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Introduction

What is it all about? It’s a story of conditional
linear information inequalities. i.e., linear inequali-
ties for Shannon entropy that hold for distributions
whose entropies meet some linear constraints.
We prove that some conditional information in-
equalities cannot be extended to any unconditional
one. Some of these conditional inequalities hold
for almost entropic points, while others do not.

Why should you care?
Answer 1: If you are working in theory, you prob-
ably want to know “the most universal laws” of
information theory.
Answer 2: If you are working in applications, you
should keep in mind that some information in-
equalities are non robust.

Linear information Inequalities (A)

Basic information inequalities [Shannon, 1940-s]:

I H(a, b) ≥ H(b),
a.k.a. H(a|b) ≥ 0,

I H(a) +H(b) ≥ H(a, b),
a.k.a. I(a; b) ≥ 0,

I H(a, c) +H(b, c) ≥ H(a, b, c) +H(c),
a.k.a. I(a; b|c) ≥ 0,

where a, b, c are (tuples of) jointly distributed dis-
crete random variables.

Linear information Inequalities (B)

Shannon-type information inequalities :
all positive linear combinations of basic inequali-
ties.

Linear information Inequalities (C)

non-Shannon-type information inequalities:
linear inequalities that hold for all distributions but
cannot be represented as a positive combination
of basic inequalities.

I Z. Zhang, R.W. Yeung [1998] :
I(c; d) ≤ 2I(c; d|a) + I(c; d|b) + I(a; b) +

+I(a; c|d) + I(a; d|c)
I R. Dougherty, C. Freiling, and K. Zeger

[2006]: six other inequalities,
I several other examples,
I F. Matúš’07: there exist infinitely many

independent linear information inequalities
(with 4 random variables)

Applications of inf. inequalities

I fundamental limits in information theory:
. in coding for noisy channels,
. in compression,
. in secrecy,
. in streaming algorithms, etc.

I conditional independence relations,
I Kolmogorov complexity,
I combinatorics,
I group theory,
I etc., etc., etc.
A prominent example: non-Shannon-type in-
equalities result in progress in secret sharing
[see A. Beimel, N. Livne, and C. Padró; A. Beimel
and I. Orlov; J.R. Metcalf-Burton].

Conditional information inequalities

General form of a conditional inequality:
If [some linear constraints for entropies] then [a linear inequality for entropies].

Trivial examples of conditional information inequalities

Conditional inequalities that follow directly from unconditional ones:

I If I(a; b) = 0, then H(a) +H(b) ≤ H(a, b).
Why? Because H(a) +H(b) = H(a, b) + I(a; b).

I If I(a; b) = 0, then H(a) +H(b) +H(c) ≤ H(a, c) +H(b, c).
Why? It follows from an unconditional Shannon-type inequality
H(a) +H(b) +H(c) ≤ H(a, c) +H(b, c) + I(a; b).

I If I(e; c|d) = I(e; d|c) = I(c; d|e) = 0,
then I(c; d) ≤ I(c; d|a) + I(c; d|b) + I(a; b).
Why? It follows from an unconditional non-Shannon-type inequality
I(c; d) ≤ I(c; d|a) + I(c; d|b) + I(a; b) + I(e; c|d) + I(e; d|c) + I(c; d|e)

Essentially conditional information inequalities

(I1) [Zhang–Yeung’97]
If I(a; b) = I(a; b|c) = 0,
then I(c; d) ≤ I(c; d|a) + I(c; d|b).

(I2) [F. Matúš’99]
If I(a; b|c) = I(b; d|c) = 0,
then I(c; d) ≤ I(c; d|a) + I(c; d|b) + I(a; b).

(I3) [K.-R.’11]
If I(a; b|c) = H(c|a, b) = 0,
then I(c; d) ≤ I(c; d|a) + I(c; d|b) + I(a; b).

F. Matúš [2007] proved (implicitly):

(I4) If I(a; d|c) = I(a; c|d) = 0,
then I(c; d) ≤ I(c; d|a) + I(c; d|b) + I(a; b).

(I5) If I(b; c|d) = I(c; d|b) = 0,
then I(c; d) ≤ I(c; d|a) + I(c; d|b) + I(a; b).

+ three other conditional inequalities with 5 random variables.

Theorem 1. Inequalities (I1–I5) are essentially conditional.
E.g., inequality

I(a; b) = I(a; b|c) = 0⇒ I(c; d) ≤ I(c; d|a) + I(c; d|b) + I(a; b)
is essentially conditional: for all λ1, λ2 there exists a distribution (a, b, c, d)
such that

I(c; d) 6≤ I(c; d|a) + I(c; d|b) + I(a; b) + λ1I(a; b) + λ2I(a; b|c)
Remark. Yes, all these conditional inequalities are about one and the same
Ingleton inequality I(c; d) ≤ I(c; d|a)+I(c; d|b)+I(a; b). No, the Ingleton
inequality is not valid for Shannon entropy without constraints.

Sketch of the proof for (I1): Assume that for some λ1, λ2

(∗) I(c; d) ≤ I(c; d|a) + I(c; d|b) + I(a; b) + λ1I(a; b) + λ2I(a; b|c)
Consider an affine plane over a finite field Fq. Define a distribution (a, b, c, d)
as follows:

I Let c be a random non-vertical
line c;

I pick independently and uniformly
two points a and b in line c.

I pick a random parabola d that
intersect c at points a and b.

a
b

c

d

I(c; d) ≈ 1, since independently chosen line and parabola on the plane intersect
almost half of the time. Also we have I(c; d|a) = I(c; d|b) = I(a; b|c) = 0
and I(a; b) = O(log q

q ). With a more accurate calculation, (*) results in

1− 1
q
≤ λ1

log q
q
,

a contradiction (for large enough q).

Entropic and almost entropic points

Definition 1. A point h ∈ R2n−1 is called entropic if there
exists a distribution (x1, . . . , xn) such that

h = (H(x1), . . . , H(x1, x2), . . . , H(x1, . . . , xn)).
Definition 2. A point h ∈ R2n−1 is called almost entropic
(a.e.) if it is a limit of a sequence of entropic points.
Remark 1. For each n the set of a.e. points is known to
be a closed convex cone.
Remark 2. For each n the set of a.e. points is exactly the
set of all points in R2n−1 that satisfy all valid unconditional
linear information inequalities involving n random variables.

Two kinds of essentially conditional
information inequalities

Theorem 2. (I4–I5) hold for a.e. points.
Proof: just inspect the proof of (I4–I5).
Theorem 3. (I1–I3) do not hold for a.e. points.
Proof: The construction from Th 1 + Slepian–Wolf.

Geometric intuition.

For simplicity we draw 2D polygons instead of a 15D cone:

Fig. 1. A conditional inequality is not essentially condi-
tional, it is a “shade” of one unconditional inequality:

(0,0) (1,0) x

y

−x+ y+1≥ 0

If y = 0 then x ≤ 1. It follows from −x + y + 1 ≥ 0.
cf. “Trivial” examples of conditional information inequalities.

Fig. 2. An essentially conditional inequality:
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If y = 0 then x ≤ 1. This conditional inequality is implied
by an infinite family of tangent half-planes.
cf. Th. 2 on essentially conditional inequalities (I4–I5).

Fig. 3. An essentially conditional inequality that does not
hold for the closure of the set:

(0,0) (1,0) (2,0) x
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If y = 0 then x ≤ 1. For the closure of this set with the
same constraint y = 0 we have only x ≤ 2.
cf. Th. 3 on essentially conditional inequalities (I1), (I3).

Theorem 4 [Matúš’07]. For n ≥ 4 the cone of all
almost entropic points is not polyhedral.
Proof: Follows from (I4), from (I5), or any other essen-
tially conditional inequality for a.e. points, see Fig. 2 above.

Open Problems

I Does inequality (I2) hold for almost entropic points?
I Do there exist any essentially conditional inequalities

with a constraint of co-dimension 1?
I What is the geometric, physical meaning of (I1), (I3)?


