
Do essentially conditional information inequalities
have a physical meaning?

Abstract—We show that two essentially conditional linear
information inequalities (including the Zhang–Yeung’97 condi-
tional inequality) do not hold for asymptotically entropic points.
This result raises the question of the “physical” meaning of these
inequalities and the validity of their use in practice-oriented
applications.

I. INTRODUCTION

Following Pippenger [13] we can say that the most basic
and general “laws of information theory” can be expressed in
the language of information inequalities (inequalities which
hold for the Shannon entropies of jointly distributed tuples
of random variables for every distribution). The very first
examples of information inequalities were proven (and used)
in Shannon’s seminal papers in the 1940s. Some of these
inequalities have a clear intuitive meaning. For instance, the
entropy of a pair of jointly distributed random variables a, b
is not greater than the sum of the entropies of the marginal
distributions, i.e., H(a, b) ≤ H(a) + H(b). In standard
notations, this inequality means that the mutual information
between a and b is non-negative, I(a:b) ≥ 0; this inequality
becomes an equality if and only if a and b are independent
in the usual sense of probability theory. These properties
have a very natural “physical” meaning: a pair cannot contain
more “uncertainty” than the sum of “uncertainties” in both
components. This basic statement can be easily explained, e.g.,
in term of standard coding theorems: the average length of an
optimal code for a distribution (a, b) is not greater than the
sum of the average lengths for two separate codes for a and b.
Another classic information inequality I(a:b|c) ≥ 0 is slightly
more complicated from the mathematical point of view, but is
also very natural and intuitive.

We believe that the success of Shannon’s information theory
in a myriad of applications (in engineering and natural sciences
as well as in mathematics and computer science) is due to the
intuitive simplicity and natural “physical” interpretations of
the very basic properties of Shannon’s entropy.

Formally, information inequalities are just a dual description
of the set of all entropy profiles. That is, for every joint
distribution of an n-tuple of random variables we have a vector
of 2n− 1 ordered entropies (entropies of all random variables
involved, entropies of all triples, of quadruples, etc). A vector
in R2n−1 is called entropic if it represents entropy values
of some distribution. The fundamental (and probably very
difficult) problem is to describe the set of entropic vectors for
all n. It is known, [16], that for every n the closure of the set
of all entropic vectors is a convex cone in R2n−1. The points
that belong to this closure are called asymptotically entropic or

asymptotically constructible vectors, [11], say a.e. vectors for
short. The class of all linear information inequalities is exactly
the dual cone to the set of asymptotically entropic vectors. In
[13] and [4] a natural question was raised: What is the class
of all universal information inequalities? (Equivalently, how
to describe the cone of a.e. vectors?) More specifically, does
there exist any linear information inequality that cannot be
represented as a combination of Shannon’s basic inequality?

In 1998 Z. Zhang and R.W. Yeung came up with the first
example of a non-Shannon-type information inequality [17]:

I(c:d) ≤ 2I(c:d|a)+I(c:d|b)+I(a:b)+I(a:c|d)+I(a:d|c).

This unexpected result raised other challenging questions:
What does this inequality mean? How to understand it in-
tuitively? Although we still do not know a complete and
comprehensive answer to the last questions, several interesting
and meaningful interpretations of the inequality from [17]
were found, see [15], [18]. In fact, this inequality is closely
connected with Ingleton’s inequality for ranks of linear spaces,
[2], [5], [7], [10], [11].

Though the inequality from [17] was (partially) explained,
there are a few related results which still have no satisfactory
intuitive explanation. We mean other “universal laws of infor-
mation theory”, those that can be expressed as conditional lin-
ear information inequalities (linear inequalities for entropies
which are true for distributions whose entropies satisfy some
linear constraints). We do not give a general definition of
a “conditional linear information inequality” since the entire
list of all known nontrivial inequalities in this class is very
short. In fact, we know only three nontrivial examples of such
inequalities:
(1) [16]: if I(a:b|c) = I(a:b) = 0, then

I(c:d) ≤ I(c:d|a) + I(c:d|b),

(2) [8]: if I(a:b|c) = I(b:d|c) = 0, then

I(c:d) ≤ I(c:d|a) + I(c:d|b) + I(a:b),

(3) [6]: if I(a:b|c) = H(c|a, b) = 0, then

I(c:d) ≤ I(c:d|a) + I(c:d|b) + I(a:b).

These three inequalities are much less understood than the
(unconditional) non-Shannon-type information inequality from
[17]. It is known that (1-3) are “essentially conditional”, i.e.,
they cannot be extended to any unconditional inequalities,
[6], e.g., for (1) this means that for any values of “Lagrange
multipliers” λ1, λ2 the corresponding unconditional extension

I(c:d) ≤ I(c:d|a) + I(c:d|b) + λ1I(a:b) + λ2I(a:b|c)



does not hold for some distributions (a, b, c, d). In other words,
(1-3) make some very special kind of “information laws”:
they cannot be represented as “shades” of any unconditional
inequalities on the subspace corresponding to their linear
constraints.

Inequalities (1-3) remain quite mysterious, and we do not
know any intuitive explanation of their meaning. In this paper
we reveal some evidence of why these inequalities (at least
(1) and (3)) must be very different from “unconditional”
inequalities. We prove that (1) and (3) do not hold for a.e.
points. So, these inequalities are, in some sense, similar to the
nonlinear (piecewise linear) conditional information inequality
from [9].

Together with [6], where (1–3) are proven to be essentially
conditional, our result indicates that (1) and (3) are very fragile
and non-robust properties. We cannot hope that similar in-
equalities hold when the constraints become soft. For instance,
assuming that I(a:b) and I(a:b|c) are “very small” we cannot
say that

I(c:d) ≤ I(c:d|a) + I(c:d|b)

holds also with only “a small error”; even a negligible devia-
tion from the conditions in (1) can result in a dramatic effect
I(c:d)� I(c:d|a) + I(c:d|b).

Conditional information inequalities (in particular, inequal-
ity (2)) were used in [8] to describe conditional independences
among several jointly distributed random variables. Condi-
tional independence is known to have wide applications in sta-
tistical theory (including methods of parameter identification,
causal inference, data selection mechanisms, etc.), see, e.g.,
surveys in [1], [14]. We are not aware of any direct or implicit
practical applications of (1-3), but it would not be surprising
to see such applications in the future. However our results
indicate that these inequalities are non-robust and therefore
might be misleading in practice-oriented applications.

So, (1) and (3) can be used only with the assumption that the
corresponding independence conditions hold exactly, without
any error. Can we assume that some a and b are absolutely
independent (respectively, absolutely independent conditional
on c) when we deal with objects in the real world? We do not
try to answer this question. Our knowledge is not enough to
say whether “essentially conditional” information inequalities
are just an artifact of the definition of Shannon’s entropy
for discrete distributions, or they still make some “physical”
meaning. But certainly these inequalities must be handled and
applied with great caution.

The rest of the paper is organized as follows. We provide
a different proof of why two conditional inequalities are
essentially conditional. This new proof uses a simple algebraic
example of random variables. We also show that (1) and (3)
are not valid for a.e. vectors, leaving the question for (2) open.

II. WHY “ESSENTIALLY CONDITIONAL” : AN ALGEBRAIC
COUNTEREXAMPLE

Consider the quadruple (a, b, c, d)q of geometric objects,
resp. A,B, C,D, on the affine plane over the finite field Fq

defined as follows :

• First choose a random non-vertical line C defined by the
equation y = c0 + c1x (the coefficients c0 and c1 are
independent random elements of the field);

• pick points A and B on C independently and uniformly
at random (these points coincide with probability 1/q);

• then pick a parabola D uniformly at random in the set
of all non-degenerate parabolas y = d0 + d1x + d2x

2

(where d0, d1, d2 ∈ Fq, d2 6= 0) that intersect C at A and
B; (if A = B we require that C is a tangent line to D).
When C and A,B are chosen, there exist (q−1) different
parabolas D meeting these conditions.

A typical quadruple is represented on figure II :

A

BC

D

Fig. 1. An algebraic example

Remark: This picture is not strictly accurate, for the plane is
discrete, but helps grasping the general idea since the relevant
properties used are also valid in the continuous case.

Let us now describe the entropy vector of this quadruple.
• Every single random variable is uniform over its support.
• The line and the parabola share some mutual information,

(the fact that they intersect) which is approximately one
bit. Indeed, C and D intersect iff the corresponding equa-
tion discriminant is a quadratic residue, which happens
almost half of the time.

I(c:d) =
q − 1
q

• When an intersection point is given, the line does not
give more information about the parabola.

I(c:d|a) = I(c:d|b) = 0

• When the line is known, an intersection point does not
help knowing the other (by construction).

I(a:b|c) = 0

• The probability that there is only one intersection point is
1/q. In that case, the line can be any line going through



this point.

I(a:b) = H(c|a, b) =
log2 q

q

Now we plug the computations into the following inequal-
ities

I(c:d) ≤ I(c:d|a) + I(c:d|b) + λ1I(a:b) + λ2I(a:b|c)

or

I(c:d) ≤ I(c:d|a)+I(c:d|b)+I(a:b)+λ1I(a:b|c)+λ2I(c|a, b),

which are “unconditional” counterparts of (1) and (3) respec-
tively. For any constants λ1, λ2 we get

1− 1
q
≤ O

(
log2 q

q

)
and conclude they can not hold when q is large. Thus, we get
the following theorem (originally proven in [6]):

Theorem 1. Inequalities (1) and (3) are essentially condi-
tional.

III. WHY (1) AND (3) DO NOT HOLD FOR A.E. VECTORS

We are going to use the previous example to show that
conditional inequalities (1) and (3) are not valid for asymptot-
ically entropic vectors. We will use the Slepian–Wolf coding
theorem as our main tool.

Lemma 1 (Slepian–Wolf). Let (x, y) be joint random vari-
ables and (X,Y ) be N independent copies of this distribution.
Then there exists X ′ such that H(X ′|X) = 0, H(X ′) =
H(X|Y ) + o(N) and H(X|X ′, Y ) = o(N).

This lemma constructs a hash of a random variable X which
is almost independent of Y and has approximately the entropy
of X given Y . We will say that X ′ is the Slepian–Wolf hash
of X given Y and write X ′ = SW (X|Y ).

Theorem 2. (1) and (3) are not valid for a.e. vectors.

Proof: For each given inequality, we construct an asymp-
totically entropic vector which excludes it. The main step is to
ensure, via Slepian–Wolf lemma, that the constraints are met.

a) Construction of a counterexample for inequality (1):
1. Start with the quadruple (a, b, c, d)q from the previous

section for some fixed q to be defined later. Notice that
it does not satisfy the constraints.

2. Serialize it: define a new quadruple (A,B,C,D) such
that each entropy is N times greater. (A,B,C,D) is
obtained by sampling N times independently (ai, bi, ci, di)
according to the distribution (a, b, c, d) and letting, e.g.,
A = (a1, a2, . . . , aN ).

3. Apply Slepian–Wolf lemma to get A′ = SW (A|B) such
that I(A′ :B) = o(N), and replace A by A′ in the
quadruple. The entropy profile of (A′, B,C,D) cannot
vary much, at most by I(A:B) + o(N) = O

(
log2 q

q N
)

,
from the entropy profile of the old quadruple. Notice that
I(A′ :B|C) = 0 since A′ functionally depends on A and
I(a:b|c) = 0.

4. Scale down the entropy vector of (A′, B,C,D) by a factor
of 1/N . This standard operation can be done within a
precision of, say, o(N).

5. Tend N to infinity. This defines an a.e. vector for which
inequality (1) does not hold when q is large. Indeed, for
this a.e. vector, I(A:B) and I(A:B|C) both tend to zero as
N approaches infinity. On the other hand, for the resulting
limit of entropies (this limit is not an entropic but only
asymptotically entropic point) inequality (1) turns into

1 +O

(
log2 q

q

)
≤ O

(
log2 q

q

)
,

which can not hold if q is bigger than some constant.

b) Construction of a counterexample for inequality (3):
We start with another lemma based on the Slepian–Wolf
coding theorem.

Lemma 2. For every distribution (a, b, c, d) and every integer
N there exists a distribution (A′, B′, C ′, D′) such that
• H(C ′|A′, B′) = o(N),
• Denote ~h the entropy profile of (a, b, c, d) and ~H the

entropy profile of (A′, B′, C ′, D′); then the components
of ~H differ from the corresponding components of N ·~h
by at most N ·H(c|a, b) + o(N).

Proof of lemma: First we serialize (a, b, c, d). This means
that we take N i.i.d. copies of the initial distribution. The result
is a distribution (A,B,C,D) whose entropy profile is the one
of (a, b, c, d) multiplied by N . Then we apply Lemma 1 and
obtain a Z = SW (C|A,B) such that
• H(Z) = H(C|A,B) + o(N),
• H(C|A,B,Z) = o(N).
Then, it is not hard to show that for most values ζ of the new

random variable Z the corresponding conditional distribution
(A′, B′, C ′, D′) (the distribution on (A,B,C,D) with the
condition Z = ζ) satisfies all the required conditions.

Remark: This time we are not interested in the Slepian–Wolf
hash as a random variable. We use its information content as
an oracle which allows to perform a “relativization”.

c) Rest of the proof for (3):
1. Start with the distribution (a, b, c, d)q for some q, to be

fixed later, from the previous section.
2. Apply the “relativization” lemma 2 and get (A′, B′, C ′, D′)

such that H(C ′|A′, B′) = o(N). Lemma 2 guarantees
that other entropies are about N times larger then the
corresponding entropies for (a, b, c, d), possibly with an
overhead of size

O(N ·H(c|a, b)) = O

(
log2 q

q
N

)
.

Moreover, since the quadruple (a, b, c, d) satisfies
I(a:b|c) = 0, we also have I(A′ :B′|C ′) = 0 by
construction of the random variables in Lemma 2.

3. Scale down the entropy vector of (A′, B′, C ′, D′) by a
factor of 1/N within a o(N) precision.



4. Tend N to infinity to get an a.e. vector. Indeed, all entropies
from the previous profile converge when N goes to infinity.
Conditions of inequality (3) are satisfied for I(A′ :B′|C ′)
and H(C ′|A′, B′) both vanish at the limit. Inequality (3)
eventually reduces to

1 +O

(
log2 q

q

)
≤ O

(
log2 q

q

)
which can not hold if q is bigger than some constant.

Notice that in both cases, even one fixed value of q suffices
to prove the result. The choice of the value of q provides some
freedom in controlling the gap between the lhs and rhs of both
inequalities.

In fact, we may combine the two above constructions into
one to get a single a.e. vector to prove the previous result.

Proposition 1. There exists one a.e. vector which excludes
both (1) and (3) simultaneously.

Proof sketch:
1. Generate (A,B,C,D) from (a, b, c, d)q with entropies N

times greater.
2. Construct A′′ = SW (A|B) and C ′ = SW (C|A,B)

simultaneously (with the same serialization (A,B,C,D)).
3. Since A′′ is a Slepian–Wolf hash of A given B, we have

• H(C|A′′, B) = H(C|A,B) + o(N) and
• H(C|A′′, B,C ′) = H(C|A,B,C ′) + o(N) = o(N).

By inspecting the proof of the Slepian–Wolf theorem we
conclude that A′′ can be plugged into the argument of
Lemma 2 instead of A.

4. The entropy profile of the constructed quadruple
(A′, B′, C ′, D′) is approximately N times the entropy
profile of (a, b, c, d)q with a possible overhead of

O(I(A:B) +H(C|A,B)) + o(N) = O

(
log2 q

q
N

)
,

and further :
• I(A′ :B′|C ′) = 0
• I(A′ :B) = o(N)
• H(C ′|A′, B′) = o(N)

5. Scale the corresponding entropy profile by a factor 1/N
and tend N to infinity to define the desired a.e. vector.

IV. CONCLUSION

In this paper we discussed the known conditional informa-
tion inequalities. We presented a simple algebraic example
which provides a new proof that two conditional informa-
tion inequalities are essentially conditional (they cannot be
obtained as a direct corollary of any unconditional information
inequality). Then, we prove a stronger result: two of the main
three nontrivial linear conditional information inequalities are
not valid for asymptotically entropic vectors.

This last result has a counterpart in the Kolmogorov
complexity framework. It is known that unconditional linear
information inequalities for Shannon’s entropy can be directly

translated into equivalent linear inequalities for Kolmogorov
complexity, [3]. For conditional inequalities the things are
more complicated. Inequalities (1) and (3) could be rephrased
in the Kolmogorov complexity setting; but natural counterparts
of these inequalities are not valid for Kolmogorov complexity.
The proof of this fact is very similar to the argument in
Theorem 2 (we need to use Muchik’s theorem on conditional
descriptions [12] instead of the Slepian–Wolf theorem em-
ployed in Shannon’s framework). We skip details for the lack
of space.

Open problems. Several natural questions remain open:
• Does (2) hold for a.e. vectors?
• Does there exist any other essentially conditional inequal-

ity that holds for a.e. vectors?
• Does there exist any essentially conditional linear in-

equality for Kolmogorov complexity?
Notice that any essentially conditional inequality for asymp-

totically entropic vectors would have an interesting geometric
interpretation: it would means that the convex cone of a.e.
vectors has smoothly rounded edges on some of its flat faces.
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[8] F. Matúš. Conditional independences among four random variables III:
final conclusion. Combinatorics, Probability & Computing, 8 (1999),
pp. 269–276.
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