semicomputable.

Proof. We will prove just the effective version. We will apply Proposition 7.20 with Y = X×Z ′,
and C = X × {(f(z), z) : z ∈ Z}. Then

tf (x, z′) = inf
(x,z′,z)∈C

t(x, z).

The set Y is effectively locally compact, as the product of an effectively locally compact set and
an effectively compact set. The projection of the set C onto Y is the whole set Y , and hence it is
closed. Hence the proposition is applicable, according to the remark following it. �
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7.2. Measures over a constructive metric space. On a metric space, the Borel sets are
the smallest σ-algebra containing the open sets. We can define measures on Borel sets. These
measures have the following regularity property:

Proposition 7.22 (regularity). Let P be a measure over a complete separable metric space.
Then every measurable set A can be approximated from above by open sets:

P (A) = inf
G⊇A

P (G),

where G is open.
It is possible to introduce a metric over measures:
Definition 7.23 (Prokhorov distance). For a set A and a point x let us define the dis-

tance from x to A as d(x,A) = infy∈A d(x, y). The ε-neighborhood of a set A is defined as
Aε = {x : d(x,A) < ε}.

The Prokhorov distance ρ(P,Q) between two measures is the infimum of all ε such that for all
Borel sets A we have P (A) ≤ Q(Aε) + ε and Q(A) ≤ P (Aε) + ε.

It is known that ρ(P,Q) is indeed a metric, and it turns the set of probability measures over
a metric space X into a metric space. There is a number of other metrics for measures that are
equivalent in the sense of Definition 7.14.

Definition 7.24 (space of measures). For a constructive metric space X, let M = M(X) be
the metric space of probability measures over X, with the metric ρ(P,Q). The dense set DM is the
set of those probability measures that are concentrated on finitely many points of DX and assign
rational values to them. Let αM be a natural enumeration of DM; this turns M into a constructive
metric space.

A probability measure is called computable when it is a computable element of the space M.
Computability of measures is a particularly simple property for the Cantor space of binary

sequences in Definition 2.8 (which is easily shown to be equivalent to the definition given here); it
is just as simple for the Baire space of sequences over a countable alphabet.

The analogue of Proposition 4.17 holds again: the integral
∫

f(ω,P )P (dω) of a basic function
is computable as a function of the measure P , uniformly in the code of the basic function. Here is
a closely related result:

Proposition 7.25. If f is a bounded effectively uniformly continuous function, then its integral
with respect to the measure P is an effectively uniformly continuous function of P .

Proof. It can be assumed without loss of generality that f is nonnegative (add a constant).
Let measures P and P ′ be close. Then P ′(A) ≤ P (Aε) + ε, where Aε denotes the ε-neighborhood
of A. Then ∫

f dP ′ ≤
∫

fε dP + ε,

where fε(x) is the supremum of f on the ε-neighborhood of x. (The integral of a nonnegative
function g is defined by the measures of the sets Gt = {x : g(x) ≥ t}; by Fubini’s theorem on the
change of the order of integration, this measure must be integrated in t as a function of t. Now,
if f(x) ≥ t, then fε(x) ≥ t in the ε-neighborhood of x.) It remains to apply the effective uniform
continuity of f to find out the precision with which the measure must be given in order to obtain
a given precision in the integral. �

On the other hand, the measure P (B) of a basic ball B is not necessarily computable, only
lower semicomputable. It is shown in [13] that this property also characterizes the computability
of measures: P is computable if and only if P (B) is lower semicomputable, uniformly in the basic
ball B.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 274 2011



ALGORITHMIC TESTS AND RANDOMNESS 73

It is known that if a complete separable metric space is compact, then so is the set of measures
with the described metric. The following constructive version is proved by standard means:

Proposition 7.26. If a constructive metric space X is effectively compact, then its space of
probability measures M(X) is also effectively compact.

For the binary Cantor space, this was proved in Proposition 5.5. There, the topology of the
space of measures was simply derived from the topology of the space [0, 1] × [0, 1] × . . . . It can be
seen that the Prokhorov metric leads to the same topology.

Example 7.27. Another interesting simple metric space is the infinite discrete space, say, on
the set of natural numbers N. This is not a compact space, and the set of measures, namely, the
set of all functions P (x) ≥ 0 with

∑
x∈N

P (x) = 1, is not compact either.
On the other hand, the set of semimeasures (see Definition 2.19) is compact. Indeed, recall that

the space [0, 1] × [0, 1] × . . . of functions P : N → [0, 1] is compact. Hence for each n the subset Fn

of this set consisting of functions P obeying the restriction P (0) + P (1) + . . . + P (n) ≤ 1 is also
compact, as the product of a compact finite-dimensional set {(P (0), P (1), . . . , P (n)) ∈ [0, 1]n+1 :
P (0) + . . . + P (n) ≤ 1} and the compact infinite product set {(P (n + 1), P (n + 2), . . .) : 0 ≤
P (x) ≤ 1 for x > n}. The intersection of all sets Fn is then also compact, and is equal to the set of
semimeasures.

Equivalently, we can consider the one-point compactification N of N given in Example 7.2.2.
Measures P on this space can be identified with semimeasures over N: we simply set P (∞) =
1 −

∑
n<∞ P (n).

7.3. Randomness in a metric space. In the Cantor space Ω of infinite binary sequences
we defined

• randomness with respect to computable measures (in the sense of Martin-Löf); see Defini-
tion 2.9;

• uniform randomness with respect to arbitrary measures (when the test is a function of the
sequence and the measure), Definition 5.2;

• randomness with respect to an effectively compact class of measures, Definition 5.22;
• blind (oracle-free) randomness in Definition 5.37;
All these notions carry over with minor changes to an arbitrary constructive metric space. In

the present section (Subsections 7.3 and 7.4) we discuss these generalizations and their properties,
and then in Section 8 we consider in more detail randomness with respect to an orthogonal class of
measures.

For computable measures, a test is defined as a lower semicomputable function on a constructive
metric space with the integral bounded by 1. Among such tests, there is a maximal one to within
a multiplicative constant. As earlier, this is proved with the help of trimming: we list all lower
semicomputable functions, forcing them into tests or almost tests, and then add them up with
coefficients from a converging series.

This is done as before, by considering lower semicomputable functions as monotonic limits of
basic ones. It is used that the integral of a basic function with respect to a measure is computable
as a function of the measure: see Propositions 7.25 and the discussion preceding it.

The uniform tests introduced in Definition 5.2 generalize immediately to the case of constructive
metric spaces. Such a test is a lower semicomputable function of two arguments t(x, P ), where x
is a point of our metric space and P is a measure over this space. The integral condition has the
same form as earlier:

∫
t(x, P )P (dx) ≤ 1.

As earlier, there exists a universal test, and this can be proved by the technique of trimming:
Theorem 7.28 (trimming in metric spaces). Let u(x, P ) be a lower semicomputable function

whose first argument is a point of a constructive metric space and the second one is measure over
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this space. Then there exists a uniform tests t(x, P ) satisfying u(x,Q) ≤ 2t(x,Q) for all Q such
that the function uQ : x �→ u(x,Q) is a test in the measure Q, that is,

∫
u(x,Q)Q(dx) ≤ 1.

The proof repeats the reasoning of the proof of Theorem 5.7, while using the fact that for a basic
function b(x, P ) on the product space the integral

∫
b(x, P )P (dx) is a computable (continuous) func-

tion of P (which is proved analogously to our above argument on the computability of the integral).
We will denote the universal uniform test again by t(x, P ). Strictly speaking, it also depends

on the constructive metric space on which it is defined, but in general it is evident which space is
being considered; therefore, it is not shown in the notation.

Definition 5.11 and Proposition 5.12 extend without difficulty.
Definition 7.29 (tests for arbitrary measures). Let X = (X, d,D,α) be a constructive metric

space. For a measure P ∈ M(X), a P -test of randomness is a function f : X → [0,∞] lower
semicomputable from P with the property

∫
f(x) dP ≤ 1.

It seems as if a P -test may capture some nonrandomnesses that uniform tests cannot; however,
this is not so, since trimming (see Theorem 5.7) generalizes:

Theorem 7.30 (uniformization). Let P be some measure over a constructive metric space X,
along with some P -test tP (x). There is a uniform test t′(·, ·) with tP (x) ≤ 2t′(x, P ).

Proof. By definition, a lower semicomputable (with respect to P ) function can be represented
as c �→ t(x, P ) where t is a lower semicomputable function of two arguments. It remains to use the
preceding theorem. �

Theorem 5.36 generalizes to the case of constructive metric spaces. Let us mention one of the
facts that generalize to uniform tests.

Proposition 7.31 (uniform Kurtz tests). Let X be a constructive metric space and S an
effectively open subset of the space X ×M(X). If the set SP = {x : (x, P ) ∈ S} has P -measure 1
for some measure P ∈ M(X), then the set SP contains all uniformly P -random points.

Proof. The indicator function 1S(x, P ) of the set S, which is equal to unity on S and to
zero outside, is lower semicomputable. According to Proposition 7.12, it can be written as the
limit of a computable increasing sequence of basic functions 0 ≤ gn(x, P ) ≤ 1. The sequence
Gn : P �→

∫
gn(x, P ) dP is an increasing sequence of functions computable uniformly in n. The

monotone convergence theorem implies Gn(P ) → 1 for all P ∈ M(X). Let us define for each
measure P the numbers nk(P ) as the minimal values of n for which Gn(P ) > 1 − 2−k. These
numbers are upper semicomputable as functions of P (in a natural sense; for measures P with
P (SP ) < 1, some of these nk(P ) are infinite). Correspondingly, the functions 1 − gnk(P )(x, P ), as
functions of x and P (define such a function to be zero for infinite nk(P ), independently of x) are
lower semicomputable, uniformly in k. Then t(x, P ) =

∑
k>0(1 − gnk(P )(x, P )) is a uniform test,

since at a given P its kth summand is zero for infinite nk(P ) and has integral not greater than 2−k

for finite nk(P ).
The conditions of the theorem tell about a measure P with P (SP ) = 1. Then all numbers nk(P )

are finite. Consider an x outside SP : then gnk(P )(x, P ) = 0 by definition. Therefore, all terms of
the test sum are equal to unity; thus x is not a P -random point. Consequently, SP includes all
uniformly P -random points. �

7.4. A priori probability, with an oracle. In Subsection 5.2 we defined the a priori prob-
ability with a condition whose role was played by a measure over the Cantor space Ω. Now, having
introduced the notion of a constructive metric space, we can note that this definition extends
naturally to an arbitrary such space X: we consider nonnegative lower semicomputable functions
m : N × X → [0,∞] for which

∑
i m(i, x) ≤ 1, for all x ∈ X.

Among such functions, there is a maximal one to within a multiplicative constant. This is proved
by the method of trimming: the lower semicomputable function m(i, x) can be obtained as a sum
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of a series of basic functions each of which differs form zero only for one i; these basic functions
must be multiplied by correcting coefficients that depend on the sum over all i. (At each stage, this
sum has only finitely many members.)

We will call the maximal function of this kind the a priori probability with condition x, and
denote it m(i|x). We consider the first argument a natural number, but this is not essential: it
is possible to consider words (or any other discrete constructive objects). As a special case we
obtain the definition of a priori probability conditioned on a measure (Subsection 5.2), as well as
the standard notions of a priori probability with an oracle (which corresponds to X = Ω, the Cantor
space of infinite sequences) and the conditional a priori probability (corresponding to X = N).

In analogy with the Day–Miller theorem, the a priori probability with a condition is expressible
(in an arbitrary effectively compact constructive metric space X) in terms of the a priori probability
with an oracle.

Proposition 7.32. Let F : Ω → X be a computable map whose image is the whole space X.
Then

m(i|x) ∗= min
π : F (π)=x

m(i|π).

Proof. We reason as in the proof of Theorem 5.36. The function (i, π) �→ m(i|F (π)) is lower
semicomputable on N × Ω, which implies the

∗
<-inequality.

In order to obtain the reverse inequality, we use Lemma 7.21 and note that the function on the
right-hand side is well defined (the minimum is achieved) and is lower semicomputable. �

Note that m(i|π), the a priori probability with an oracle on the right-hand side of Proposi-
tion 7.32, is expressible by prefix complexity with an oracle. For the case of conditions in metric
spaces it is not clear how to define the prefix complexity with such a condition (one can speak of
functions whose graph is enumerable with respect to x, but it is not clear how to build a universal
one). One can define formally Kp(i|x) as maxπ : F (π)=x Kp(i|π), and then Kp(i|x) += − log m(i|x),
but it is questionable whether this can be considered a satisfactory definition of prefix complexity
(say, the usual arguments using the self-delimiting property of programs are not applicable with
such a definition). It is more honest to simply speak of the logarithm of the a priori probability.
Many results still remain true: for example, the formula Kp(i, j|x)

+

< Kp(i|x) + Kp(j|x) can be
proved without introducing self-delimiting programs, by just reasoning about probabilities.

Remark 7.33. Analogously, it is possible to supply points in constructive metric spaces as
conditions in some of our other definitions. For example, we can consider uniform tests over the
Cantor space Ω of infinite binary sequences, with condition in an arbitrary constructive metric
space X: these will be lower semicomputable functions t(ω,P, x) with

∫
t(ω,P, x)P (dω) ≤ 1 for all

P and x. It is also possible to fix a computable measure P , say the uniform one, and define tests
with respect to this measure with conditions in X.

8. CLASSES OF ORTHOGONAL MEASURES

The definition of a class test for an effectively compact class of measures, as well as Theorem 5.23
about the expression of a class test, generalizes, with the same proof.

The set of Bernoulli measures has an important property shared by many classes considered in
practice; namely, a random sequence determines the measure to which it belongs. A consequence
of this was spelled out in Theorem 5.41. This section explores the topic in a more general setting.

There are some examples naturally generalizing the Bernoulli case: finite or infinite ergodic
Markov chains and ergodic stationary processes. Below, we will dwell a little more on the latter,
since it brings up a rich complex of new questions.
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We will consider orthogonal classes in the general setting of metric spaces: from now on, our
measurable space is the one obtained from a constructive metric space X = (X, d,D,α). The
following classical concept is analogous to effective orthogonality, introduced in Definition 5.40.

Definition 8.1 (orthogonal measures). Let P and Q be two measures over a measurable space
(X,A), that is, a space X with a σ-algebra A of measurable sets on it. We say that they are
orthogonal if the space can be partitioned into disjoint measurable sets U and V with the property
P (V ) = Q(U) = 0.

Let C be a class of measures. We say that C is orthogonal if there is a measurable function
ϕ : X → C such that P (ϕ−1(P )) = 1 for every P ∈ C.

Note that the space M(X), as a metric space, also allows the definition of Borel sets, and it is
in this sense that we can talk about f being measurable.

Examples 8.2. 1. In an orthogonal class, any two (different) measures P and Q are orthogonal.
Indeed, the sets {P} and {Q} are Borel (since closed); hence their preimages are measurable (and
obviously disjoint). The converse statement is false: A class C of mutually orthogonal probability
measures is not necessarily orthogonal, even if the class is effectively compact. For example, let
λ be the uniform distribution over the interval [0, 1], and let for each x ∈ [0, 1] the probability
measure δx be concentrated at x. Then the class {λ} ∪ {δx : x ∈ [0, 1]} is effectively compact, and
its elements are mutually orthogonal. But the whole class is not orthogonal: the orthogonality
condition requires ϕ(x) = δx, but then ϕ−1(λ) will be empty.

2. Let P and Q be two probability measures. Of course, if Randoms(P ) and Randoms(Q) are
disjoint, then P and Q are orthogonal. The converse is not always true: for example it fails if λ
and δx are as above, where x is random with respect to λ.

The following definition introduces the important example of stationary ergodic processes.

Definition 8.3. The Cantor space Ω of infinite binary sequences is equipped with an operation
T : ω(1)ω(2)ω(3) . . . �→ ω(2)ω(3)ω(4) . . . called the shift. A probability distribution P over Ω is
stationary if for every Borel subset A of Ω we have P (A) = P (T−1(A)). It is easy to see that this
property is equivalent to requiring

P (x) = P (0x) + P (1x)

for every binary string x.
A Borel set A ⊆ Ω is called invariant with respect to the shift operation if T (A) ⊆ A. For

example, the set of all sequences in which the relative frequency converges to 1/2 is an invariant
set. A stationary distribution is called ergodic if every invariant Borel set has measure 0 or 1.

Here is a new example of a stationary process (all Bernoulli measures and stationary Markov
chains are also examples).

Example 8.4. Let Z1, Z2, . . . be a sequence of independent identically distributed random
variables taking values 0 and 1 with probabilities 0.9 and 0.1, respectively. Let X0,X1,X2, . . . be
defined as follows: X0 takes values 0, 1 and 2 with equal probabilities, and independently of all Zi;
further Xn = X0 +

∑n
i=1 Zi mod 3. Finally, let Yn = 0 if Xn = 0 and Yn = 1 otherwise. The process

Y0, Y1, . . . is clearly stationary, and can also be proved to be ergodic. As a function of the Markov
chain X0,X1, . . . , it is also called a hidden Markov chain.

The following statement is a consequence of Birkhoff’s pointwise ergodic theorem. For each
binary string x let gx(ω) = 1xΩ(ω) be the indicator function of the set xΩ: it is 1 if and only if x is
a prefix of ω.
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Proposition 8.5. Let P be a stationary process over the Cantor space Ω.

(a) With probability 1, the average

Ax,n(ω) =
1
n

(
gx(ω) + gx(Tω) + . . . + gx(T n−1ω)

)
(7)

converges.
(b) If the process is ergodic, then the sequence converges to P (x).

(For nonergodic processes, the limit may depend on ω.)
Birkhoff’s theorem is more general, pertaining to more general spaces and measure-preserving

transformations T , arbitrary integrable functions in place of gx, and convergence to the expected
value in the ergodic case. But the proposition captures its essence (and can also be used in the
derivation of the more general versions).

Part (b) of Proposition 8.5 implies that the class C of ergodic measures is an orthogonal class.
Indeed, let us call a sequence ω “stable” if for all strings x the averages Ax,n(ω) of (7) converge. It
is easy to see that in this case the numbers P (x) determine some probability measure Qω. Now,
let ϕ : Ω → C be a function that assigns to each stable sequence ω the measure Qω provided Qω is
ergodic. If the sequence is not stable or Qω is not ergodic, then let ϕ(ω) be some arbitrary fixed
ergodic measure. It can be shown that ϕ is a measurable function: here, we use the fact that the
set of stable sequences is a Borel set. By part (b) of Proposition 8.5, the relation P (ϕ−1(P )) = 1
holds for all ergodic measures.

Note that the class of all ergodic measures is not closed, but we did not rely on the closedness
of this class in the definition.

Example 8.2.2 shows that two measures can be orthogonal and still have common random
sequences. But for computable measures, as we will show right away, this is not possible.

In Definition 5.40 we called a class of measures P effectively orthogonal if all sets of random
sequences Randoms(P ) for measures P in the class are disjoint from each other.

Theorem 8.6. Two computable probability measures on a constructive metric space are or-
thogonal if and only they are effectively orthogonal.

Speaking of the effective orthogonality of two measures, we mean that they have no common
(uniform) random sequences. In the effective case, pairwise orthogonality within the class and the
orthogonality of the whole class are equivalent by definition.

Proof. We only need to prove one direction. Assume that P and Q are orthogonal, that is,
there is a measurable set A with P (A) = 1 and Q(A) = 0. By Proposition 7.22, these measures
are regular, so there is a sequence Gn ⊇ A of open sets with Q(Gn) < 2−n. Then for every n there
is also a finite union Hn ⊆ Gn of basic balls with P (Hn) > 1 − 2−n and Q(Hn) < 2−n; moreover,
there is a computable sequence Hn with this property. Let Um =

⋃
n>m Hn. By Proposition 7.31,⋂

m Um contains all random points of P . On the other hand, the sets Um form a Martin-Löf test
for the measure Q, so the intersection contains no random points of Q. �

We have shown above that ergodic measures form an orthogonal class. Careful analysis shows
that this is also true effectively.

Theorem 8.7. The set of ergodic measures over the Cantor set Ω forms an effectively orthog-
onal class.

Proof. Paper [29] (more precisely, an analysis of it that will create uniform tests) shows that
(a) sequences uniformly random with respect to some stationary measure are stable (in the sense

that the above indicated limit of averages exists for them);
(b) uniformly random sequences with respect to an ergodic measure are “typical” in the sense

that these averages converge to P (x).
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To show (a), the paper introduces the function σ(ω,α, β) for rationals 0 < α < β, which is the
maximum number of times that Ax,n(ω) crosses the interval (α, β) from below α to above β. This
function is lower semicomputable, uniformly in the rationals α and β. Then it shows

(1 + α−1)(β − α)
∫

σ(ω,α, β) dP ≤ 1,

that is, that (1 + α−1)(β − α)σ(ω,α, β) is an average-bounded test, implying that for Martin-Löf
random sequences (and even for blind-random sequences), the average Ax,n(ω) crosses (α, β) from
below α to above β only a finite number of times. Now one can combine all these tests, for all
strings x and all rational 0 < α < β, into a single test (not depending on P ).

To express (b), in view of part (a), it is sufficient, for each x, to prove

lim inf
n

Ax,n(ω) ≤ P (x) ≤ lim sup
n

Ax,n(ω)

for random ω. Take for example the statement for the lim inf. It is sufficient to show for any k
and m that infn≥m Ax,n(ω) ≤ P (x) + 2−k for a random ω. The set

Sx,k,m =
{
(ω,P ) : ∃n ≥ m Ax,i(ω) < P (x) + 2−k

}
is effectively open, and the Birkhoff theorem implies P (Sx,k,m(P )) = 1 for all ergodic measures P ,
for the set Sx,k,m(P ) = {x : (x, P ) ∈ Sx,k,m}. Proposition 7.31 implies that then for each P the set
Sx,k,m(P ) contains all P -random points.

Another approach is a proof that just shows (b) for computable ergodic measures (in a relativiz-
able way), without an explicit test, as done in [2]. Then a reference to Theorem 5.36 allows us to
conclude the same about uniformly random sequences. �

It is convenient to treat orthogonality of a class in terms of separator functions. For this, note
that by a measurable real function we mean a Borel-measurable real function, that is, a function
with the property that the inverse images of Borel sets are Borel sets.

Definition 8.8 (separator function). Let C be a class of measures over the metric space X.
A measurable function s : X ×M(X) → [0,∞] is called a separator function for the class C if for
all measures P we have

∫
s(x, P ) dP ≤ 1 and further, for P,Q ∈ C, P �= Q implies that only one of

the values s(x, P ) and s(x,Q) is finite.
In case we have a constructive metric space X, a separator function s(x, P ) is called a separator

test if it is lower semicomputable in (x, P ).
We could have required the integral to be bounded only for measures in the class, since trimming

allows the extension of the boundedness property to all measures, just as in the remark after
Definition 7.29.

The following observation connects orthogonality with separator functions and also shows that
in the case of effective orthogonality, each measure can be effectively reconstructed from any of its
random elements.

Theorem 8.9. Let C be a class of measures.

(a) If the class C is Borel and orthogonal, then there is a separator function for it.
(b) The class C is effectively orthogonal if and only if there is a separator test for it.

The converse of part (a) might not hold: this needs further investigation.
Proof. Let us prove (a). If ϕ(x) is a measurable function assigning measure P ∈ C to each

element x ∈ X as required in the definition of orthogonality, then by a general theorem of topological
measure theory (see [15]), its graph is measurable. This allows the following definition: for P /∈ C
set s(x, P ) = 1, while for P ∈ C set s(x, P ) = 1 if ϕ(x) = P and s(x, P ) = ∞ otherwise.
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Now let us prove (b). If C is effectively orthogonal, then the uniform test t(x, P ) is a sepa-
rator test for the class C. Suppose now that there is a separator test s for the class C, and let
P,Q ∈ C, P �= Q, and x ∈ Randoms(P ). Since s is a randomness test, s(x, P ) < ∞, which implies
s(x,Q) = ∞; hence x /∈ Randoms(Q). �

The following result is less expected: it shows that if the class of measures is effectively compact,
then the existence of a lower semicontinuous separator function implies the existence of a lower
semicomputable one (that is, a separator test).

Theorem 8.10. If for an effectively compact class of measures there is a lower semicontinuous
separator function s(x, P ), then this class is effectively orthogonal.

Proof. Let C be an effectively compact class of measures on a constructive metric space. We
need to show that under the conditions of the theorem, for any two distinct measures P1 and P2

in C, the sets of random sequences are disjoint:

Randoms(P1) ∩ Randoms(P2) = ∅.

In the constructive metric space M of measures, take two disjoint closed basic balls B1 and B2

that contain the measures P1 and P2. The classes Ci = C ∩ Bi, i = 1, 2, of measures are disjoint
effectively compact classes of measures containing P1 and P2. Consider the functions

ti(x) = inf
P∈Ci

s(x, P ).

For all x at least one of the values t1(x) and t2(x) is infinite. By (a version of) Proposition 7.20,
the functions ti(x) are lower semicontinuous and hence are C1- and C2-tests, respectively.

Now we follow some of the reasoning of the proof of Proposition 7.31. For an integer k > 1,
consider the open set Sk = {x : t1(x) > 2k}. Since t1 is a C1-test, P (Sk) < 2−k for all P ∈ C1. On
the other hand, since for all x one of the two values t1(x) and t2(x) is infinite, P (Sk) = 1 for all
P ∈ C2. The indicator function 1Sk

(x) of the set Sk is lower semicontinuous; therefore, it can be
written as the limit of an increasing sequence (now not necessarily computable!) of basic functions
gk,n(x). We conclude, as in the proof of Proposition 7.31, that for each P there is an n = nk(P )
with

∫
gk,n(x) dP > 1− 2−k for all P ∈ C2. The effective compactness of C2 implies then that there

is an n independent of P with the same property. In summary, for each k > 0 a basic function hk

is found with∫
hk dP < 2−k for all P ∈ C1,

∫
hk dP > 1 − 2−k for all P ∈ C2.

Such a basic function hk can be found effectively from k, by complete enumeration. Now we can
construct a lower semicomputable function

t′1(x) =
∑

k

hk(x).

It is a test for the class C1, while t′2(x) =
∑

k(1 − hk(x)) is a test for all P ∈ C2 for the same
reasons. These tests must be finite for elements random for P1 and P2, and this cannot happen
simultaneously for both tests. �

The meaning of separator tests introduced above can be clarified as follows. Due to the effective
orthogonality of C, the universal uniform test t(ω,P ) allows one to separate the sequences into
random ones according to different measures of the class C: looking at a sequence ω, random with
respect to some measure of this class (= random with respect to the class), we are looking for a
P ∈ C for which t(ω,P ) is finite. This measure is unique in the class C (by the definition of effective
orthogonality).
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This separation property, however, can also be satisfied by a nonuniversal test, and we called
such tests separator tests. The nonuniversal test is less demanding about the idea of randomness,
giving it, so to say, a “first approximation”: it might accept a sequence as random that will be
rejected by a more serious test. (The converse is impossible, since the universal test is maximal.)
What matters is only that this preliminary crude triage separates the measures of the class C, that
is, that no sequence should appear “random,” even “in the first approximation,” with respect to two
measures at the same time.

For brevity, just for the purposes of the present paper, we will call “typicality” this “randomness
in the first approximation”:

Definition 8.11. Given a separator test s(x, P ), we call an element x typical for P ∈ C (with
respect to the test s) if s(x, P ) < ∞.

A typical element determines uniquely the measure P for which it is typical.
For an example, consider the class B of Bernoulli measures. For a test “in the first approxima-

tion,” we may recall von Mises, who called the stability of relative frequencies the first property of a
random sequence (“Kollektiv” in his words). The stability of relative frequencies (strong law of large
numbers in today’s terminology) means Sn(ω)/n → p. Here Sn(ω) is the number of ones in the
initial segment of length n of the sequence ω, and p is the parameter of the Bernoulli measure Bp.

There are several close requirements in this spirit:
(1) Sn(ω)/n → p with a certain convergence speed.
(2) Sn(ω)/n → p.
(3) In the case when C is the class of all ergodic stationary measures over the Cantor space Ω,

convert the proof of Theorem 8.7 into a test, implying Ax,n(ω) → P (x) for all x.
Among these requirements, the one that seems most natural to a mathematician, namely (2),

is not expressible in a semicomputable way. Requirement (1) has many possible formulations,
depending on the convergence speed; we will show an example below.

Requirement (3) is significantly more complicated to understand, but is still much simpler than
a universal test. It does not imply a computable convergence speed directly; indeed, as V’yugin
showed in [29], a computable convergence speed does not exist for the case of computable nonergodic
measures. But later works, starting with [1], have shown that the convergence for ergodic measures
has a speed computable from P .

Here is an example of a test expressing requirement (1). (For simplicity, we obtain the conver-
gence of relative frequencies not on all segments, but only on lengths that are powers of two. With
more care, one could obtain similar bounds on all initial segments.) By Chebyshev’s inequality

Bp

({
x ∈ B

n : |Sn(x) − np| > λn1/2(p(1 − p))1/2
})

≤ λ−2.

Here Sn(x) is the number of ones among the first n bits. Since p(1 − p) ≤ 1/4, this implies

Bp

({
x ∈ B

n : |Sn(x) − np| > λn1/2/2
})

≤ λ−2.

Setting λ = n0.1 and ignoring the factor 1/2 gives

Bp

({
x ∈ B

n : |Sn(x) − np| > n0.6
})

≤ n−0.2.

For n = 2k,

Bp

({
x ∈ B

2k
: |S2k(x) − 2kp| > 20.6k

})
≤ 2−0.2k.

Now, for a sequence ω in B
N and for p ∈ [0, 1] let

g(ω,Bp) = sup
{
k : |S2k(ω) − 2kp| > 20.6k

}
.
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Then ∫
g(ω,Bp)Bp(dω) ≤

∑
k

k · 2−0.2k = c < ∞.

Dividing by c, we obtain a test. This is a separator test, since g(ω,Bp) < ∞ implies that 2−kS2k(ω)
converges to p, and this cannot happen for two different p.

Theorem 5.41 generalizes, with essentially the same proof (using basic balls instead of initial
sequences): it says that in an effectively compact effectively orthogonal class of measures, blind
randomness is the same as uniform Martin-Löf randomness. This raises the question as to whether
every ergodic measure belongs to some effectively compact class. The answer is negative:

Theorem 8.12. Consider stationary measures over Ω (with the shift transformation). Among
these, there are some ergodic measures that do not belong to any effectively compact class of ergodic
measures.

Before proving the theorem, let us prove some preparatory statements.
Proposition 8.13. Both the ergodic measures and the nonergodic measures are dense in the

set of stationary measures M(Ω) over Ω.
Proof. First we will show how to approximate an arbitrary stationary measure P by ergodic

measures. Without loss of generality assume that all probabilities P (x) for finite strings x are
positive. (If not, then we can mix in a little of the uniform measure.) For a fixed n, consider the
values P (x) on strings x of length at most n. There is a process that reproduces these probabilities
and that is isomorphic to an ergodic Markov process on {0, 1}n−1. In this process, for an arbitrary
x ∈ {0, 1}n−2 and any b, b′ ∈ {0, 1} the transition probability from bx to xb′ is P (bxb′)/P (bx). Since
both transition probabilities are positive, this Markov process is ergodic.

Now we show how to approximate an arbitrary ergodic measure by nonergodic measures. Let P
be ergodic. Let us fix some n > 0 and ε > 0. By the pointwise ergodic theorem, there is a sequence
in which the limiting frequencies of all words converge to the measure (almost all sequences—with
respect to this measure—are such). Taking a long piece of this sequence and repeating it leads to
a periodic sequence in which the frequencies of words of length not exceeding n differ from the
measure P by at most ε (for any given n and ε > 0). (The repetition forms new words on the
boundaries, but for a large length this effect is negligible.) Consider now the measure concentrated
on the shifts of this sequence, assigning the same weight to each of them (their number is equal to
the minimum period). This measure is not ergodic, but is close to P . �

Proposition 8.14. The set of ergodic measures is a Gδ set in the metric space of all measures
over Ω.

Proof. We can restrict attention to the (closed) set of stationary measures. Let P be a sta-
tionary probability measure over Ω. Consider the function Ax,n over Ω, defining Ax,n(ω) to be equal
to the average number of occurrences of the word x in the first n possible positions of ω. By the
ergodic theorem, the sequence of functions Ax,1, Ax,2, . . . converges in the L1 sense. Moreover, the
stationary measure P is ergodic if and only if the limit of this convergence is the constant function
with value P (x).

Since the limit exists for all stationary measures, it is sufficient to check that the constant P (x)
is a cluster point. For any x, N and each rational ε the set Sx,N,ε of those P for which there is an
n ≥ N with ∫

|Ax,n(ω) − P (x)|P (dω) < ε

is open, and the set of ergodic stationary measures is the intersection of these sets for all x, N
and ε. �
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Proof of Theorem 8.12. The union of all effectively compact classes of ergodic measures
is Fσ . Suppose that it is equal to the set of all ergodic measures. Then the set of nonergodic
measures is a Gδ set, which is also dense by Proposition 8.13.

As shown in Propositions 8.13 and 8.14, the set of ergodic measures is a dense Gδ set. How-
ever, by the Baire category theorem, two dense Gδ sets cannot have an empty intersection. This
contradiction proves the theorem. �

The following question still remains open:
Question 6. Is there an ergodic measure over Ω for which uniform and blind randomness are

different?
Returning to arbitrary effectively compact effectively orthogonal classes, we can connect the

universal tests with class tests of Theorem 5.23 and separator tests.
Theorem 8.15. Let C be an effectively compact effectively orthogonal class of measures, let

t(x, P ) be the universal uniform test, and let tC(x) be a universal class test for C. Assume that
s(x, P ) is a separator test for C. Then we have the representation

t(x, P ) ∗= max(tC(x), s(x, P ))

for all P ∈ C and x ∈ X.
Proof. Let us note first that tC(x) and s(x, P ) do not exceed the universal uniform test t(x, P ).

Indeed, s(x, P ) is a uniform test by definition. Also by definition, the universal class test tC(x) is
a uniform test.

On the other hand, let us show that if tC(x) and s(x, P ) are finite, then t(x, P ) does not
exceed the greater one of them (to within a multiplicative constant). The finiteness of the first test
guarantees that minQ∈C t(x,Q) is finite: this minimum is equal to tC(x) to within a constant factor.
If this minimum was achieved on some measure Q �= P , then both values s(x,Q) and s(x, P ) would
be finite, contradicting to the definition of a separator. (Note that we proved a statement slightly
stronger than promised: in place of “greater of the two,” one can write “the first of the two, if the
second one is finite.”) �

The above theorem splits the randomness test into two parts (points at two possible causes of
non-randomness). First, we must convince ourselves that x is random with respect to the class C.
For example, in the case of a measure Bp in the class B of Bernoulli measures, we must first be
convinced that tB(ω) is finite. This encompasses all the irregularity criteria. If the independence of
the sequence is taken for granted, we may assume that the class test is satisfied.

After this, we know that our sequence is Bernoulli, and some kind of simple test of the type
of the law of large numbers is sufficient to find out with respect to which Bernoulli measure is it
random: Bp or some other one. This second part, typicality testing, is analogous to parameter
testing in statistics.

Separation is the only requirement of the separator test: its numerical value is irrelevant. For
example, in the Bernoulli test case, no matter how crude the convergence criterion expressed by the
separator test s(x, P ) is, the maximum is always (essentially) the same universal test.

9. ARE UNIFORM TESTS TOO STRONG?

9.1. Monotonicity and/or quasi-convexity. Uniform tests may seem too strong, in case
P is a noncomputable measure. In particular, randomness with respect to computable measures (in
the sense of Martin-Löf or in the uniform sense; they are the same for computable measures) has
certain intuitively desirable properties that uniform randomness lacks. One of these is monotonicity:
roughly, if Q is greater than P and if x is random with respect to P , then it should also be random
with respect to Q.
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Proposition 9.1. For computable measures P and Q and for all rational λ > 0, if λP (A) ≤
Q(A) for all A, then

m(λ) · λ t(x,Q)
∗
< t(x, P ).

Here m(λ) is the discrete a priori probability of the rational λ. To make the constant in
∗
< inde-

pendent of P and Q, one also needs to multiply the left-hand side by m(P,Q).
Proof. We have

1 ≥
∫

t(x,Q) dQ ≥
∫

λ t(x,Q) dP ;

hence λ t(x,Q) is a P -test. Using the trimming method of Theorem 7.28 in finding universal tests,
one can show that the sum ∑

λ : λ
∫

t(x,Q)dP<2

m(λ) · λ t(x,Q)

is a P -test, and hence does not exceed t(x, P ) up to a multiplicative constant. Therefore, this is
true of each member of the sum, which is just what the theorem claims. It is easy to see that the
multiplicative constants depend here on P and Q only via inserting a factor m(P,Q). �

The intuitive motivation for monotonicity is as follows: if there are two devices with internal
randomness generators, having output distributions P and Q, and λP ≤ Q, then it can be imagined
that the second device simulates the first one with probability λ and does its own thing otherwise.
Then every outcome intuitively plausible as the outcome of the first device must also be deemed a
plausible outcome of the second one, since this could have simulated the first one by chance. (The
numerical value of the randomness deficiency may be, of course, somewhat larger, since we must
believe in addition that the λ-probability event occurred.)

Uniform randomness violates, alas, this property: if the measure Q is larger but computationally
more complex, then the randomness tests with respect to Q can exploit this additional informa-
tion to make nonrandom some outcomes that were random with respect to P (see the proof of
Theorem 5.39). This is just the source of the difference between uniform and blind (oracle-free)
randomness, for which the analogous monotonicity property is obviously satisfied.

Another situation for which we have some intuition on randomness is the mixture (convex
combination) of measures. Imagine two devices with output measures P and Q, and an outer box
which triggers one of them with some probabilities λ and 1 − λ. As a whole, we obtain a system
whose outcome is distributed according to the measure λP + (1 − λ)Q. About which outcomes
can we assert that they are obtained randomly as a result of this experiment? Clearly both the
outcomes random with respect to P and those random with respect to Q must be accepted (with
the understanding that if the coefficient is small, then some additional but finite suspicion is added).
And there should not be any other outcomes. A quantitative elaboration of this result (which in
one direction follows from monotonicity) is given below.

Proposition 9.2. Let P and Q be two computable measures.

(a) For a rational 0 < λ < 1,

m(λ) · t(x, λP + (1 − λ)Q)
∗
< max(t(x, P ), t(x,Q)).

(b) For arbitrary 0 < λ < 1,

t(x, λP + (1 − λ)Q)
∗
> min(t(x, P ), t(x,Q)).

The constants in
∗
< depend on the length of the shortest programs defining P and Q (their

complexities), but not on λ (or other aspects of P and Q).
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Statement (a) could be called the quasi-convexity of randomness tests (to within a multiplicative
constant). For a test with an exact quasi-convexity property (without any multiplicative constants)
there is a lower semicomputable semimeasure that is neutral (after extending tests to semimeasures,
see [17, 9]).

Statement (b) implies that no other random outcomes exist for the mixture of P and Q. This
could be called the quasi-concavity of randomness tests (to within a multiplicative constant).

Proof. Part (a) follows from Proposition 9.1. Indeed, if λ ≥ 1/2, then Proposition 9.1 implies
m(λ) · t(x, λP + (1 − λ)Q)

∗
< t(x, P ) (absorbing 1/2 into the

∗
<). If λ < 1/2, then it implies

m(1 − λ) · t(x, λP + (1 − λ)Q)
∗
< t(x,Q) similarly, and we just recall m(λ) ∗= m(1 − λ).

Part (b) follows from the fact that the right-hand side is a test with respect to an arbitrary
mixture of the measures P and Q, and trimming can convert it into a uniform test. �

It is easy to see that all these statements exploit the computability of the measures and the
mixing coefficients in an essential way. The corresponding counterexamples are easy to build once
it is recognized that the mixture of measures can be stronger from an oracle-computational point of
view than any of them, as well as can be weaker. For example, let us divide the segment [0, 1] into
two halves and consider the measures P and Q that are uniformly distributed over these halves.
Their mixture with coefficients λ and 1− λ will make the number λ obviously nonrandom (since it
can be computed from this measure), though with respect to one of the measures it can very well
be random. Taking instead of P and Q their mixtures, say, with coefficients 1/3 and 2/3 and then
reversed, one can make λ random with respect to both measures.

In this example the mixture contains more information than each of the original measures. It
can also be the other way: bend the interval [0, 1] with the uniform measure into a circle and cut it
into two half-circles by the points p and p + 1/2. Then the uniform measures on these half-circles
make p computable with respect to them and thus nonrandom, while the average of these measures
is the uniform measure on the circle, with respect to which p can very well be random.

Let us note that for blind (oracle-free) randomness, we can guarantee without any restrictions
that the set of points random with respect to the mixture of P and Q is the union of points
random with respect to P and Q. (In one direction this follows from monotonicity, which we
already mentioned. In the other one: if an outcome is not random with respect to P and not
random with respect to Q, then there are two tests proving this, and their minimum will be a lower
semicomputable test proving its non-randomness with respect to the mixture.)

These are strong motives for modifying the concept of randomness test in order to reproduce
these properties, while conserving other desirable properties (say, the existence of a universal test
and with it the notion of deficiency of randomness). Some of such modifications can be seen
in [17, 9, 18].

9.2. Locality. Imagine that some sequence ω is uniformly random with respect to a measure P
and starts with 0. Change the values of the measure on sequences that start with 1. It is not
guaranteed that ω remains uniformly random, since now the measure may become stronger as an
oracle (allowing one to compute more). But this looks strange since the changes in the measure are
in the part of the universe that does not touch ω.

For blind (oracle-free) randomness, specifically this example is impossible (one can force the test
to zero on sequences beginning with unity), but in principle the concept of test depends not only
on the measure along the sequence (not only on the probabilities of occurrences of nulls and ones
after its start).

For randomness with respect to computable measures, the situation is again better.
Proposition 9.3 (prequentiality). Let P and Q be two computable measures on the space Ω

of binary sequences. If P and Q coincide on all initial segments of some sequence ω, then this
sequence is simultaneously random or nonrandom with respect to P and Q.
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Proof. This follows immediately from the randomness criterion in terms of the complexity of
the initial segments (Levin–Schnorr theorem) in any of its variants (Theorem 2.24, Proposition 2.30,
or Corollary 2.32). �

On the other hand, it is easy to modify one of the counterexamples in Subsection 9.1 to violate
prequentiality as well.

In the case of computable measures on an arbitrary constructive metric space a similar statement
holds, though with a stronger requirement: we assume that two computable measures are equal on
all sets contained in some neighborhood of the outcome ω. (In this case it is possible to multiply
the test by a basic function without changing it in ω, while making it zero outside the neighborhood
of coincidence).

Here is yet another way to obtain a clearly prequential definition of randomness, in which the
randomness deficiency is a function of the sequence itself and the measures of its initial segments.
For a given sequence ω and a given sequence {q(i)} of real numbers with

1 = q(0) ≥ q(1) ≥ q(2) ≥ . . . ≥ 0,

let
t′(ω, q) = inf t(ω,P ),

where the infimum is taken over all measures P with P (ω(1 : n)) = q(n). The corresponding sets
are effectively compact, so that this minimum will be a lower semicomputable function of ω and
the sequence q. If for the sequence ω and the measures q(i) of its initial segments the value t′(ω, q)
is finite, then the sequence ω can be called prequentially random.

In other words, a sequence ω is prequentially random with respect to a measure P if there is a
(in general different) measure Q with respect to which ω is random and which coincides with P on
all initial segments of ω.

The requirement of prequentiality has been invoked in connection with a theory that extends
probability theory and statistics to models of forecasting (see, for example, [5, 27]). An example
situation is the following. Let ω(n) = 1 mean that there is rain on day n and ω(n) = 0 mean
the absence of rain. Suppose that a forecasting office makes daily forecasts p(1), p(2), . . . of the
probability of rain. It is not necessarily proposing a coherent probability model of global weather
(a global probability distribution). It just provides forecasts for the conditional probabilities along
the path corresponding to the weather that actually takes place.

Is it possible to estimate the quality of the forecast? It seems that in some situations, yes: if, for
example, all forecasts are close to zero (say, are less than 10%) and the majority of days (say, more
than 90%) are rainy. (It is said that the forecast is poorly calibrated.) Naturally, there are other
possible inconsistencies, not related to the frequencies: the general question is whether the given
sequence can be accepted as randomly obtained with the predicted probabilities. (Such a question
also arises in the situation of estimating the quality of a random number generator each of whose
output values is claimed to occur with whatever distribution the customer requires at that time of
the process, for that particular bit.)

An additional circumstance to consider at the estimation of the quality of forecasts is that the
forecaster can use a variety of information accessible to them at the moment of prediction (say, the
evening of the preceding day), and not only the members of the sequence ω. The presence of such
information must also be taken into account at the estimation of the quality of the forecast.

Paper [27] proposes several different approaches to this question, which turn out to be equiv-
alent. One involves a generalization of the notion of martingale (see Definition 3.8). It would be
interesting to establish a connection with uniform randomness tests in the spirit of the above defined
prequential deficiency. (Admittedly, in place of probabilities of initial segments, one must deal here
with conditional probabilities, which is not quite the same, if these are not separated from zero.)
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10. QUESTIONS FOR FUTURE DISCUSSION

We have already noted some questions that (in our view) would be interesting to study. In this
section we collected a few more such questions.

1. Consider the following method for generating a sequence ξ ∈ Ω using an arbitrary distri-
bution P on Ω in which the probabilities of all words are positive. Take a random sequence ρ
of independent reals ρ(1), ρ(2), . . . uniformly distributed over [0, 1]. At stage n, after outputting
ξ(1 : n − 1), set ξ(n) = 1 if

ρ(n) < P (ξ(1 : n − 1)1)/P (ξ(1 : n − 1)).

If we consider this as a random process, the output distribution will be exactly P . What sequences
can be obtained at the output from a Martin-Löf random sequence of real numbers at the input? (It
can be verified that for computable measures P one gets exactly the sequences that are Martin-Löf
random with respect to P .)

2. Recall the formula for the deficiency for computable measures:

t(ω,P ) ∗=
∑
x�ω

m(x)
P (x)

. (8)

Both sides make sense for noncomputable P , but this formula is no more true. Indeed, the right-
hand side does not change significantly if a measure P is replaced by some other one that is close
to P but is much more powerful as an oracle; and the left-hand side can become infinite while it
was finite for P .

Denote the right-hand side by t′(ω,P ). Does it make sense to take the finiteness of t′(ω,P ) as a
definition of randomness with respect to a noncomputable measure? It will be at least monotonic (an
increase of the measure will only increase randomness). With respect to mixtures of measures, we
can say that it is quasi-convex; moreover, it is proved in [8] that 1/t′(ω,P ) is a concave function of P .

Another possibility is to define the randomness deficiency for an infinite sequence ω as
log supx�ω[M(x)/P (x)] (and consider the corresponding definition of randomness). For computable
measures we obtain a definition equivalent to Martin-Löf’s standard one. Paper [11] shows that
the uniform tests defined by this expression (using either m(x) or M(x)) do not obey randomness
conservation, while the universal uniform test does. Work [8] shows that, on the other hand, an
expression related to the right-hand side of (8), with the summation running over all positive basic
functions instead of only the functions 1xΩ(ω), obeys randomness conservation.

3. Can we define a reasonable class of tests with the property in Proposition 9.1 holding for all
measures P (or some stronger version of it) so that there exists a universal class? For example, one
may require

P ≤ c · Q ⇒ t(ω,P ) ≥ t(ω,Q)/c

(motivation: this is true for the right-hand side of formula (8)). Could one also require the quasi-
convexity, as in Proposition 9.2? Papers [17] and [9], as well as [18], provide some such examples.

How about the quasi-concavity of Proposition 9.2? A uniform test with this property seems less
likely, since our counterexample seems more robust.

4. Relativization in recursion theory means that we take some set A and artificially declare
it “decidable” by adding some oracle that tells us whether x ∈ A for any given x. Almost all
the theorems of classical recursion theory can be relativized. It is more delicate to declare some
set E “enumerable.” This means that we have some enumeration oracle that enumerates the set E.
The problem is, of course, that there are many enumerations. Still we can give the definition of
an E-enumerable set. Let W be a set of pairs of the form (x, S) where x is an integer and S
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is a finite set of integers; assume W to be enumerable in the classical sense. Then consider the
set Γ(E,W ) of all x such that (x, S) ∈ W for some S ⊂ E. The sets Γ(E,W ) (for fixed E and
all enumerable W ) are called enumerable with respect to the enumeration oracle E. (The relation
(x, S) ∈ W means that we add x to the E-enumeration as soon as we see all elements of S in E.)
A standard (decision) oracle for a set A can be considered a special case of an enumeration oracle
(say, for the set {2n : n ∈ A} ∪ {2n + 1: n /∈ A}).

For some purposes, an enumeration oracle is as meaningful as a decision oracle: for example,
we can speak about a lower semicomputable function with respect to enumeration oracle E, since
it can be defined in terms of enumerable sets. But what can be proved for this kind of relativized
notions?

For example, is there (for an arbitrary E) a maximal lower E-semicomputable semimeasure? Can
one define prefix complexity with oracle E, and will it coincide with the logarithm of the maximal
semimeasure lower semicomputable relative to E (if the latter exists)? What if we assume, in
addition, that E is the set of all basic balls in a constructive metric space that contain a given
point?

(For comparison: we could define an E-computable function as a function whose graph is E-enu-
merable. Then some familiar properties will hold; say, the composition of E-computable functions is
again E-computable. On the other hand, we cannot guarantee that every nonempty E-enumerable
set is the range of a total E-computable function: for some E this is not so.)

5. We may try to extend the definition of randomness in a different direction: to lower semi-
computable semimeasures (that is, output distributions of probabilistic machines that generate
an output sequence bit by bit). Levin’s motivation for his definition was his goal to define the
independence of a pair (ξ, η) of infinite sequences as randomness with respect to the semimeasure
M × M . Correspondingly, the deficiency of randomness of the pair (ξ, η) with respect to M × M
could be called the quantity of mutual information between the sequences ξ and η. This is motivated
by the fact that the algorithmic mutual information

Kp(x) + Kp(y) − Kp(x, y) = − log(m(x) × m(y)) − Kp(x, y)

between finite objects x and y indeed looks like deficiency of randomness with respect to m× m.
One possibility is to say that ω is random if M(z)/Q(z) is bounded for the prefixes z of ω,

where M is the a priori probability on the tree and Q is the semimeasure in question. Another
possibility is to use random sequences for unbiased coin tossing and consider the output sequences
in all these cases. It is not clear whether these two definitions coincide or if the second notion is
well-defined (that is, for two different machines with the same output distribution the image of the
set of random sequences is the same). For computable measures it is indeed the case.

6 (Steven Simpson). Can we use uniform tests (modified in a proper way) for defining, say,
2-randomness? (The standard definition uses non-semicontinuous tests, but maybe it can be refor-
mulated.)
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