
ar
X

iv
:1

10
2.

55
38

v3
 [

cs
.D

S]
 3

 M
ar

 2
01

1

Pseudo-random graphs and bit probe schemes

with one-sided error

Andrei Romashchenko
CNRS, LIF de Marseille & IITP of RAS (Moscow)

March 4, 2011

Abstract

We study probabilistic bit-probe schemes for the membership problem.
Given a set A of at most n elements from the universe of size m we
organize such a structure that queries of type “x ∈ A?” can be answered
very quickly.

H. Buhrman, P.B. Miltersen, J. Radhakrishnan, and S. Venkatesh pro-
posed a bit-probe scheme based on expanders. Their scheme needs space
of O(n logm) bits. The scheme has a randomized algorithm processing
queries; it needs to read only one randomly chosen bit from the memory
to answer a query. For every x the answer is correct with high probability
(with two-sided errors).

In this paper we show that for the same problem there exists a bit-
probe scheme with one-sided error that needs space of O(n log2 m +
poly(logm)) bits. The difference with the model of Buhrman, Miltersen,
Radhakrishnan, and Venkatesh is that we consider a bit-probe scheme
with an auxiliary word. This means that in our scheme the memory is
split into two parts of different size: the main storage of O(n log2 m) bits
and a short word of logO(1)

m bits that is pre-computed once for the stored
set A and “cached”. To answer a query “x ∈ A?” we allow to read the
whole cached word and only one bit from the main storage. For some rea-
sonable values of parameters (e.g., for poly(logm) ≪ n ≪ m) our space
bound is better than what can be achieved by any scheme without cached

data (the lower bound Ω(n
2 logm

log n
) was proven in [15]).

We obtain a slightly weaker result (space of size n
1+δpoly(logm) bits

and two bit probes for every query) for a scheme that is effectively encod-
able.

Our construction is based on the idea of naive derandomization, which
is of independent interest. First we prove that a random combinatorial
object (a graph) has the required properties, and then show that such
a graph can be obtained as an outcome of a pseudo-random generator.
Thus, a suitable graph can be specified by a short seed of a PRG, and we
can put an appropriate value of the seed into the cache memory of the
scheme.

1

http://arxiv.org/abs/1102.5538v3

1 Introduction

We investigate the static version of the membership problem. The aim is to
represent a set A ⊂ {1, . . . ,m} by some data structure so that queries “x ∈
A?” can be easily replied. We are interested in cases when the number of
elements in the set n = |A| is much less than size m of the universe (e.g.,
n = exp{poly(log logm)} or n = m0.01).

In practice, many different data structures are used to represent sets: simple
arrays, different variants of height-balanced trees, hash tables, etc. The simplest
solution is an array of m bits; to answer a query “x ∈ A?” we need to read a
single bit from the memory. However, the size of this data structure is exces-
sive. In a more complicated data structure based on double hashing (Fredman,
Komlós, and Szemerédi, [6]) a set is represented as a table of O(n) words of size
logm bits, and a query “x ∈ A?” requires to read O(1) words from the memory.
Another popular practical solution is Bloom’s filter [1]. This data structure re-
quires only O(n) bits, whatever is the size of the universe; to answer a query
we need to read O(1) bits from the memory. The drawback of this method is
that we can get false answers to some queries. Only false positives answers are
possible (for some x 6∈ A Bloom’s filter answers “yes”), but false negatives are
not. For a “typical” set A the fraction of false answers is small.

An interesting approach was suggested by Harry Buhrman, Peter Bro Mil-
tersen, Jaikumar Radhakrishnan, and Venkatesh Srinivasan [15]. They intro-
duced some randomness into the query processing algorithm. That is, the data
structure remains static (it is deterministically defined for each set A), but
when a query is processed we a toss coins and read randomly chosen bit from
the memory. In this model, we allow to return a wrong answer with some small
probability. Notice the sharp difference with the Bloom’s filter: for each x we
must correctly reply to the query “x ∈ A?” with probability close to 1.

Buhrman, Miltersen, Radhakrishnan, and Venkatesh investigated both two-
sided and one-sided errors. In this paper we will concentrate mostly on one-sided
errors: if x ∈ A, then the answer must be always correct, and if x 6∈ A, then
some small probability of error is allowed.

A trivial information-theoretic bound shows that the size of the structure
representing a set A cannot be less that log

(

m
n

)

= Ω(n logm) bits. Surprisingly,
this bound can be achieved if we allow two-sided errors and use only single bit
probe for each query. This result was proven in [15]. We refer to the scheme
proposed their as the BMRV-scheme:

Theorem 1 (two-sided BMRV-scheme, [15]) For any ε > 0 there is a

scheme for storing subsets A of size at most n of a universe of size m using

O(n
ε2 logm) bits so that any membership query “Is x ∈ A?” can be answered

with error probability less than ε by a randomized algorithm which probes the

memory at just one location determined by its coin tosses and the query element

x.

The bound achieved in this theorem is very close to the known lower bound. In
fact, the trivial lower bound log

(

m
n

)

can be improved: the less is probability of

2

an error, the greater must be the stored bit vector. For one-sided error schemes
a stronger lower bound is known:

Theorem 2 (lower bound, [15]) (a) For any ε > 0 and n
ε < m1/3, any ε-

error randomized scheme which answers queries using one bitprobe must use

space Ω(n
ε log 1/ε logm).

(b) Any scheme with one-sided error ε that answers queries using at most

one bitprobe must use Ω(n2

ε2 log(n/ε) logm) bits of storage.

The second part of the theorem above implies that we cannot achieve space of
size O(n logm) with a one probe scheme and one-sided error. However we can
get very close if we allow O(1) probes (instead of a single probe):

Theorem 3 (one-sided BMRV-scheme, [15]) Fix any δ > 0. There exists

a constant t such that the following holds: there is a one-sided 1
3 -error random-

ized scheme that uses space O(n1+δ logm) and answers membership queries with

at most t probes.

The constructions in [15] is not explicit: given the list of elements A, the
corresponding scheme is constructed (with some brute force search) in time
2poly(m). Moreover, each membership query requires exponential in m compu-
tations.

The crucial element of the constructions in Theorem 1 is an unbalanced
expander graph. Existence of a graph with required parameters was proven
in [15] probabilistically. We know that such a graph exists and we can find it
by brute force search, but we do not know how to construct it explicitly. Since
Bassalygo and Pinsker defined expanders [2, 3], many explicit (and poly-time
computable) constructions of expander graphs were discovered, see a survey [19].
However, most of known constructions are based on spectral technique that is
not suitable to get an expander of degree d with expansion parameter greater
than d/2, see [12]. This is not enough for the construction used in the proof of
Theorem 1 in [15]; we need there a graph with expansion parameter close to d.

There are only very few effective constructions of unbalanced graph with
large expansion parameter. One of the known constructions was suggested by
Capalbo et al in [16]; its parameters are close to optimal values if the size of the
right part of the graph is constant times less than the size of the left part of the
graph. However, in the BMRV-scheme we need a graph where the right part of
the graph is much less than the left part. Some explicit construction suitable for
BMRV-scheme was suggested in [18]. The best known explicit construction of
a highly unbalanced expander graph was presented in [22]. This beautiful con-
struction is based on the Parvaresh–Vardy code with an efficient list decoding.
Thanks to the special structure if this expander, it enjoys some special property
of effective decoding. Using this technique, the following variant of Theorem 1
can be proven:

Theorem 4 ([22]) For any δ > 0 there exists a scheme for storing subset A
of size at most n of a universe of size m using n1+δ · poly(logm) bits so that

3

any membership query can be answered with error probability less than ε by a

randomized algorithm which probes the memory at one location determined by

its coin tosses and the query element x.
Given the list of elements A, the corresponding storing scheme can be con-

structed in time poly(logm,n). When the storing scheme is constructed, a query

for an element x can be calculated in time poly(logm).

In Theorems 1, 3, 4, a set A is encoded into a bit string, and when we
want to know if x ∈ A, we just read from this string one randomly chosen bit
(or O(1) bits in Theorem 3). The obtained information is enough to decide
whether x is an element of the set. Let us notice that in all these computations
we implicitly use more information. To make a query to the scheme and to
process the retrieved bit, we need to know the parameters of the scheme: the
size n of the set A, the size m of the universe, and the allowed error probability
ε. This auxiliary information is very short (it takes only log(m/ε) bits). It does
not depend on the stored set A. We assume that it is somehow hardwired into
the bitprobe scheme (we say that this information is cached in advance by the
algorithms that processes queries).

In this paper we consider a more liberal model, where small cached informa-
tion can depend on the set A. Technically, the date stored in our scheme consists
of two parts of different size: a small cached string C of length poly(logm), and
a long bit string B of length n · poly log(m). Both these strings are prepared
for a given set A of n elements (in the universe of size m). When we need to
answer a query “x ∈ A?”, we use C to compute probabilistically a position in
B and read there one bit. This is enough to answer whether x is an element of
A, with a small one-sided error:

Theorem 5 Fix any constant ε > 0. There exists a one-sided ε-error random-

ized scheme that includes a string B of length O(n log2 m) and an auxiliary word

C of length poly(logm). We can answer membership queries “x ∈ A?” with

one bit probe to B. For x ∈ A the answer is always correct; for each x 6∈ A
probability of error is less than ε.

The position of the bit probed in A is computed from x and the auxiliary

word C in time poly(logm).

Remark 1: Schemes with ‘cached’ auxiliary information that depends on A
(not only on its size n = |A| and the size m of the universe) makes sense
only if this information is very small. If the size of the cached data is about
log

(

m
n

)

bits, then we can put there the list of all elements of A, so the problem
becomes trivial. Since in our construction we need cached information of size
poly(logm) bits, the result is interesting when poly(logm) ≪ n ≪ m, e.g., for
n = exp{poly(log logn)}. Notice that by Theorem 2 the space size O(n log2 m)
with one-sided error cannot be achieved by any schemes without cached auxiliary
information that depends on A.

Remark 2: The model of data structures with cached memory looks useful for
practical applications. Indeed, most computer systems contain some hierarchy

4

of memory levels: CPU registers and several levels of processor caches, then ran-
dom access memory, flash memory, magnetic disks, remote network-accessible
drives, etc. Each next level of memory is cheaper but slower.

So, it is interesting to investigate the tradeoff between expensive and fast
local memory and cheap and slow external memory. There is rich literature
on algorithms with external memory, see, e.g, surveys [14, 20]. Thus, the idea
of splitting the data structure into ‘cached’ and ‘remote’ parts is very natural.
However, tradeoff between local and external memory is typically studied for
dynamic data structures. The same time, it is not obvious that fast cache
memory of negligible size can help to process queries in a static data structure.
Since a small cache ‘knows’ virtually nothing about most objects in the database,
so at first sight is seems to be useless. However, Theorem 5 shows that even a
very small cache can be surprisingly efficient.

Remark 3: In the proof of Theorem 5 we derandomize a probabilistic proof
of existence of some kind of expander graphs. In many works derandomization
of probabilistic arguments involves highly sophisticated ad-hoc techniques. But
we do derandomization in rather naive and straightforward way: take a value
of a suitable pseudo-random number generator and check that with high prob-
ability (i.e., for most values of the seed) we obtain the required property. In
fact, we observe that several types of generators fit our construction. Since the
required property of a graph can be tested in AC0, we can use the classic Nisan–
Wigderson generator or (thanks to the recent result of Braverman [21]) any
polylog-independent function. Also the required property of a pseudo-random
graph can be tested by a machine with logarithmic space. Hence, we can use
Nisan’s generator [10]. We stress that we do not need any unproven assumptions
to construct all these generators.

Somewhat nonconventional part of our construction is that we consider a
‘local’ variant of the definition of expanders: we require that the usual expansion
property holds not for all sets of vertices but only for one particular set A.
This modification makes the property of the expander graph weaker, and this
relaxation helps to derandomize the construction.

In Theorem 5 we construct a scheme such that decoding is effective: when
the scheme is prepared, we can answer queries “x ∈ A?” in time polynomial in
logm. However the encoding (preparing the bits string and the auxiliary word)
runs in expected time poly(m), which is much longer if m ≫ n. Next theorem
claims that the encoding time can be reduced if we slightly increase the space
of the scheme:

Theorem 6 The scheme from theorem 5 can be made effectively encodable in

the following sense. Fix any constants ε, δ > 0. There exists randomized scheme

that includes a bit string B of length n1+δpoly(logm) and an auxiliary word C
of length poly(logm). We can answer membership queries “x ∈ A?” with two

bits probe to B. For x ∈ A the answer is always correct; for x 6∈ A probability

of error is less than ε.

5

The position of the bit probed in A is computed by x and the auxiliary word

C in time poly log(m). Given A, the entire scheme (the string B and the word

C) can be computed probabilistically in average time poly(n, logm).

The rest of the paper is organized as follows. In Section 2 we remind the main
ideas in the BMRV-scheme. We prove Theorem 5 in Section 3, and Theorem 6
in Section 4. In Section 5 we show that the proof of Theorem 2 (a) mutatis
mutandis can be applied to the model with small cached memory. In Conclusion
we discuss some open questions.

2 How BMRV-scheme works

Let us explain the main ideas of the proof of Theorem 1 in [15]. The construction
is based on highly unbalanced expanders.

Definition 1 A bipartite graph G = (L,R,E) (with left part L, right part R
and set of edges E) is called (m, s, d, k, δ)-expander if L consists of m vertices,

R consists of s vertices, degree of each vertex in L is equal to d, and for each

subset of vertices A ⊂ L of size at most k the number of neighbors is at least

(1− δ)d|A|.

We use a standard notation: for a vertex v we denote by Γ(v) the set of its
neighbors; for a set of vertices A we denote by Γ(A) the set of neighbors of A,
i.e., Γ(A) = ∪v∈AΓ(v). So, the definition of expanders claims that for all small
enough sets A of vertices in the left part of the graph, |Γ(A)| ≥ (1 − δ)d|A|
(the maximal size of |Γ(A)| is obviously d|A|, since degree of all vertices on the
left is equal to d). The argument below is based on the following combinatorial
property of an expander:

Lemma 1 (see [16]) Let ε be a positive number, and G be an (m, s, d, k, δ)-
expander with δ ≤ ε/4. Then for every subset A ⊂ L such that |A| ≤ k/2, the
number of vertices x ∈ L \A such that

|Γ(x) ∩ Γ(A)| ≥ εd

is not greater than |A|/2.

Let G be a (m, s, d, k, δ)-expander with δ < ε/4. The storage scheme is defined
as follows. We identify a set A ⊂ {1, . . . ,m} of size n (n ≤ k/2) with a subset of
vertices in the left part of the graph. We will represent it by some labeling (by
ones and zeros) on the vertices of the right part of the graph. We do it in such a
way that the vast majority (at least (1− ε)d) of neighbors of each vertex v from
the left part of the graph correctly indicate whether v ∈ A. More precisely, if
v ∈ A then at least (1 − ε)d of its neighbors in R are labeled by 1; if v ∈ L \A
then at least (1 − ε)d of its neighbors in R are labeled by 0. Thus, querying a
random neighbor of v will return the right answer with probability > 1− ε.

6

It remains to explain why such a labeling exists. In fact, it can be constructed
by a simple greedy algorithm. First, we label all neighbors of A by 1, and the
other vertices on the left by 0. This labeling classifies correctly all vertices in
A. But it can misclassify some vertices outside A: some vertices in L \ A can
have too many (more than εd) neighbors labeled by 1. Denote by B the set of
all these “erroneous” vertices. We relabel all their neighbors, i.e., all vertices
in Γ(B) to 0. This fixes the problem with vertices outside A, but it can create
problems with some vertices in A. We take the set of all vertices in A that
became erroneous (i.e., vertices in A that have at least εd neighbors in Γ(B)),
and denote this set of vertices by A′. Then we relabel all Γ(A′) to 1. This
operation create new problems in some set of vertices B′ ⊂ B, relabel Γ(B′) to
0, etc. In this iterative procedure we get a sequence of sets

A ⊃ A′ ⊃ A′′ ⊃ . . .

whose neighbors are relabeled to 1 on steps 1, 3, 5, . . . of the algorithm, and

B ⊃ B′ ⊃ B′′ ⊃ . . .

whose neighbors are relabeled to 0 on iterations 2, 4, 6, . . . respectively. Lemma 1
guarantees that the number of the erroneous vertices on each iteration reduces
by a factor of 2 (|B| ≤ |A|/2, |A′| ≤ |B|/2, etc.). Hence, in logm steps the
procedure terminates.

To organize a storing scheme (and to estimate its size) for a set A of size
n in the universe of size m, we should construct an (m, s, d, k = 2n, δ = ε/4)-
expander. Parameters m, k, δ of the graph are determined directly by the pa-
rameters of the desired scheme (by the size of A and the universe and the
allowed error probability ε). We want to minimize the size of the left part of
the graph s, which is the size of the stored data. Existence of expanders with
good parameters can be proven by probabilistic arguments:

Lemma 2 ([15]) For all integers m,n and real ε > 0 there exists an (m, s =
O(n logm

ε2), d = logm
ε , n, ε)-expander. Moreover, the vast majority of bipartite

graphs with n vertices on the left, s = 100n logm
ε2 vertices on the right, and degree

d = logm
ε at all vertices on the left are expanders.

Given the parametersm,n, ε, we can find an (m,O(n logm
ε2), logm

ε , n, ε)-expander
by brute force search. This can be done by a deterministic algorithm in time
2poly(m/ε). Hence, to construct the bit-probe structure defined above we need
exponential time. Moreover, when the structure is constructed and we want to
answer a query “x ∈ A?” we need to read only one bit from the stored bit string.
But to select the position of this bit we need again to reconstruct the expander
graph, which requires exponential computations. We can keep the structure of
the computed graph in “cache” (compute the graph once, and then re-use it
every time a new query should be answered). But then the size of this “cached
data” (the size of the graph) becomes much greater than m, which makes the
bit-probe scheme useless (it is cheaper to store A as a trivial m-bits array).

7

In [22] a nice and very powerful explicit construction of expanders was sug-
gested:

Theorem 7 ([22]) Fix an ε > 0 and δ > 0. For all integers m,n there exists

an explicit (m, s = n1+δ · poly(logm), d = poly(logm), n, ε)-expander such that

for an index of a vertex v from the left part (a binary representation of an integer

between 1 and m) and an index of an outgoing edge (a binary representation

of an integer between 1 and d), the corresponding neighbor on the right part of

the graph (an integer between 1 and s) can be computed in time polynomial in

logm.

Also, the following effective decoding algorithm exists. Given a set of vertices

T from the right part of the graph, we can compute the list of vertices in the left

part of the graph that have at least (4εd) neighbors in T , i.e.,

S = {v : |Γ(v) ∩ T | ≥ 4εd},

in time poly(|S|, n, logm).

Theorem 4 is proven by plugging the expander from Theorem 7 in the general
scheme explained above, see details in [22].

3 Proof of Theorem 5

3.1 Refinement of the property of ε-reduction

The construction of bit-probe scheme for a set A of size n in the m-elements
universe (with probability of an error bounded by some ε) explained in the
previous section involves an (m, s, d, k, δ)-expander with s = O(n

ε2 logm) and
d = O(1ε logm). Such a graph contains dm edges (degree of each vertex on the
left is d). The list of all its edges can be specified by a string of dm log s bits: we
sort all edges by their left ends, and specify for each edge its right end. Denote
the size of the description of this graph by N = dm log s.

In what follows we will assume that number s is a power of 2 (this will
increase the parameters of the graph by only a factor at most 2). So, we
may assume that every string of N(m, s, d) = dm log s bits specifies a bipar-
tite graph with m vertices on the left, s vertices on the right and degree d on
the left. Lemma 2 claims that most of these bits string of length N describe
an (m, s, d, k, δ)-expander. By Lemma 1, if a graph is an expander with these
parameters, then for ε = 4δ and for every set A ⊂ L of size less than k/2 the
following reduction property holds:

Combinatorial Property 1 (ε-reduction property) For every subset A ⊂
L such that |A| ≤ k/2, the number of vertices x ∈ L \A such that

|Γ(x) ∩ Γ(A)| ≥ εd

is not greater than |A|/2.

8

This property was the main ingredient of the BMRV-scheme. In our bit-probe
scheme we will need another variant of Property 1:

Combinatorial Property 2 (strong ε-reduction) Let G = (L,R,E) be a

bipartite graph, and A ⊂ L be a subset of vertices from the left part. We say

that the strong ε-reduction property holds for A in this graph if for all x ∈ L\A

|Γ(x) ∩ Γ(A)| ≤ εd.

Lemma 3 Fix an ε > 0. For all integers m,n, for every A ⊂ {1, . . . ,m} of

size n there exists a bi-partite graph G = (L,R,E) such that

• |L| = m (the size of the left part);

• |R| = 2d2n = O(n log2 m) (the size of the right part);

• degree of each vertex in the left part is d = 2 logm
ε = O(logm);

• the property of strong ε-reduction holds for the set A (we identify it with

a subset of vertices in left part of the graph).

Moreover, the property of strong ε-reduction for A holds for the majority of

graphs with the parameters specified above.

The order of quantifiers is important here: we do not claim that in a random
graph the strong ε-reduction property holds for all A; we say only that for every
A the strong ε-reduction is true in a random graph.

Proof of lemma: Let v be any vertex in L \A. We estimate probability that
at least εd neighbors of x are at the same time neighbors of A (assuming that
all edges are chosen at random independently). There are

(

d
εd

)

choices of εd
vertices among all neighbors of v. Hence,

Prob[|Γ(v) ∩ Γ(A)| ≥ εd] ≤
(

d

εd

)

·
(|Γ(A)|

|R|

)εd

≤ dεd ·
(

dn

2d2n

)εd

=

(

1

2

)2 logm

This probability is less than 1/m2 (for each vertex v). So, the expected number
of vertices v ∈ L such that |Γ(v) ∩ Γ(A)| ≥ εd, is less than 1/m < 1/2. Hence,
the strong ε-reduction property holds for A for more than 50% of graphs.

3.2 Testing the property of strong ε-reduction

Lemma 3 implies that a graph with the strong reduction property for A exists.
Given A, we can find such a graph by brute force search. But we cannot use
such a graph in our bit-probe scheme even if we do not care about computation
complexity: the choice of the graph depends on A, and the size of the graph is
too large to include it into the scheme. We need to find a suitable graph with
a short description. We will do it using pseudo-random generators (‘random’
graphs will be parameterized by the seed of a generator).

9

Property 2 is a property of a graph and a set of vertices A in graph. We
can interpreted it as a property of an N -bits string (that determines a graph)
and some A ⊂ {1, . . . ,m}. Lemma 3 claims that for every A, for a randomly
chosen graph (a randomly chosenN -bits string) with high probability the strong
reduction property is true. We want to show that the same is true for a pseudo-

random graph. At first, we observe that the strong reduction property can be
tested by an AC0 circuit (a Boolean circuit of bounded depth, with polynomial
number of gates and, or with unbounded fan-in, and negations).

Indeed, we need to check for each vertex v ∈ L \ A that the number of
vertices in Γ(v) ∩ Γ(A) is not large. For each vertex w in the right part of the
graph we can compute by an AC0-circuit whether w ∈ Γ(A):

∨

u∈A

∨

i≤d

[the i-th neighbor of u is w]

(the condition in the square brackets is a statement on one edge in a graph, i.e., it
is a conjunction of O(logN) bits and negations of bits from the representation
of this graph). So, for each v ∈ L \ A and for i = 1, . . . , d we can compute
whether the i-th neighbor of v belongs to Γ(A):

bv,i =
∨

w∈R

([the i-th neighbor of v is w] & [w ∈ Γ(A)])

It remains to ‘count’ for each v ∈ L \ A the number of neighbors in Γ(A) and
compute the thresholds

Th(bv,1, . . . , bv,d) =

{

1, if bv,1 + · · ·+ bv,d ≥ εd,
0, otherwise.

In AC0 we cannot compute thresholds with linear number of inputs (e.g., the
majority function is not in AC0, see [8]). However, we need threshold functions
with only logarithmic number of inputs. Such a function can be represented by
a CNF of size 2O(d) = poly(N).

Then we combine together these thresholds for all v ∈ L \ A, and get an
AC0-circuit that tests the property of strong ε-reduction.

3.3 Pseudo-random graphs

We need to generate a pseudo-random string of N bits that satisfies the strong
ε-reduction property (for some fixed set A). We know that (i) by Lemma 3, for a
uniformly distributed random string this property is true with high probability,
and (ii) this property can be checked in AC0. It remains to choose a pseudo
random generator that fools this particular AC0-circuit. There exist several
generators that fools such distinguishers. Below we mention three different
solutions.

Remark: We can test by an AC0-circuit Property 2 for every fixed set A but
not for all sets A together.

10

The first solution: the generator of Nisan–Wigderson. The classic way to fool
an AC0 circuit is the Nisan–Wigderson generator:

Theorem 8 (Nisan–Wigderson generator, [11]) For every constant c there
exists an explicit family of functions

Gm : {0, 1}poly(logN) → {0, 1}N

such that for for any family of circuits CN (with N inputs) of polynomial in N
size and depth c, the difference

|Proby[CN (y) = 1]− Probz [CN (Gm(z)) = 1]|

tends to zero (faster than 1/poly(N)).
The generator is effective: generator’s value Gm(x) can be computed from a

given x in time poly(logN).

From this theorem and Lemma 3 it follows that for each A ⊂ {1, . . . ,m} of size
at most n, for most values of the seed of the Nisan–Wigderson generator Gm, a
pseudo-random graph Gm(x) satisfies the strong ε-expansion property for A.

The second solution: polylog-independent strings. M. Braverman proves that all
polylog-independent functions fool AC0-circuits:

Theorem 9 (Braverman, [21]) Let C be a Boolean circuit of depth r and size

M , ε be a positive number, and

D =

(

log
M

ε

)κr2

(for some absolute constant κ). Then C cannot distinguish between the uniform

distribution U and any D-independent distribution µ on its inputs:

|Probµ[C accepts]− ProbU [C accepts]| < ε

It follows that instead of the Nisan–Wigderson generator we can take any
(logc n)-independent function (for large enough constant c). The standard so-
lution is a polynomial of degree r = logc n over a finite field of size about N
(seeds of this ‘pseudo-random generator’ are coefficients of a polynomial). Al-
ternatively, other constructions of polylog-independent functions can be used.
E.g., the construction from [9, 13] provides a family of (logc n)-independent
functions with very fast evaluation algorithm, and each function is specified by
poly(logn) bits (so, the size of the seed is again poly-logarithmic).

The third solution: the generator of Nisan. The property of strong ε-reduction
can be tested by a Turing machine with logarithmic working space. Technically
we need a machine with

• advice tape: read-only, two-way tape, where the list of elements of A is
written;

11

• input tape: read-only tape with random (or pseudo-random) bits, with
logarithmic number of passes (the machine is allowed to pass along the
input on this tape only O(logN) times);

• index tape: read-only, two-way tape with logarithmic additional informa-
tion;

• work tape that is two-way and read-write; the zone of the working tape is
restricted to O(logN).

We interpret the content of the input tape as a list of edges of a random (or
pseudo-random) graph G = (L,R). The content of the index tape is understood
as an index of a vertex v ∈ L \ A. The machine reads the bits from the ‘input
tape’ (understood as a list of edges of a random graph) and checks that the vast
majority of neighbors of v does not belong to the set of neighbors of A. The
machine needs to read the input tape 2d = O(logN) times (where d is degree of
v): on the first pass we find the index of the first neighbor of v; on the second
pass we check whether this neighbor of v is incident to any vertex of A; then
we find the second neighbor of v, check whether it is is incident to any vertex
of A, etc. The machine accepts the input if |Γ(v) ∩ Γ(A)| < εd.

We can use Nisan’s generator [10] to fool this machine. Indeed, this checking
procedure fits the general framework of [17], where Nisans generator was used
to derandomize several combinatorial constructions. The only nonconventional
feature in our argument is that the input tape is not read-once: we allow to
read the tape with random bits logarithmic number of times1. We still can
apply Nisan’s technique for a machine that reads random bits several times.
David, Papakonstantinou, and Sidiropoulos observed (see [24]) that a log-space
machine with logarithmic (and even poly-logarithmic) number of passes on the
input tape is fooled by Nisan’s generator with a seed of size poly(logN).

Now we are ready to prove Theorem 5. We fix an ε > 0 and a set A ⊂
{1, . . . ,m} of size m. Let Gm be one of the pseudo-random generators discussed
above. For all these generators, for most values of the seed z the values Gm(z)
encodes a graph such that the strong ε-reduction property holds for A. Let us
fix one of such seeds. We label by 1 all vertices in Γ(A) and by 0 all other
vertices in R in the graph encoded by the string Gm(z).

The seed value z makes the “auxiliary word” C, and the specified above
labeling of the right part of the graph makes the bit string B. To answer a
query “x ∈ A?” we take a random neighbor of x in the graph and check its
label. If the label is 1, we answer “x ∈ A”; otherwise we answer x 6∈ A.

If x ∈ A then there are no errors, since all neighbors of A are labeled by
1. If x 6∈ A then probability of an error is bounded by ε because of the strong
ε-reduction property. We can answer a query in polynomial (in logm) time
since the generators under consideration are effectively computable.

1The same argument can be presented in a more standard framework, with a read-once

input tape and an index tape of poly-logarithmic size. However, we believe that the argument

becomes more intuitive when we allow many passes on the input tape.

12

3.4 Complexity of encoding

The disadvantage of this construction is non-effective encoding procedure. We
know that for most seeds z the corresponding graph Gm(z) enjoys the strong
ε-reduction property. However, we need the brute force search over all vertices
v ∈ L \ A (polynomial in m but not in logm) to check this property for any
particular seed. Thus, we have a probabilistic encoding procedure that runs in
expected time poly(m): we choose random seeds until we find one suitable for
the given A.

In the next section we explain how to make the encoding procedure more
effective (in expected time poly(n, logm)) for the following price: we will need
a slightly greater size of the data storage, and we will take 2 bit probes instead
of one at each query.

4 Proof of theorem 6: effective encoding

To obtain a scheme with effective encoding and decoding we combine two con-
structions: the explicit expander from [22] and a pseudo-random graph from
the previous section.

We fix an n-element set A in the universe {1, . . . ,m}. Now we construct
two bipartite graphs that share the same left part L = {1, . . . ,m}. The first
graph is the explicit (m, s = n1+δ · poly(logm), d = poly(logm), n, ε)-expander
G1 = (L,R1, E1) from [22] with an effective decoding algorithm. We do the
first two steps from the encoding procedure of the BMRV-scheme explained in
Section 2. At first we label all vertices in Γ(A) by 1 and other vertices by 0.
Denote the corresponding labeling (which is a n1+δ · poly(logm)-bits string) by
C1. Then we find the list of vertices outside A that have too many 1-labeled
neighbors:

B := {v ∈ L \A : |Γ(x) ∩ Γ(A)| ≥ εd}.
We do not re-label neighbors of B, but we will use this set later (to find B
effectively, we need the property of effective decoding of the graph).

Let v ∈ L be a vertex in the left part of the graph. There are three different
cases:

• if v belongs to A then all neighbors of v are labeled by 1;

• if v does not belong to A∪B, then a random neighbor of x with probability
> (1− ε)d is labeled by 0;

• if v belongs to B, we cannot say anything about the vast majority of its
neighbors.

Thus, if we take a random neighbor of v and see label 0 in C1 then we can
say that this point does not belong to A. If we see label 1 then more detailed
investigation is needed. This investigation will involve the second part C2 of
the scheme defined below.

13

Now our goal is to distinguish between A and B. To this end we take a
pseudo-random graph G2 = (L,R2, E2) specified by a value of a pseudo-random
generator Gm(z) (any one from the previous section). We need a restricted on

B version of the strong ε-reduction property:

For every v ∈ B, at most εd vertices in Γ(v) belong to Γ(A).

Set B is of size at most |A|/2 (Lemma 1), and it can be effectively computed
from A (effective decoding property of the graph). Hence, for a given z we can
check the property above in time poly(n, logm). We know that for the majority
of seeds z the graph Gm(z) satisfies the strong ε-reduction property, i.e., all
vertices outside A have at most εd neighbors in Γ(A). We cannot effectively
check this general property (we cannot check it for all vertices in the universe),
but we can check its restricted version (i.e., only for vertices in B).

Thus, in average time poly(n, logm) we can probabilistically find some seed
x such that the restricted (on B) version of the strong ε-reduction property is
true. In the corresponding graph we denote by 1 all vertices in Γ(A), and by 0
all vertices of the right part of the graph outside Γ(A). We denote this labeling
(a O(m log2 n)-bits string) by C2 and take it as the second part of the data
storage. The seed value x is taken as ‘cached’ memory.

The decoding procedure works as follows. Given x ∈ {1, . . . ,m}, we take its
random neighbor in both constructed graphs and look at their labels (bits from
C1 and C2 respectively).

• if the first label is 0, we say that x 6∈ S;

• if the first label is 1 and the second bit is 0 then we say that x 6∈ S.

• if both labels are is 1 then we say that x ∈ S.

If x 6∈ A ∪ B then by definition of B we get that the procedure above with
probability > (1− ε) returns the correct answer. If x ∈ A then by construction
both labels are equal to 1. If x ∈ B, then we have no guarantee about labels
in C1; but from the restricted strong reducibility property it follows that with
probability > (1 − ε) the second label is 0. Thus, we have one-sided error
probability bounded by ε.

5 A lower bound for schemes with cached mem-

ory

In [15] the lower bound Ω(n2 logm) was proven for one-probe schemes with
one-sided errors. This result cannot be applied to schemes with small “cached”
memory dependent on A. In fact, our scheme of size Ω(n logm) with a cache of

size poly(logm) bits (from Theorem 5) is below this bound for n ≫ logO(1) m.
On the other hand, the proof of the lower bound Ω(n

ε log(1/ε) logm) (theo-

rem 2 in [15]) with minimal changes works for schemes with cached data if the
size of the pre-computed and cached information is much less than n logm:

14

Theorem 10 We consider randomized schemes that store sets of n elements

from a universe of size m, with two-parts memory (the cached memory of size

poly(logm) and the main storage).
For all constant ε < 1, if poly(logm) ≪ n ≪ 3

√
m, then any such scheme

with error probability ε (possibly with two-sided errors) that answers queries

using cached memory of size poly log(m) and one bit probe to the main storage,

must use space Ω(n
ε log(1/ε) logm).

Proof: We follow the arguments from theorem 2 in [15] (preserving the
notation). Consider any randomized scheme with two-parts memory. Denote
by C the cached memory (of size poly(logm)) and by B the main part of the
memory of size s (the scheme answers queries with one bit probe to C). Our
aim is to prove a lower bound for s.

The proof is based on the bound for the size of cover-free families of sets
proven by Dyachkov an Rykov [4]. Let us remind that a family of sets F is
called called r-cover-free if f0 6⊆ f1 ∪ . . . ∪ fr for all distinct f0, . . . , fr ∈ F .

First we take a large enough 1
ε -cover free family F of sets of size n from the

universe {1, . . . ,m}. The construction from [7, theorem 3.1] guarantees that
there exists a family F such that

|F | ≥
(

m
εn

)

(

n
εn

)2 = 2εn log m

n
2
+O(logm).

By assumption, each set f ∈ F can be represented in our scheme by some pair
(B,C) (the main storage and the cached memory). Notice that

|F | = 2εn log m

n
2
+O(logm) ≫ 2|B| = 2poly(logm).

Hence, the exists some value C and some F ′ ⊂ F of size

|F ′| ≥ |F |/2poly(logm) = 2Ω(εn logm).

such that all sets from the family F ′ share in our scheme the same value C of
the cached memory. Further we repeat word for word the proof of theorem 2
from [15] with substitute F ′ instead of F .

6 Conclusion

In this paper we constructed an effective probabilistic bit-probe scheme with
one-sided error. The used space is close to the trivial information-theoretic
lower bound Ω(n logm). The scheme answers queries ‘x ∈ A?’ with a small
one-sided error and requires only poly-logarithmic (in the size of the universe)
cached memory and one bit (two bits in the version with effective encoding)
from the main part of the memory.

For reasonable values of parameters (for n ≫ poly(logm)) the size of our
scheme O(n log2 m) with a cache of size poly(logm) is below the lower bound

15

Ω(n2 logm) proven in [15] for one-probe schemes with one-sided errors without
cached data dependent on A. The gap between our upper bounds and the trivial
lower bound is a (logm)-factor.

The following questions remain open: How to construct a bit-probe memory
scheme with one-sided error and effective encoding and decoding that requires
to read only one bit from the main part of memory to answer queries? What
is the minimal size of the cached memory required for a bit-probe scheme with
one-sided error, with space of size O(n logm)?

The author thanks Daniil Musatov for useful discussions, and anonymous ref-
erees of the conference CSR 2011 for deep and very helpful comments.

References

[1] B. Bloom. Space-time trade-offs in hash coding with allowable errors. Com-
munications of ACM, pages 13(7) July 1970, pp. 422–426.

[2] M. S. Pinsker. On the complexity of a concentrator. In 7th International
Telegrafc Conference, 1973, pp. 318/1–318/4.

[3] L. A. Bassalygo and M. S. Pinsker. The complexity of an optimal non-
blocking commutation scheme without reorganization. Problems of Infor-
mation Transmission, 9 (1974) pp. 64–66.

[4] A.G. Dyachkov and V.V. Rykov. Bounds on the length of disjunctive codes.
Problems of information transmission, 18, No. 3 (1982), pp. 7–13.

[5] A.K. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility.
SIAM Journal on Computing, 13 (1984) pp. 423–429.

[6] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with
O(1) worst case access time. Journal of the Association for Computing
Machinery, 31(3), 1984, pp. 538–544.

[7] P. Erdös, P. Frankl, and Z. Füredi. Families of nite sets in which no set is
covered by the union of r others. Israel Journal of Mathematics, 51, 1985,
pp. 79–89.

[8] J. H̊astad. Almost optimal lower bounds for small depth circuits. Proc. of
18th ACM STOC, 1986, pp. 6–20.

[9] A. Siegel. On universal classes of fast high performance hash functions, their
time-space trade-off, and their applications. Proc. of 30th IEEE FOCS,
1989, pp. 20–25.

[10] N. Nisan. Pseudorandom generators for space-bounded computation. Com-
binatorica, 12(4), 1992, pp. 449–461. Preliminary version: STOC 1990.

16

[11] N. Nisan, A. Wigderson, Hardness vs Randomness. J. Comput. Syst. Sci.
49(2), 1994, pp. 149–167.

[12] N. Kahale. Eigenvalues and expansion of regular graphs. Journal of the
ACM, 42(5), 1995, pp. 1091–1106.

[13] A. Siegel. On universal classes of extremely random constant time hash
functions and their time-space tradeoff. Technical Report TR1995-684,
Courant Institute, New York University, April 1995.

[14] J.S. Vitter. External memory algorithms and data structures. ACM Com-
put. Surv. 33(2), 2001, pp. 209–271.

[15] Harry Buhrman, Peter Bro Miltersen, Jaikumar Radhakrishnan, Venkatesh
Srinivasan, Are bitvectors optimal? Siam J. on Computing 31(6), 2002,
pp. 1723–1744. Preliminary version: in Proc. of STOC 2000, pp. 449–458.

[16] M.R. Capalbo, O. Reingold, S.P. Vadhan, A. Wigderson. Randomness Con-
ductors and Constant-Degree Lossless Expanders. In Proc. of the 34th ACM
STOC, pp. 659–668.

[17] D. Sivakumar. Algorithmic derandomization via complexity theory. In
Proc. ACM STOC 2002, pp. 619–626.

[18] Ammon Ta-Schma. Storing information with extractors. Information Pro-
cessing Letters 83 (2002) pp. 267–274.

[19] S. Hoory, N. Linial, A. Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4) 2006, pp. 439–561.

[20] J.S. Vitter. Algorithms and Data Structures for External Memory. Series on
Foundations and Trends in Theoretical Computer Science, now Publishers,
Hanover, MA, 2008.

[21] Mark Braverman. Poly-logarithmic Independence Fools AC0 Circuits.
IEEE Conference on Computational Complexity 2009, pp. 3–8.

[22] V. Guruswami, C. Umans and S. Vadhan. Unbalanced expanders and ran-
domness extractors from Parvaresh–Vardy codes, Journal of the ACM,
56(4), 2009.

[23] D. Musatov. Theorems about space-bounded Kolmogorov complexity ob-
tained by “naive” derandomization. In Proc. Computer Science in Russia,
2011. Prelim. version: arXiv:1009.5108 (2010).

[24] Matei David, Periklis A. Papakonstantinou, Anastasios Sidiropoulos. How
strong is Nisan’s pseudorandom generator? 2010. Electronic preprint.
http://itcs.tsinghua.edu.cn/~papakons/pdfs/nisan_passes.pdf

17

http://arxiv.org/abs/1009.5108

	1 Introduction
	2 How BMRV-scheme works
	3 Proof of Theorem ??
	3.1 Refinement of the property of -reduction
	3.2 Testing the property of strong -reduction
	3.3 Pseudo-random graphs
	3.4 Complexity of encoding

	4 Proof of theorem ??: effective encoding
	5 A lower bound for schemes with cached memory
	6 Conclusion

