
ISSN 0081-5438, Proceedings of the Steklov Institute of Mathematics, 2011, Vol. 274, pp. 193–203. c© Pleiades Publishing, Ltd., 2011.
Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2011, Vol. 274, pp. 210–221.

Kolmogorov Complexity and Cryptography1

Andrej A. Muchnik†

Received March 2011

Abstract—We consider (in the framework of algorithmic information theory) questions of
the following type: construct a message that contains different amounts of information for
recipients that have (or do not have) certain a priori information. Assume, for example, that a
recipient knows some string a and we want to send him some information that allows him to
reconstruct some string b (using a). On the other hand, this information alone should not allow
the eavesdropper (who does not know a) to reconstruct b. This is indeed possible (if the strings
a and b are not too simple). Then we consider more complicated versions of this question.
What if the eavesdropper knows some string c? How long should our message be? We provide
some conditions that guarantee the existence of a polynomial-size message; we show then that
without these conditions this is not always possible.

DOI: 10.1134/S0081543811060125

1. NON-INFORMATIVE CONDITIONAL DESCRIPTION

In this section we construct, for given strings a and b that satisfy some conditions, a string f
that contains enough information to obtain b from a, but does not contain any information about b
in itself (without a), and discuss some generalizations of this problem.

Uniform and nonuniform complexity. Let us start with some general remarks about con-
ditional descriptions and their complexity. Let X be a set of binary strings, and let y be a string.
Then C(X → y) can be defined as the minimal length of a program that maps every element of X
to y. (As usual, we fix some optimal programming language. We can also replace minimal length
by minimal complexity.) Evidently,

C(X → y) ≥ max
x∈X

C(y|x)

(if a program p works for all x ∈ X, it works for every x), but the reverse inequality is not always
true. It may happen that the “uniform” complexity of the problem X → y (the left-hand side) is
significantly greater than the “nonuniform” complexity of the same problem (the right-hand side).

To prove this, let us consider an incompressible string y of length n and let X be the set of all
strings x such that C(y|x) < n/2. Then the right-hand side is bounded by n/2 by construction.
Let us show that the left-hand side is greater than n − O(log n). Indeed, let p be a program that
outputs y for every input x such that C(y|x) < n/2. Among those x there are strings of complexity
n/2 + O(log n), and together with p they are enough to obtain y; hence C(y|p) ≤ n/2 + O(log n).
Therefore, there exists a string e of length O(log n) such that C(y|〈p, e〉) < n/2. Then, by our
assumption, p(〈p, e〉) = y and therefore the complexity of p is at least n − O(log n).

Remark. In this example the set X can be made finite if we restrict ourselves to strings of
bounded length, say, of length at most 2n.

1This paper contains some results of An.A. Muchnik (1958–2007) reported in his talks at the Kolmogorov seminar
(Moscow State University, Faculty of Mechanics and Mathematics, Department of Mathematical Logic and
Theory of Algorithms, March 11, 2003, and April 8, 2003) but not published at that time. These results were
stated (without proofs) in the joint talk of Andrej Muchnik and Alexei Semenov at Dagstuhl Seminar 03181,
April 27–May 03, 2003. This text was prepared by Alexey Chernov and Alexander Shen in 2008–2009.

†Deceased.

193

194 An.A. MUCHNIK

Complexity of the problem (a → b) → b. The example above shows that the uniform and
nonuniform complexities could differ significantly. In the next example they coincide, but some
work is needed to show that they coincide.

Let a and b be binary strings. By (a → b) we denote the set of all programs that transform the
input a into the output b. It is known [2] that

C((a → b) → b) = min{C(a), C(b)} + O(log N)

for any two strings a and b of length at most N . It turns out that a stronger version of this statement
(when the uniform complexity is replaced by a nonuniform one) is also true:

Theorem 1. For any two strings a and b of length at most N, there exists a program f that
maps a to b such that

C(b|f) = min{C(a), C(b)} + O(log N).

Proof. Note that the ≤-inequality is obviously true for any program f that maps a to b.
Indeed, having such a function and any of the strings a and b, we can reconstruct b.

Let us prove that the reverse inequality is true for some function f that maps a to b. We restrict
ourselves to total functions that are defined on the set of all strings of length at most N and take
values in the same set, so such a function is a finite object and the conditional complexity with
respect to f is defined in a natural way. Note also that (up to O(log N) precision) it does not matter
whether we consider f as an explicitly given finite object or as a program, since (for known N) both
representations can be transformed into each other.

Let m be the maximum value of C(b|f) for all functions (of the type described) that map a to b.
We need to show that one of the strings a and b has complexity at most m + O(log N). This can
be done as follows.

Consider the set S of all pairs 〈a′, b′〉 where a′ and b′ are strings of length at most N that have
the following property: C(b′|f) ≤ m for every total function f whose arguments and values are
strings of length at most N and f(a′) = b′. By the definition of m, the pair 〈a, b〉 belongs to S.

Given m and N , one can effectively enumerate the set S. Let us perform this enumeration
and delete the pairs whose first or second coordinate was already encountered (as the first/second
coordinate of some other undeleted pair during the enumeration); only “original” pairs with two
“fresh” components are placed in S̃. This guarantees that S̃ is a graph of a bijection. The pair 〈a, b〉
is not necessarily in S̃; however, some other pair with the first component a or with the second
component b is in S̃ (otherwise nothing prevents 〈a, b〉 from appearing in S̃).

Since S̃ can also be effectively enumerated (given m and N), it is enough to show that it contains
O(2m) elements (then the ordinal number of the above-mentioned pair describes either a or b).

To show this, let us extend S̃ to the graph of some bijection g. If some 〈a′, b′〉 ∈ S̃, then
g(a′) = b′ and therefore C(b′|g) ≤ m by construction (recall that S̃ is a subset of S). Therefore, S̃
contains at most O(2m) different values of b′, but S̃ is a bijection graph. �

Cryptographic interpretation. Theorem 1 has the following “cryptographic” interpretation.
We want to transmit some information (string b) to an agent who already knows some “background”
string a by sending some message f . Together with a this message should allow the agent to
reconstruct b. At the same time we want f to carry minimal information about b for a “non-
initiated” listener; i.e., the complexity C(b|f) should be maximal. This complexity cannot exceed
C(b) for evident reasons and cannot exceed C(a) since a and f together determine b. Theorem 1
shows that this upper bound can be reached for an appropriate f .

Let us consider a relativized version of this result that also has a natural cryptographic inter-
pretation. Assume that a non-initiated listener knows some string c. Our construction (properly

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 274 2011

KOLMOGOROV COMPLEXITY AND CRYPTOGRAPHY 195

relativized) proves the existence of a function f that maps a to b such that

C(b|f, c) ≈ min{C(a|c), C(b|c)}.

This function has minimal possible amount of information about b for people who know c. More
formally, the following statement is true (and its proof is a straightforward relativization of the
previous argument):

Theorem 2. Let a, b, and c be strings of length at most N . Then there exists a string f
such that

(1) C(b|a, f) = O(log N);
(2) C(b|c, f) = min{C(a|c), C(b|c)} + O(log N).

Claim (1) says that for recipients who know a the message f is enough to reconstruct b; claim (2)
says that for the recipients who know only c the message f contains minimal possible information
about b.

Remark. One may try to prove Theorem 1 as follows: let f be the shortest description of b
when a is known; we may hope that it does not contain “redundant” information. However, this
approach does not work: if a and b are independent random strings of length n, then b is such a
shortest description, but it cannot be used as f in Theorem 1. In this case one can let f = a ⊕ b
(the bitwise sum modulo 2) instead: knowing f and a, we reconstruct b = a ⊕ f , but C(b|f) ≈ n.

This trick can be generalized to provide an alternative proof of Theorem 1. To this end we use
the conditional description theorem from [1]. It says that for any two strings a and b of length at
most N there exist a string b′ such that C(b|a, b′) = O(log N) (b′ is a description of b when a is
known), C(b′|b) = O(log N) (b′ is simple relative to b), and the length of b′ is C(b|a) + O(log N) (b′

has the minimal possible length for descriptions of b when a is known).
To prove Theorem 1, take this b′ and also a′ defined in the symmetric way (a short description

of a when b is known that is simple relative to a). Let us add trailing zeros or truncate a′ to get a
string a′′ that has the same length as b′. (Adding zeros is needed when C(a) < C(b); the truncation
is needed when C(a) > C(b).) Then let f = a′′ ⊕ b′.

A person who knows a and gets f can compute (with logarithmic additional advice) first a′,
then a′′, then b′, and then b. It is also easy to check that C(b|f) = min{C(a), C(b)} with logarithmic
precision.

Indeed,
C(b|f) = C(b, f |f) = C(b, b′, f |f) = C(b, a′′|f)

≥ C(b, a′′) − C(f) ≥ C(b, a′′) − |f | = C(b, a′′) − C(b|a)

with logarithmic precision. The strings a′ and b are independent (have logarithmic mutual infor-
mation), so b and a′′ (which is a simple function of a′) are independent too. Then we get the lower
bound C(b) − C(b|a) + C(a′′), which is equal to min{C(a), C(b)}. (End of the alternative proof of
Theorem 1.)

The advantage of this proof is that it provides a message f of polynomial (in N) length (unlike
our original proof, where the message is some function that has domain of exponential size), and,
moreover, f has the minimal possible length C(b|a). The result it gives can be stated as follows:

Theorem 3. For any two strings a and b of length at most N there exists a string f of length
C(b|a) such that

C(b|f, a) = O(log N)

and
C(b|f) = min{C(a), C(b)} + O(log N).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 274 2011

196 An.A. MUCHNIK

The disadvantage is that this proof does not work in the relativized case (Theorem 2), at
least literally. For example, let a and b be independent strings of length 2n and let a = a1a2

and b = b1b2 be their divisions in two halves. Then let c = (a1 ⊕ a2 ⊕ b1)(a2 ⊕ b1 ⊕ b2). Then
C(a|c) = C(a, c|c) = C(a, b|c) = 2n, C(b|c) = 2n, but C(b|c, a ⊕ b) = 0.

In the next section we provide a different construction of a short message f that has the required
properties (contains information about b only for those who know a but not for those who know c).

2. A COMBINATORIAL CONSTRUCTION
OF A LOW COMPLEXITY DESCRIPTION

We will prove that if a contains enough information (more precisely, if C(a|c) ≥ C(b|c)+C(b|a)+
O(log N)), then there exists a message f that satisfies the claim of Theorem 2 and has complexity
C(b|a) + O(log N). We need the following combinatorial statement. (By B

k we denote the set of
k-bit binary strings.)

Combinatorial lemma. Let n ≥ m be two positive integers. There exists a family F consist-
ing of 2m poly(n) functions of type B

n → B
m with the following property : for every string b ∈ B

m

and for every subfamily F ′ that contains at least half of the elements of F , there are at most O(2m)
points with the second coordinate b and not covered by the graphs of the functions in F ′.

Formally the property of F claimed by the lemma (see the figure) can be written as follows:

∀b∀F ′ ⊂ F
[
#F ′ ≥ 1

2
#F ⇒ #

{
a ∈ B

n | f(a) �= b for all f ∈ F ′} = O(2m)
]
.

(Note that the condition n ≥ m is in fact redundant: if n < m, the claim is trivial since the number
of all a is O(2m).)

Before proving the lemma, let us try to explain informally why it could be relevant. The family F
is a reservoir for messages (f will be a number of some function from F). Most functions in F (as
in any other simple family) have almost no information about b; they form F ′. If the pair 〈a, b〉 is
covered by the graph of some function f ∈ F ′, then f (i.e., its number) is the required message.
If not, a belongs to a small set of exceptions, and its complexity is small, so the condition of the
theorem is not satisfied. (See the detailed argument below.)

Proof of lemma. We use a probabilistic method and show that for a random family of 2t

independent random functions the required property holds with positive probability. (The exact
value of the parameter t will be chosen later.)

Let us estimate from above the probability of the event “a random family ϕ1, . . . , ϕ2t does not
satisfy the required property.” This happens if there exist

• an element b ∈ B
m,

• a set S ⊂ B
n containing s ·2m elements (the exact value of the constant s will be chosen later),

• a set I ⊂ {1, 2, . . . , 2t} that contains half of all indices

b

B
n

B
m

Some functions (up to 50%) are deleted from F ; nevertheless the graphs of the remaining ones cover
every horizontal line almost everywhere (except for O(2m) points).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 274 2011

KOLMOGOROV COMPLEXITY AND CRYPTOGRAPHY 197

such that
ϕi(a) �= b for every a ∈ S and every i ∈ I. (∗)

To get an upper bound for the probability of this event, note that there are 2m different values of b,
at most 22t different values of I, and at most (2n)s·2

m different values of S. For fixed b, I, and S
the probability of (∗) is (

1 − 1
2m

)2t−1s·2m

(each of the 2t−1 functions with indices belonging to I has a value different from b at each point
a ∈ S with probability 1 − 1/2m). In total we get an upper bound

2m · 22t · 2ns·2m

(
1 − 1

2m

)2t−1s·2m

,

and we have to show that this product is less than 1 if the values of the parameters are chosen
properly. We can replace (1− 1/2m)2

m by 1/e (the difference is negligible within our precision) and
rewrite the expression as

2m+2t · 2ns·2m
(1/e)s·2

t−1
.

The most important terms are those containing 2t and 2m in the exponents (since 2t, 2m � m,n, s).
We want the last small term to outweigh the first two. Let us split it into two parts (1/e)s·2

t−2 and
use these parts to compensate for the first and the second term. It is enough that

2m+2t
(1/e)s·2

t−2
< 1 and 2ns·2m

(1/e)s·2
t−2

< 1

at the same time. The first inequality can be made true if the constant s is large enough (note that
m � 2t). The second inequality (where both exponents can be divided by s) is achievable with
2t = 2m poly(n). �

Main result. Now we are ready to give the formal statement and proof:
Theorem 4. There exists a constant C such that for any strings a, b, and c of length at

most N satisfying the inequality

C(a|c) ≥ C(b|c) + C(b|a) + C log N

there exists a string f of length at most C(b|a) + C log N such that C(b|a, f) ≤ C log N and
C(b|c, f) ≥ C(b|c) − C log N .

Recall the idea behind this result. The condition of the theorem guarantees that the agent’s
“background” a has enough information not available to the adversary (who knows c); the theorem
guarantees that there exists a string f that allows the agent to reconstruct b from a, has the minimal
possible length among all strings with this property, and does not provide any information about b
if the adversary knows only c. (Note that we use the same constant C in all O(log N) expressions,
but this does not matter since increasing C makes the statement only weaker.)

Proof of Theorem 4. Using the conditional description theorem [1], we find a string b′ of
length C(b|a) such that both complexities C(b|b′, a) and C(b′|b) are O(log N). Then we apply the
combinatorial lemma with n equal to the length of a and m equal to the length of b′, i.e., to C(b|a).
The lemma provides a family F , and we may assume without loss of generality that the complexity
of F is O(log N) (for given m and n, take the first family with the required properties in some fixed
ordering).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 274 2011

198 An.A. MUCHNIK

Most functions in F (as well as most objects in any simple set) do not have much information
about b when c is known, i.e., the difference C(b|c) − C(b|c, f) is small for most f ∈ F . Indeed,
with logarithmic precision this difference can be rewritten as C(f |c)− C(f |b, c) (recall the formula
for pair and conditional complexities), and the average value of both terms in the last expression is
m + O(log N), the difference is of order O(log N), and we can use the Chebyshev inequality.

Let F ′ be functions from this majority. The lemma guarantees that the graphs of these functions
cover all pairs 〈a′, b′〉 for all strings a′ of length n except for O(2m) “bad” values of a′, and it remains
to show that the given string a is not “bad”. This is so because

C(a′|c) < C(b|c) + C(b|a) + O(log N)

for all “bad” a′. Indeed, knowing b, c, and C(b|c) (the latter contains O(log N) bits and can be
ignored with logarithmic precision), we can enumerate all functions f that do not belong to F ′ (i.e.,
functions that make the complexity of b with condition c smaller), and therefore we can enumerate
all O(2m) “bad” values. (Note that b′ can also be obtained from b with a logarithmic advice.) So
the complexity of the “bad” values (for known b and c) is at most m + O(log N):

C(a′|b, c) ≤ C(b|a) + O(log N)

for all “bad” a′; therefore,

C(a′|c) ≤ C(a′|b, c) + C(b|c) + O(log N) ≤ C(b|a) + C(b|c) + O(log N),

as we claimed. �

3. NEGATIVE RESULT AND OPEN QUESTIONS

The assumption made in Theorem 4 may look artificial at first glance: for example, if a, b, and c
are pairwise independent, we require C(a) to be twice as big as C(b), and it is intuitively unclear
why the amount of the background information should be twice as big as the message we want
to transmit (the inequality C(a) > C(b) seems more natural). In this section we show that this
condition, even if looking artificial, is important: without it, all the strings f that satisfy the claim
of Theorem 2 may have exponentially large length. The exact statement (see Theorem 5 below)
and its proof are rather technical, so let us start with a simplified example, where, unfortunately,
we get a string c of large complexity. Then we explain a more advanced example that does not have
this problem.

Let us construct three strings a, b, and c with the following properties: every reasonably long
program f (of polynomial or subexponential length) that maps a to b can be used to simplify
the transformation of c into b. In our example the string a has complexity 1.3n, the string b has
complexity n, and they are mutually independent (have logarithmic mutual information). (The
coefficient 1.3 is chosen arbitrarily; it is important that 1.3 is greater than 1 and less than 2.) The
complexity of b when c is known will be about n, so using c as a condition does not make b simpler.
But if we add to c any program f that maps a to b, it becomes possible to obtain b using only 0.3n
bits of advice: the conditional complexity decreases from C(b|c) ≈ n to C(b|f, c) ≈ 0.3n.

The main idea of this example can be explained as follows: the string c itself encodes a function
that maps a to b (but still c without a has no information about b). Assume that some program f
that maps a to b is given. Why does it help to describe b if c is known in addition to f? We know
that both f and c map a to b, so a is one of the solutions of the equation f(x) = c(x). If this
equation has not too many solutions, we can describe a (and therefore b) by specifying the ordinal
number of a in the enumeration of all solutions. (Note that f may not be defined everywhere, but
this does not matter.) In this way we get a conditional description of b (for known c and f) that

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 274 2011

KOLMOGOROV COMPLEXITY AND CRYPTOGRAPHY 199

may have a small length compared to C(b) (and C(b) will be close to C(b|c); we promised that c
itself has no information about b).

How do we get a, b, and c with these properties? We get such a triple with high probability if
a and b are independently taken at random among strings of length 1.3n and n, respectively, and
c is a random function whose graph contains the pair 〈a, b〉. The same distribution on a, b, and c
can be described in a different way: we take a random function c and then a random element 〈a, b〉
of its graph.

With high probability we get strings a and b with the required complexities 1.3n and n and small
mutual information. We can also show that C(b|c) is close to n with high probability. Indeed, for a
typical function c of type B

1.3n → B
n most of its values have preimages of size 20.3n, and therefore

the second component of a random element of its graph has an almost uniform distribution, so most
of the values of c have high complexity even with condition c.

Now let f be some program that maps a to b and has not very high complexity (much less than
what Theorem 2 gives). How many solutions does the equation f(x) = c(x) have? Typically (for a
given f and a random c) we have about 20.3n solutions (for each x the probability of f(x) = c(x)
equals 2−n, and there are 21.3n points x); here we assume that f is total, but if it is not, we get
even fewer solutions. For a fixed f and a random c, it is very unlikely that the number of solutions
is significantly greater than 20.3n. In other words, the Hamming ball of the corresponding radius
around f has a negligible probability. If the number of these balls (i.e., the number of programs f
we consider) is not too large, the union of these events also has small probability, so a randomly
chosen c will be outside these balls. This means that for all programs f with bounded complexity the
equation f(x) = c(x) has at most 20.3n solutions (or slightly more) and the complexities C(a|f, c)
and C(b|f, c) are (almost) bounded by 0.3n as we promised.

We do not provide details of this argument since we want to prove a stronger (and more com-
plicated) result. Namely, we want to find a function c that has not very high complexity (while
the argument explained gives c that may have exponential complexity): the complexity of c should
exceed the complexity of programs f (that it opposes) by C(b). (If we allow more programs, we
need more freedom for c.)

The idea of the construction remains the same: we select a random point on the graph of a
random function. However, now the function is a random element of some family C of functions.
We formulate some combinatorial properties of C. Then we prove (by a probabilistic argument)
that there exists a family with these properties and conclude that there exists a simple family with
these properties (the first family found by an exhaustive search). Finally, we prove that for most
pairs 〈a, b〉 there exists a function c in the family that satisfies our requirements. (So we prove even
a slightly stronger statement: instead of the existence of a triple a, b, c we prove that for most a
and b there exists c.) The size of the family C provides a bound for the complexity of c (since every
element of C is determined by its index).

Let us formulate the required combinatorial statement starting with some definitions. Fix some
sets A and B. We say that some family F of functions A → B rejects a function c : A → B if there
exists f ∈ F such that the cardinality of the set {a : c(a) = f(a)} exceeds 4#A/#B (note that the
“expected” cardinality is #A/#B). Let H be a mapping defined on B; for every b ∈ B the value
H(b) is a family of functions of type A → B (i.e., H(b) ⊂ BA for every b ∈ B). We say that a
function c covers the pair 〈a, b〉 ∈ A × B (for given H and F) if (1) c(a) = b, (2) the function c is
not rejected by F , and (3) c /∈ H(b).

Lemma. Assume that #B ≥ 2 and #A ≥ 16#B. Assume that two numbers ε ≥ 4#B/#A
and Φ ≤ 2#A/4#B are fixed. There exists a family C of functions A → B of cardinality

max
{

20#B

ε
,

6Φ log2(#B)
ε

, 6Φ · #B · log2(#B)
}

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 274 2011

200 An.A. MUCHNIK

with the following property : for every family F of size at most Φ and for every mapping H such
that #(H(b)) ≤ (1/4)#C for every b ∈ B, at most an ε-fraction of all pairs 〈a, b〉 are not covered
by any c ∈ C (for these F and H).

The statement of this lemma can be written as follows (we omit conditions on the cardinalities
of C, F and H(b)):

∃C ∀F ,H∣∣∣∣{〈a, b〉 : ∀c

[
(c(a) = b) ⇒

[
(c ∈ H(b)) ∨

(
∃f ∈ F #{x : f(x) = c(x)} ≥ 4#A

#B

)]]}∣∣∣∣
≤ ε · #A · #B.

Let us explain informally the meaning of this lemma (how it is used in the sequel). We may
assume without loss of generality that the family C is simple (looking for the first family with
the required properties in some ordering). Let F be the family of all functions that have simple
programs (or their extensions, if the functions are partial). Let H(b) be the set of all functions
that are simple when b is known (having small conditional complexity with condition b). For a pair
〈a, b〉 that does not belong to the “bad” ε-fraction, there exists a function c ∈ C that covers 〈a, b〉.
This function (or, better to say, its index in C) is a counterexample we are looking for. Indeed,
if the eavesdropper knows c and gets a simple program f mapping a to b, the complexity of b for
him decreases. Indeed, it is enough to specify the ordinal number of a in the enumeration of all
solutions of the equation f(x) = c(x), and the eavesdropper can reconstruct a (and therefore b,
since f(a) = b). In addition, the choice of H guarantees that c and b are independent (i.e., c has
maximal possible complexity even if b is known). The details of this argument will be explained
later, after we prove the lemma.

Proof of the lemma. Using a probabilistic argument, let us consider a random family C of
the size mentioned. We assume that C is indexed by integers in the range 1, . . . ,#C, and for every
index i and every point a ∈ A the value of the ith function on a is an independent random variable
uniformly distributed over B. Then we prove that the probability of the event “C is bad” (i.e., does
not have the required property) is strictly less than 1.

To this end we get an upper bound for the probability of the event “C does not have the
required property with respect to a fixed family F ” (and then multiply it by the number of different
families F). So let us assume F is fixed. Things are “good” if for every mapping b �→ H(b) (with
our restrictions: all H(b) have cardinality at most (1/4)#C) for ε-almost all pairs 〈a, b〉 there is a
function c ∈ C that is not rejected by F , is not in H(b), and is such that c(a) = b.

Note that the definition of rejection does not refer to C: the set of rejected functions is determined
by F alone. For a given F there are two possibilities: (1) many functions are rejected (we choose
(1/4)#C as a threshold) or (2) not many functions are rejected. In the latter case we may add the
rejected functions to all H(b) (for all b), and the size of all H(b) remains bounded by (1/2)#C.

In other terms, for a fixed F the “bad” event is covered by the union of the following two events:

(i) F rejects at least 1/4 of all functions in C;
(ii) there exists a mapping b �→ H(b) with all sets H(b) of cardinality at most (1/2)#C such that

the fraction of the pairs 〈a, b〉 ∈ A × B that do not belong to any function c ∈ C \ H(b)
exceeds ε.

What we need is the following: the sum of the probabilities of these two events multiplied
by the number of possibilities for F is less than 1. To show this, we prove that each of these two
probabilities is less than 1/2 divided by (#B#A)Φ (this expression is an upper bound for the number
of different families F ⊂ BA of size Φ).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 274 2011

KOLMOGOROV COMPLEXITY AND CRYPTOGRAPHY 201

The first event can be rewritten as follows: there exists a subfamily C′ ⊂ C of size #C/4 such
that for all c ∈ C′ there exist A′ ⊂ A of size 4#A/#B and a function f ∈ F such that f(a) = c(a)
for all a ∈ A′.

The number of possibilities for C′ does not exceed 2#C , the number of all subsets. For a fixed C′

(or, better to say, for a fixed set of indices) the functions with these indices are chosen independently.
So we can estimate the probability of the bad event for one index and then use independence. To
get an upper bound for the number of possibilities for A′, let us note that the number of r-element
subsets of a q-element set,

(q
r

)
, does not exceed qr/r! ≤ qr/((r/3)r) = (3q/r)r. For q = #A and

r = 4#A/#B we get the bound (3#B/4)4#A/#B .
Therefore, the probability of the first event does not exceed

2#C
(

Φ
(

3#B

4

)4#A/#B(
1

#B

)4#A/#B
)#C/4

=

(
2Φ1/4

(
3
4

)#A/#B
)#C

.

Multiplied by (#B)#A·Φ (the number of possibilities for F), this probability is less than 1/2, since
#B ≥ 2, #A ≥ 16#B, Φ ≤ 2#A/4#B , and #C ≥ 6Φ ·#B · log2(#B) (according to the assumptions
of the lemma). Indeed, the last inequality implies that #C ≥ 12 if Φ ≥ 1 (for an empty F the
statement is trivial). Since #B ≥ 2, we conclude that 1 + #C ≤ 13#C/12. Then 1 ≤ #A/(16#B)
implies that 1 + #C ≤ (13/192)(#A · #C/#B). The condition log2 Φ ≤ #A/4#B implies that
(#C/4) log2 Φ ≤ (1/16)(#A ·#C/#B). Finally, the inequality #C ≥ 6Φ ·#B · log2 #B implies that
#A · Φ log2 #B ≤ (1/6)(#A · #C/#B). Adding up these inequalities (note that 19/64 < 1/3 <
log2(4/3)) and taking the exponential (with base 2) of both sides, we get the required inequality
(after appropriately grouping the factors).

Now let us consider the second event (recall that it depends on F , which is fixed): there exist
a mapping b �→ H(b) such that every H(b) has cardinality at most #C/2 and a subset U ⊂ A × B
of size ε · #A · #B such that for every pair 〈a, b〉 ∈ U and for every function c ∈ C \ H(b) we have
c(a) �= b.

In the sequel we assume that H(b) is not a set of functions, but a set of their indices (numbers
in the range 1, . . . ,#C); this does not change the event in question.

To estimate the probability of the second event, let us fix not only F but also H and U . The
corresponding event can be described as the intersection (taken over all pairs 〈a, b〉 and over all
i /∈ H(b)) of the events c[i](a) �= b (“the ith function does not map a to b”). The probability
bound would be simple if all these events were independent; in this case the probability would be
(1 − 1/#B)d, where d is the number of all triples 〈i, a, b〉, i.e., ε · #A · #B · #C/2 (i.e., d is the
product of the number of pairs 〈a, b〉 ∈ U and the number of possible values of i for a given b).

Unfortunately, these events are independent only for different a (or different i); the events
c[i](a) �= b1 and c[i](a) �= b2 are dependent. However, the dependence even helps us: the condition
c[i](a) �= b1 only decreases the probability of the event c[i](a) �= b2 (the denominator in 1/#B
decreases by 1). The same is true for several conditions.

Formally speaking, we may group the events with common a and i and then use the inequality
1 − k/#B ≤ (1 − 1/#B)k, where k is the number of events in a group.

In this way we get an upper bound for the probability of failure: for fixed F , H and U , it does
not exceed (

1 − 1
#B

)ε·#A·#B·#C/2

≤ 2−ε·#A·#C/2.

This expression is then multiplied by the number of possibilities for U (which does not exceed
2#A·#B), for H (which does not exceed (2#C)#B) and for F . In total, we get

2−ε·#A·#C/2 · 2#A·#B · 2#C·#B(#B)#A·Φ.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 274 2011

202 An.A. MUCHNIK

It is easy to check that this expression is less than 1/2 if #B ≥ 2, ε ≥ 4#B/#A, #C ≥ 20#B/ε,
and #C ≥ (6Φ log2 #B)/ε. Indeed, we have 1 + #A · #B ≤ 3 · #A · #B/2 if A is not empty and
#B ≥ 2. Therefore, #C ≥ 20#B/ε implies 1 + #A · #B ≤ (3/40)ε · #A · #C. Also ε ≥ 4#B/#A
implies #C · #B ≤ (1/4)ε · #A · #C. Finally, #C ≥ (6Φ log2 #B)/ε implies #A · Φ log2(#B) ≤
(1/6)ε · #A · #C. Adding up these inequalities, noting that 59/120 < 1/2, and then taking the
exponentials (with base 2), we get the required bound after regrouping the factors.

The lemma is proven. �
Now we use this lemma to prove the promised negative result. Let α > 0 be some constant.

Let m, n, and l be positive integers such that n ≥ 1, m ≥ n + 4, m − α log2 m ≥ n + 2, and
l + 1 + log2(l + 1) ≤ 2m−n−2. Let N = max{m, l}.

Theorem 5. Let a be a string of length m and b be a string of length n such that

m + n − C0′
(a, b) < α log2 m.

Then there exists a string c of complexity n + l + O(log N) such that

• C(c|b) = C(c) + O(log N);

• C(b|a, c) = O(log N);

• for every f such that C(f) ≤ l−C(b|a, f), we have C(b|c, f) ≤ m−n+C(b|a, f)+O(log N).

(The constant hidden in O(·) depends on α but does not depend on m, n, or l.)
Before proving this theorem, let us explain why it shows the importance of the condition in

Theorem 4. The equation C(c|b) = C(c) + O(log N) shows that the strings b and c are independent
and C(b|c) = C(b) = n with O(log N)-precision. Since C(b|a, c) = O(log N), we have C(a|c) ≥
C(b|c) − C(b|a, c) = n (with the same O(log N)-precision). Note also that C(b|a) = n (with
O(log m)-precision). Therefore, if C(b|a, f) = O(log N) for some string f of length not exceeding l,
then

C(b|c, f) < min{C(a|c), C(b|c)} + O(log N)

when m − n < n + O(log N), i.e., when C(a) < C(b|c) + C(b|a).
Proof of Theorem 5. Let A be the set of all m-bit strings, and let B be the set of all n-bit

strings. Let ε = 1/mα and Φ = 2l+1(l + 1). Our assumptions about n, m, and l guarantee that A,
B, ε, and Φ satisfy the conditions of the lemma. Therefore, there is a family C with the properties
described in the statement of the lemma. As we have said, we may assume without loss of generality
that C is simple, and in this case the complexity of every element of C does not exceed log2 #C plus
O(log N), i.e., does not exceed n + l + O(log N).

Now let H(b) be the set {c ∈ C : C(c|b) < log2(#C) − 2}; then #H(b) ≤ #C/4 for every b.
Now the family F is constructed as follows. It contains Φ functions numbered by integers in the

range 1, . . . ,Φ. We enumerate all triples 〈a, b, f〉, where a ∈ A, b ∈ B, and f is an l-bit string such
that C(f) + C(b|a, f) ≤ l. Some indices (numbers) have labels that are l-bit strings. When a new
triple 〈a, b, f〉 appears, we first try to add 〈a, b〉 to one of the functions whose index already has
label f . If this is not possible (all functions that have label f are already defined at a and have values
not equal to b), we take a fresh index (that has no label), assign label f to it and let the corresponding
function map a to b. A free index does exist since each f occupies at most 2l−C(f)+1 indices (if
some f needs more, then for some a all 2l−C(f)+1 functions are defined and have different values, so
we have already enumerated more than 2l−C(f)+1 different elements b such that C(b|a, f) ≤ l−C(f);
a contradiction), and all f in total require at most

∑
C(f)≤l 2

l−C(f)+1 =
∑l

k=0

∑
C(f)=k 2l−k+1 = Φ

indices. After all the triples with these properties are enumerated, we extend our functions to total
ones (arbitrarily).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 274 2011

KOLMOGOROV COMPLEXITY AND CRYPTOGRAPHY 203

Consider the set of pairs 〈a, b〉 that are not covered by C (for given F and H). The cardinality of
this set does not exceed ε ·2m+n. On the other hand, F and H can be computed using the 0′-oracle;
after that the set of noncovered pairs can be enumerated; therefore, C0′

(a, b) ≤ m + n − α log2 m
for every noncovered pair 〈a, b〉.

Therefore, for any a and b such that m + n − C0′
(a, b) < α log2 m there exists c ∈ C such that

c(a) = b, c /∈ H(b), and for every f ∈ F the equation c(x) = f(x) has at most 2m−n+2 solutions.
Since c(a) = b, we have C(b|a, c) = O(log N).
Since c /∈ H(b), we have C(c|b) ≥ log2(#C) − 2, i.e., C(c) = C(c|b) + O(log N).
Finally, we have to estimate C(b|c, f) for strings f such that C(f) ≤ l − C(b|a, f). Knowing f ,

we enumerate the functions in F that have label f . One of them, say, f̃ , passes through 〈a, b〉 (i.e.,
f̃(a) = b). To specify this function, we need at most C(b|a, f)+O(log N) additional bits. Knowing f̃

and c, we may enumerate all x such that c(x) = f̃(x). (More precisely, we specify the index of f̃
in F rather than f̃ itself. However, to enumerate the solutions of the equation c(x) = f̃(x), it is
enough to enumerate the pairs 〈x, y〉 such that y = f̃(x) by repeating the construction of F .) This
set contains a and has cardinality at most 2m−n+2, so we can specify a using m − n + 2 additional
bits. Altogether, C(b|c, f) ≤ C(a|c, f) + O(log N) ≤ C(b|a, f) + m − n + O(log N), as we claimed.

Theorem 5 is proven. �
Open questions. 1. Is it possible to strengthen Theorem 5 and have c of complexity at most

n+O(log N) instead of n+ l+O(log N)? (An.A. Muchnik in his talk claimed that this can be done
by a more complicated combinatorial argument, which was not explained in the talk.)

2. Theorem 5 shows that if a is only slightly more complex than b, then for some c short
messages do not work. On the other hand, the alternative proof of Theorem 1 works for empty c.
What can be said about other c? What are the conditions that make short messages possible?

3. What can be said about the possible complexities C(f |b), C(f |a, b), and C(f |a, b, c) if f is a
message with the required properties?

REFERENCES
1. An. A. Muchnik, “Conditional Complexity and Codes,” Theor. Comput. Sci. 271 (1–2), 97–109 (2002). [Pre-

liminary version: An. Muchnik and A. Semenov, “Multi-conditional Descriptions and Codes in Kolmogorov
Complexity,” ECCC Tech. Rep. No. 15 (Jan. 27, 2000).]

2. A. Shen and N. Vereshchagin, “Logical Operations and Kolmogorov Complexity,” Theor. Comput. Sci. 271 (1–2),
125–129 (2002).

Translated by A. Chernov and A. Shen

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 274 2011

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

