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Kolmogorov complexity

I Kolmogorov complexity C (a|b) of a string a conditional to b
is the minimal length of a program p that produces a given b,
i.e., p(b) = a

I Space-bounded version: C s(a|b) is the minimal length of a
program p such that p(b) = a and the computation of p(b)
performs in space s.
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Muchnik’s theorem

I Muchnik’s theorem (TCS’2002): For any a and b of length n
there exists p of length C (a|b) + O(log n) such that p(b) = a

and C (p|a) = O(log n).
I Space-bounded version (M., Romashchenko, Shen, CSR’2009,

ToCS’2011): For any a and b of length n and for any s there
exists p of length C s(a|b) + O(log3 n) such that:

I p(b) = a;
I the computation of p(b) performs in space O(s) + poly(n)
I and C poly(n)(p|a) = O(log3 n)

I In current work we get rid of polylogarithmic terms and make
them again logarithmic
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How to find fingerprints

I There is an underlying bipartite graph G = (L,R,E ) with
|L| = 2n and |R| = 2k

I Each left-part vertex has constant degree D
I The fingerprint p is chosen among neighbors of a

I This guarantees that C (p|a,G ) = O(log D)

I The statement that C (a|p, b,G ) is small for some p follows
from some enumerable graph property (see later)

I It is proven by the probabilistic method that this property is
non-empty

I Hence, the first graph in the enumeration has small complexity

I Hence, C (p|a) and C (a|p, b) are also small



How to find fingerprints

I There is an underlying bipartite graph G = (L,R,E ) with
|L| = 2n and |R| = 2k

I Each left-part vertex has constant degree D

I The fingerprint p is chosen among neighbors of a
I This guarantees that C (p|a,G ) = O(log D)

I The statement that C (a|p, b,G ) is small for some p follows
from some enumerable graph property (see later)

I It is proven by the probabilistic method that this property is
non-empty

I Hence, the first graph in the enumeration has small complexity

I Hence, C (p|a) and C (a|p, b) are also small



How to find fingerprints

I There is an underlying bipartite graph G = (L,R,E ) with
|L| = 2n and |R| = 2k

I Each left-part vertex has constant degree D
I The fingerprint p is chosen among neighbors of a

I This guarantees that C (p|a,G ) = O(log D)

I The statement that C (a|p, b,G ) is small for some p follows
from some enumerable graph property (see later)

I It is proven by the probabilistic method that this property is
non-empty

I Hence, the first graph in the enumeration has small complexity

I Hence, C (p|a) and C (a|p, b) are also small



How to find fingerprints

I There is an underlying bipartite graph G = (L,R,E ) with
|L| = 2n and |R| = 2k

I Each left-part vertex has constant degree D
I The fingerprint p is chosen among neighbors of a

I This guarantees that C (p|a,G ) = O(log D)

I The statement that C (a|p, b,G ) is small for some p follows
from some enumerable graph property (see later)

I It is proven by the probabilistic method that this property is
non-empty

I Hence, the first graph in the enumeration has small complexity

I Hence, C (p|a) and C (a|p, b) are also small



How to find fingerprints

I There is an underlying bipartite graph G = (L,R,E ) with
|L| = 2n and |R| = 2k

I Each left-part vertex has constant degree D
I The fingerprint p is chosen among neighbors of a

I This guarantees that C (p|a,G ) = O(log D)

I The statement that C (a|p, b,G ) is small for some p follows
from some enumerable graph property (see later)

I It is proven by the probabilistic method that this property is
non-empty

I Hence, the first graph in the enumeration has small complexity

I Hence, C (p|a) and C (a|p, b) are also small



How to find fingerprints

I There is an underlying bipartite graph G = (L,R,E ) with
|L| = 2n and |R| = 2k

I Each left-part vertex has constant degree D
I The fingerprint p is chosen among neighbors of a

I This guarantees that C (p|a,G ) = O(log D)

I The statement that C (a|p, b,G ) is small for some p follows
from some enumerable graph property (see later)

I It is proven by the probabilistic method that this property is
non-empty

I Hence, the first graph in the enumeration has small complexity

I Hence, C (p|a) and C (a|p, b) are also small



How to find fingerprints

I There is an underlying bipartite graph G = (L,R,E ) with
|L| = 2n and |R| = 2k

I Each left-part vertex has constant degree D
I The fingerprint p is chosen among neighbors of a

I This guarantees that C (p|a,G ) = O(log D)

I The statement that C (a|p, b,G ) is small for some p follows
from some enumerable graph property (see later)

I It is proven by the probabilistic method that this property is
non-empty

I Hence, the first graph in the enumeration has small complexity

I Hence, C (p|a) and C (a|p, b) are also small



How to find fingerprints

I There is an underlying bipartite graph G = (L,R,E ) with
|L| = 2n and |R| = 2k

I Each left-part vertex has constant degree D
I The fingerprint p is chosen among neighbors of a

I This guarantees that C (p|a,G ) = O(log D)

I The statement that C (a|p, b,G ) is small for some p follows
from some enumerable graph property (see later)

I It is proven by the probabilistic method that this property is
non-empty

I Hence, the first graph in the enumeration has small complexity

I Hence, C (p|a) and C (a|p, b) are also small



What graph properties do we need?

Some graph properties leading to Muchnik’s theorem:

I (Muchnik) Expander-like property

I (MRS) Possibility of online matching

I (MRS) Extractor

I (This paper) “Low-congesting”



What graph properties do we need?

Some graph properties leading to Muchnik’s theorem:

I (Muchnik) Expander-like property

I (MRS) Possibility of online matching

I (MRS) Extractor

I (This paper) “Low-congesting”



What graph properties do we need?

Some graph properties leading to Muchnik’s theorem:

I (Muchnik) Expander-like property

I (MRS) Possibility of online matching

I (MRS) Extractor

I (This paper) “Low-congesting”



What graph properties do we need?

Some graph properties leading to Muchnik’s theorem:

I (Muchnik) Expander-like property

I (MRS) Possibility of online matching

I (MRS) Extractor

I (This paper) “Low-congesting”



The essential property: low-congesting graph

{0, 1}n

each vertex has D neighbors {0, 1}k

S, |S| < 2k



The essential property: low-congesting graph

{0, 1}n

each vertex has D neighbors {0, 1}k

S, |S| < 2k

α-clot

I α-clot for S is the set of all vertices having more than αD
neighbors in S .



The essential property: low-congesting graph

{0, 1}n

each vertex has D neighbors {0, 1}k

S, |S| < 2k

α-clot

α-congested vertex

I α-clot for S is the set of all vertices having more than αD
neighbors in S .

I A vertex is α-congested if all its neighbors lie in α-clot.

I The set S is (α, β)-low-congested if it contains less than βK
α-congested vertices.



The essential property: low-congesting graph

{0, 1}n

each vertex has D neighbors {0, 1}k

S, |S| < 2k

α-clot

α-congested vertex

I α-clot for S is the set of all vertices having more than αD
neighbors in S .

I A vertex is α-congested if all its neighbors lie in α-clot.

I The set S is (α, β)-low-congested if it contains less than βK
α-congested vertices.



The essential property: low-congesting graph

I α-clot for S is the set of all vertices having more than αD
neighbors in S .

I A vertex is α-congested if all its neighbors lie in α-clot.

I The set S is (α, β)-low-congested if it contains less than βK
α-congested vertices.

I We call a set relevant if it has the form {x |C s(x |b) < k}.

I We call a graph (α, β)-low-congesting if all relevant sets are
(α, β)-low-congested.



How to get a low-congesting graph

I A random graph with certain parameters is an extractor with
positive probability.

I Lemma. (Buhrman, Fortnow, Laplante ’2002) In an (k ,
ε)-extractor graph any S is (2, 2ε)-low-congested.

I Hence, in an extractor any relevant set is low-congested and
the graph itself is low-congesting.

I But even the description of the graph is exponential in size, so
we cannot find it in polynomial space.

I Central idea: replace a random graph by a pseudorandom
one

I To make this idea work, we need:
I to prove that a pseudorandom graph is low-congesting with

positive probability
I to show that the seed this graph is generated from may be

found in polynomial space
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Why a pseudorandom graph fits

I We use the Nisan pseudorandom generator with polynomial
seed length and exponential output.

I It is well-known that this generator fools any circuit from AC0

I The size of a fooled circuit may be exponential since the size
of output is exponential.

I We cannot check the low-congesting property literally, but
using circuits for approximate counting we build a circuit C
such that:

I If G is (2, 2ε)-low-congesting then C (G ) = 1;
I If C (G ) = 1 then G is (2.01, 2.01ε)-low-congesting.

I This circuit accepts a random graph with sufficient probability,
hence it does the same with a pseudorandom one.
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The circuit

h1(x1) h2(x1) · · · hD(x1) h1(x2) · · · hD(x2) · · ·

≡ ≡ ≡ ≡ ≡· · · · · · · · · · · ·

Counting circuit
1, if Σinputs > 2.01D
0, if Σinputs < 2D

Counting circuit
1, if Σinputs > 2.01D
0, if Σinputs < 2D

· · ·

∧ · · ·

Counting circuit
1, if Σinputs < 2ϵK
0, if Σinputs > 2.01ϵK

∧S

S



How to get Muchnik’s theorem

I Firstly, we search for a good seed for the generator and fix it.
This search needs only polynomial space.

I If a is not congested in {x |C s(x |b) < k} then it has a
neighbor p outside the clot.

I This p satisfies all requirements.
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I There may be several iterations but since the upper bound on
the size of a relevant set decreases exponentially there is at
most linear number of steps, hence all polynomial bounds
remain.
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The final formulation

For any a and b of length n and for any s there exists p of length
C s(a|b) + O(log log s + log n) such that:

I p(b) = a;

I the computation of p(b) performs in space O(s) + poly(n)

I and CO(s)+poly(n)(p|a) = O(log log s + log n)



Summary of the technology

I Take some theorem about Kolmogorov complexity relying on
the existence of some combinatorial object

I Build a constant-depth circuit recognizing this object

I Replace a random object by a pseudorandom one

I Obtain a space-bounded version of the theorem

I ???????

I PROFIT



Summary of the technology

I Take some theorem about Kolmogorov complexity relying on
the existence of some combinatorial object

I Build a constant-depth circuit recognizing this object

I Replace a random object by a pseudorandom one

I Obtain a space-bounded version of the theorem

I ???????

I PROFIT



Summary of the technology

I Take some theorem about Kolmogorov complexity relying on
the existence of some combinatorial object

I Build a constant-depth circuit recognizing this object

I Replace a random object by a pseudorandom one

I Obtain a space-bounded version of the theorem

I ???????

I PROFIT



Summary of the technology

I Take some theorem about Kolmogorov complexity relying on
the existence of some combinatorial object

I Build a constant-depth circuit recognizing this object

I Replace a random object by a pseudorandom one

I Obtain a space-bounded version of the theorem

I ???????

I PROFIT



Summary of the technology

I Take some theorem about Kolmogorov complexity relying on
the existence of some combinatorial object

I Build a constant-depth circuit recognizing this object

I Replace a random object by a pseudorandom one

I Obtain a space-bounded version of the theorem

I ???????

I PROFIT



Thank you!
mailto:musatych@gmail.com

http://musatych.livejournal.com


