The axiomatic power of Kolmogorov complexity

Laurent Bienvenu', Andrei Romashchenko?, Alexander Shen?, Antoine
Taveneaux!, and Stijn Vermeeren?

! LIAFA, CNRS & Université Paris 7
2 LIRMM, CNRS & Université Montpellier 2
3 University of Leeds

Abstract. The famous Godel incompleteness theorem states that for
every consistent sufficiently rich formal theory T there exist true state-
ments that are unprovable in T'. Such statements would be natural can-
didates for being added as axioms, but how can we obtain them? One
classical (and well studied) approach is to add to some theory T' an ax-
iom that claims the consistency of T. In this paper we discuss another
approach motivated by Chaitin’s version of Goédel’s theorem where ax-
ioms claiming the randomness (or incompressibility) of some strings are
probabilistically added, and show that it is not really useful, in the sense
that this does not help us to prove new interesting theorems. This re-
sult (cf. [She06]) answers a question recently asked by Lipton [LR11].
The situation changes if we take into account the size of the proofs:
randomly chosen axioms may help making proofs much shorter (un-
less NP=PSPACE). This result partially answers the question asked
in [She06].

We then study the axiomatic power of the statements of type “the Kol-
mogorov complexity of x exceeds n” (where x is some string, and n is
some integer) in general. They are II; (universally quantified) statements
of Peano arithmetic. We show (Theorem 5) that by adding all true state-
ments of this type, we obtain a theory that proves all true II;-statements,
and also provide a more detailed classification. In particular, as Theo-
rem 7 shows, to derive all true II;-statements it is enough to add one
statement of this type for each n (or even for infinitely many n) if strings
are chosen in a special way. On the other hand, one may add statements
of this type for most x of length n (for every n) and still obtain a weak
theory (Theorem 10). We also study other logical questions related to
“random axioms” (hierarchy with respect to n, Theorem 8 in Section 3.3,
independence in Section 3.6, etc.).

Finally, we consider a theory that claims Martin-Lo6f randomness of a
given infinite binary sequence. This claim can be formalized in different
ways. We show that different formalizations are closely related but not
equivalent, and study their properties.

1 Introduction

We assume that the reader is familiar with the notion of Kolmogorov complexity
and Martin-Lof randomness (See [LV08,She00,DH10] for background information

about Kolmogorov complexity and related topics), but since for our purposes this
notion needs to be expressed in formal arithmetic, we recall the basic definitions.
The Kolmogorov complexity C(z) of a binary string z is defined as the mini-
mal length of a program (without input) that outputs z and terminates. This
definition depends on a programming language, and one should choose one that
makes complexity minimal up to O(1) additive term. Technically, there exist dif-
ferent versions of Kolmogorov complexity. Prefix complexity K(z) assumes that
programs are self-delimiting. We consider plain complexity C(z) where no such
assumptions are made; any partial function D can be used as an “interpreter”
of a programming language, so D(p) is considered as an output of program p,
and Cp(x) is defined as the minimal length of p such that D(p) = 2. Then some
optimal D is fixed (such that Cp is minimal up to O(1) additive term), and
Cp(x) is called (plain Kolmogorov) complexity of # and denoted C(x). Most
strings of length n have complexity close to n. More precisely, the fraction of
n-bit strings that have complexity less than n — ¢, is at most 27¢. In particular,
there exist strings of arbitrary high complexity.

However, as G. Chaitin pointed out in [ChaT71], the situation changes if we
look for strings of provably high complexity. More precisely, we are looking for
strings « and numbers n such that the statement “C(z) > n” (properly formal-
ized in arithmetic; note that this is a II; statement) is provable in formal (Peano)
arithmetic PA. Chaitin noted that there is a constant ¢ such that no statement
“C(x) > n” is provable in PA for n > ¢. Chaitin’s argument is a version of Berry’s
paradox: Assume that for every integer k we can find some string x such that
“C(x) > k7 is provable; let zj be the first string with this property in the order
of enumeration of all proofs; this definition provides a program of size O(log k)
that generates xy, which is impossible for large k since “C(xy) > k” is provable
in PA and therefore true (in the standard model).*

This leads to a natural idea. Toss a coin n times to obtain a string x of
length n, and consider the statement “C(z) > n — 1000”. This statement is true
unless we are extremely unlucky. The probability of being unlucky is less than
271000 Tn natural sciences we are accustomed to identify this with impossibility.
So we can add this statement and be (almost) sure that it is true; if n is large
enough, we get a true non-provable statement and could use it as a new axiom.
We can even repeat this procedure several times: if the number of iterations m
is not astronomically large, 271999 is still astronomically small.

Now the question: Can we obtain a richer theory in this way and get some
interesting consequences, still being practically sure that they are true? The an-
swers are given in Section 2:

4 Another proof of the same result shows that Kolmogorov complexity is actually not
very essential here. By a standard fixed-point argument one can construct a program
p (without input) such that for every program ¢ (without input) the assumption “gq
is equivalent to p” (i.e., ¢ produces the same output as p if p terminates, and ¢
does not terminate if p does not terminate) is consistent with PA. If p has length &,
for every x we may assume without contradiction that p produces x, so one cannot
prove that C(z) exceeds k.

— yes, this is a safe way of enriching PA (Theorem 1);
— yes, we can get a stronger theory this way (Chaitin’s theorem), but

— no, we cannot prove anything interesting this way (Theorem 3).

So the answer to our question is negative; however, as we show in section 2.3
(Theorem 4), these “random axioms” do give some advantages: while they cannot
help us to prove new interesting statements, they can significantly shorten some
proofs (unless PSPACE=NP).

In Section 3 we switch to a more general question: what is the axiomatic
power of statements “C(x) > n” for different and n and how are they related
to each other? They are Il;-statements; we show that adding all true state-
ments of the form “C(x) > n” as axioms, we can prove all true II;-statements
(Theorem 5).°

We show that the axiomatic power of these statements increases as n in-
creases, and relate this increase to a classification of II;-statements by their
“complexity” (cf. [CC09a,CC09b]). We show that for some ¢ and for all n one
(true) statement C(x) > n for some string x of length n is enough to prove all
true statements C(y) > n—c (Theorem 7), and that all true statements C(x) > n
for given n are not enough to prove any statement C(y) > n + ¢ (Theorem 8).
In other words, the bigger the lower bound for complexity is, the more powerful
the axioms we get.

This result is rather fragile. First, the choice of a string x is important: for
other strings of length n this property is not true (even if we add many axioms at
the same time, see Theorem 10). Also the precision of the complexity information
is crucial (Theorem 11).

Then we show that a random choice of several random axioms (about com-
plexities) with high probability leads to independent statements (any combi-
nation of these statements with or without negations is consistent with PA,
Theorem 13).

Many of the results mentioned are closely related to corresponding statements
in computation theory. Theorem 15 shows, however, that such a correspondence
does not necessarily works.

The results mentioned above deal with unconditional complexity. Some of
them trivially generalize to conditional complexity, but sometimes the situation
changes. In Theorem 16 we show that there exists some c¢ such that every true
IT;-statement can be derived in PA from true statements of the form C(xz|y) > c.
(Here C(z|y) is the length of the shortest program that maps y to x.)

Finally, in Section 4 we switch from finite strings to infinite sequences and

consider theories that say (in some exact way) that a given infinite binary se-
quence X is Martin-Lof random.

5 By “statements” we mean statements in the language of PA, and by “true state-
ments” we mean statements that are true in the standard model of PA.

2 Probabilistic proofs in Peano arithmetic

2.1 Random axioms: soundness

Let us describe more precisely how we generate and use random axioms. As-
sume that some initial “capital” ¢ is fixed. Intuitively, € measures the maximal
probability that we agree to consider as “negligible”.

The basic version: Let ¢ be an integer such that 27¢ < ¢ and n an integer.
We choose at random (uniformly) a string = of length n, and add the statement
“C(x) > n — ¢ to PA (so it can be used together with usual axioms of PA).°

A slightly extended version: We fix several numbers ny,...,ng and ¢1, ..., cg
such that 27 ... 427%% < ¢. Then we choose at random strings z1, ...,z of
length nq,...,ng, and add all the statements “C(x;) >n—¢;” fori=1,... k.

Final version: In fact, we can allow an even more flexible procedure of adding
random axioms that does not mention Kolmogorov complexity explicitly. Assume
that we have already proved for some finite set A of natural numbers, for some
rational 6 > 0 and for some property R(x) (an arithmetical formula with one free
variable x) that the proportion of members of A such that —R(n) is at most §.
We denote the latter statement by (Vsz € A)R(x) in the sequel. This statement
can be written in PA in a natural way. We assume here that A is represented
by some formula A(z); for each n € A the formula A(7) is provable in PA; for
each n ¢ A the formula —A(n) is provable in PA; finally, we assume that the
cardinality of A is known in PA (the corresponding formula is provable).

Then we are allowed to pick an integer n at random inside A (uniformly),
and add the formula R(7) as a new axiom. This step can be repeated several
times. We have to pay d for each operation until the initial capital ¢ is exhausted;
different operations may have different values of §. Note that the axiom added
at some step can be used to prove the cardinality bound at the next steps.”

Our previous examples are now special cases: A is the set of all n-bit strings
(formally speaking, the set of corresponding integers, but we identify them with
strings in a natural way), the formula R(z) says that C(z) > n—c, and § = 27¢.

In this setting we consider proof strategies instead of proofs. Normally, a
proof is a sequence of formulas where each next formula is either an axiom or is

5 As usual, we should agree on the representation of Kolmogorov complexity function C
in PA. We assume that this representation is chosen in some natural way, so all the
standard properties of Kolmogorov complexity are provable in PA. For example,
one can prove in PA that the programming language used in the definition of C
is universal. The correct choice is especially important when we speak about proof
lengths (Section 2.3).

Actually this is not important: we can replace previously added axioms by conditions.
Assume for example that we first proved (Vsz € A)R(x), then for some randomly
chosen n we used A(n) to prove (V.y € B)S(y), and finally we added S(m) for some
random m € B. Instead, we can prove without additional axioms the statement
(Vry € B) (A(n) = S(y)), and add A(n) — S(m), which gives the same result, since
A(n) is added earlier in the proof.

=1

obtained from previous ones by some inference rule. Now we have also random
steps where we go from the formula (V,z € A)R(z) to some R(n) for randomly
chosen n € A. Formally, a proof strategy is a finite tree whose nodes are labeled
by pairs (7, 9), where T is a set of formuli (obtained so far) and § is a rational
between 0 and 1 (the capital at that stage of the process). Nodes can be of two

types:

— Deterministic nodes only have one child. If (7,) is the label of a determin-
istic node, the label (77, §’) of its child has ' = § (no capital is spent), and
T = T U {4} where ¢ is some statement which can be obtained from 7'
using some inference rule.

— Probabilistic nodes have several children. If (T, §) is a probabilistic node, the
set T' contains a formula (V,n € A) R(n) where 7 < §, the node has as many
children as elements of A, and the labels of the children are (TU{R(n)},d—7)
where n ranges over A.

The root of the tree has label (PA,), where PA is the set of axioms for Peano
arithmetic, and ¢ is the initial capital.

We will often identify a proof strategy m with the corresponding probabilistic
process that starts from the root of the tree, and at every probabilistic node
chooses uniformly a child of the current node, until a leaf is reached. The logical
theory T built at the end of the process (when a leaf is reached) is, in this
context, a random variable. We call it the theory built by .

(Vry € B) S(y)

Fig. 1. A proof strategy represented as a tree

Given a proof strategy m and a formula ¢, we consider the probability that ¢
is provable by m, i.e., the total probability of all leaves where ¢ appears.

One can consider also a compressed version of the proof where we omit all
non-branching steps. In this version each vertex is labeled with some theory; the
root has label PA; at a non-leaf vertex some formula (Vsz € A)R(x) is provable
in the corresponding theory, and at its sons the formulas R(n) for different n € A
are added to that theory. The probability of ¢ being provable by this strategy
is the probability of leaves where ¢ is provable.

We can also inductively define the relation 7')7 ¢ which means that there
exists a randomized proof starting from T with capital € > 0 that proves ¢ with
probability at least p. The inductive steps are:

TH
for every e > 0 and p € [0, 1];

——— for every € > 0;
Thee T e

TH (Véaj (S A) R(I) {Ta R(ﬁ) 163;6 cp}nGA
T e

if6<e,0<p< Y pi/#A
neA

It is easy to see that this inductive definition is equivalent to the original
one: T fv; @ if and only if there exists a proof strategy with initial capital € that
proves ¢ starting from T with probability p or more. Indeed, if T F ¢, then every
capital € > 0 is enough to prove ¢, we do not need randomized steps; everything
is provable with probability at least 0; if T F (Vsz € A) R(x), then we can start
the proof from T using a randomized step, and the probability to prove ¢ is the
average of the probabilities p,, to prove it starting from the enlarged theories
using the remaining capital € — 6.

On the other hand, having a proof strategy, we may use the backward induc-
tion (from leaves to the root) to establish the 7 p-relation for all the nodes of
the tree (for current capital € and the probability p to prove ¢ starting from the
current vertex, or any smaller number).

Having all these equivalent definitions, we nevertheless consider the first def-
inition of a proof strategy as the main one. This is important when we speak
about the length of the proof. Note also that we do not assume here that a proof
strategy is effective in any sense.

The following theorem says that this procedure can indeed be trusted:

Theorem 1 (soundness) Let 7 be a proof strategy with initial capital §. The
probability that the theory T built by m contains some false statement is at most .

This theorem has the following immediate corollary.

Corollary 2 Let ¢ be some arithmetical statement. If the probability to prove ¢
for a proof strategy ™ with initial capital € is greater than e, then ¢ is true. In
other words, PA }w; @ for p > e implies that ¢ is true.

Proof (of Theorem 1). This theorem is intuitively obvious because a false state-
ment appears only if one of the “bad events” has happened (a false axiom was
selected at some step), and the sum of probabilities of all bad events that happen
along some branch is bounded by e. However, this argument cannot be under-
stood literally since different branches have different bad events (after the first
branching point).

So let us be more formal and say that a node of label (T,¢) is good if all
statements in T are true and bad otherwise. We prove the following property
by backward induction: (&) if a node has a label (T, 9), either (a) it is bad, or
(b) it is good and the probability that, starting from that node, one will reach a
bad node is smaller or equal to §. Backward induction means that we prove this

property for the leaves (base case) and then prove that if it holds for all children
of a node, it also holds for that node. It follows immediately that the property
holds for all nodes of the tree, hence it holds at the root, which is what we want
(since the root is good).

Here the base case is immediate: all leaves have the property (&); there is
nothing to prove. Now suppose that we have a node u of label (T, §) such that all
of its children have the property (). If w is a deterministic node, there is again
nothing to prove, as it is easy to see from the definition that a deterministic
node has the (&) property if and only if its child does. If u is probabilistic,
let (V.2 € A)R(x) be the formula in T associated to the probabilistic choice at
node u. If u is bad, we are done (the property (&) automatically holds at u), so let
us assume it is good. This means in particular that the formula (V,z € A)R(x)
is true, which means that u has a most a fraction 7 of bad children. By the
induction hypothesis, starting from any good child of u, the probability to reach
a bad node is at most § — 7. Thus the probability to reach a bad node starting
from w is at most

T+(1-7)6-7)=0—-T(0—-7)<6

(the last inequality uses the fact that 6 > 7). O

2.2 Random axioms are not useful

As Chaitin’s theorem shows, there are proof strategies that with high probability
lead to some statements that are true but non-provable (in PA). However, the
situation changes if we want to get some fized statement, as the following theorem
shows:

Theorem 3 (conservation) Let ¢ be some arithmetical statement. If the prob-
ability to prove ¢ for a proof strategy m with initial capital € is greater than e,
then o is provable (in PA without any additional azioms).

Formally, Theorem 3 is a stronger version of Corollary 2, but the message
here is quite different: Corollary 2 is the good news (probabilistic proof strategies
are safe) whereas Theorem 3 is the bad news (probabilistic proof strategies are
useless).

Proof. Let ¢ be a fixed statement that is not provable in PA. We say that a node
u is strong if it has label (7,0) with T' F ¢, and is weak otherwise. We again
use a proof by induction, and we prove that each node u has the property ({):
either (a) w is strong or (b) w is not strong and the probability that starting
from w one hits a strong node v is bounded by 4.

Again, the fact that leaves all have the property () is immediate. Now
suppose that we have a node u of label (T',0) such that all of its children have
the property ({). If w is a deterministic node, there is again nothing to prove,
as it is easy to see from the definition that a deterministic node has the ()
property if and only if its child does. If u is probabilistic, let (V,z € A)R(x) be

the formula in 7" associated to the probabilistic choice at node w. If u is strong,
we are done (the property () automatically holds at u), so let us assume it is
not. Let p be the probability that one hits a strong node starting from u. Let
us show that the fraction of strong nodes among the children of u is at most 7.
Let x1,...,7; be the elements of A corresponding to the strong children of wu.
For each i = 1,...,t we have T'U R(x;) F ¢, or equivalently T+ R(z;) — ¢ by
definition of strong vertices. Therefore,

TF[R(x1)V R(z2) V...V R(x)] — .

If t > 7#A, this fact, together with the assumption that (V,z € A)R(z), entails
T F ¢, so we get a contradiction. Thus the fraction of strong children of u is at
most 7. Moreover, for any weak child v the induction hypothesis tells us that
the probability to hit a strong node starting from v is at most 6 — 7. Thus the
total probability to hit a strong node starting from u is at most

T+(1l=7)0—7) <6

2.3 Polynomial size proofs

The situation changes drastically if we are interested in the length of proofs. The
argument used in Theorem 3 gives an exponentially long “conventional” proof
compared with the original “probabilistic” proof, since we need to combine the
proofs for all terms in the disjunction. (Here the length of a probabilistic proof
strategy is measured as the length of the longest branch; note that the total size
of the proof strategy tree may be exponentially larger.) Can we find another
construction that transforms probabilistic proof strategies into standard proofs
with only polynomial increase in length? Probably not; some reason for this is
provided by the following Theorem 4.

Theorem 4 If every probabilistic proof strategy w can be transformed into a
deterministic proof whose length is polynomial in the length of &, then the com-
plexity classes PSPACE and NP coincide.

Proof. It is enough to consider a standard PSPACE-complete language, the lan-
guage TQBF of true quantified Boolean formulas. A standard interactive proof
for this language (see, e.g., [Sip96]; we assume that reader is familiar with that
proof) uses an Arthur—Merlin protocol where the verifier (Arthur) is able to per-
form polynomial-size computations and generate random bits that are visible
to the prover (Merlin) but cannot be corrupted by him. The correctness of this
scheme is based on simple properties of finite fields. This kind of proof can be
easily transformed into a successful probabilistic proof strategy in our sense. To
explain this transformation, let us recall some details.

Assume that a quantified Boolean formula ¢ starting with a universal quan-
tifier is given. This formula is transformed into a statement that says that for

some polynomial P(z) two values P(0) and P(1) are equal to 1. This polynomial
is implicitly defined by a sequence of operations. To convince Arthur that it is
indeed the case (i.e., that P(0) = P(1) = 1), Merlin shows P to Arthur (listing
explicitly its coefficients; there are polynomially many of them). In other terms,
Merlin notes that the formula

Vz(P(z) = P(z))] — [P(0) = 1A P(1) =1]

and therefore
Va(P(x) = P(x))] — ¢

are true (and provable in PA). Here P(z) is the polynomial P defined as the
result of the sequence of operations, while P(z) is the explicitly given expression
for P. Then Merlin notes that the implication

[P(r) = P(r)] = Va(P(z) = P(x))

is true for most elements r of the finite field and this fact is provable in PA
(using basic results about finite fields), so such an implication can be added as a
new axiom, and it remains to convinve Arthur that P(r) = P(r). Continuing in
this way, we get a probabilistic proof strategy that mimics the interactive proof
protocol for TQBF.8

This construction gives for each TQBF a probabilistic proof strategy (in the
sense of Section 2.1) of polynomial length that uses some small initial capi-
tal . Assume that any probabilistic proof strategy can be transformed into a
conventional proof in PA of polynomial size. Then this conventional proof is a
NP-witness for TQBF, so PSPACE = NP. a

3 Non-randomly chosen axioms

3.1 Full information about complexities and its axiomatic power

In this section we study in general the axiomatic power of the axioms “C(z) > n”.
Let us start with a simple question: assume that we add to PA all true statements
of this form as axioms. What theory do we get? Note that these statements
are II;-formulas, so their negations are existential formulas and are provable
when true. So with these axioms we have the full information about Kolmogorov
complexity of every binary string. The axiomatic power of this information has
a simple description:

Theorem 5 If one adds to PA all true statements of the form “C(z) > n”, the
resulting theory proves all true 11y -statements.

8 This argument assumes that our version of PA allows us to convert the argument
above into a polynomial-size randomized proof. We do not go into these technical
details here.

Proof. The proof is an adaptation of the proof that 0’ is Turing-reducible to the
function C (see Proposition 2.1.28 in [Nie09]).

Consider the upper bound C*(x) for complexity that appears if we restrict
the computation time for decoding by t. The value of C*(x) is computable given
x and t. As t increases, C*(x) decreases (or remains the same), and the limit
value is C(x).

For some number N, we consider the minimal value of ¢ such that C*(x)
reaches C(x) for all strings x of length at most N. Let us denote this value
by B(N). Let us show that every terminating program (without input) of size
N —O(log N) terminates in at most B(N) steps. Indeed, a terminating program
p can be considered as a description of a natural number, namely, the number
of steps needed for its termination. Assume that this number is greater than
B(N). Then, knowing p and N, we can compute the table of true complexities
of all strings of length N (since for these strings C coincides with C?, where ¢
is the number of steps needed for p to terminate). Therefore we can effectively
find a string of length N that has complexity at least N (such a string always
exists). This leads to a contradiction if the total information in p and N is less
than N — O(1); and this is guaranteed if the size of p is less than N — O(log N).
(Note that we need O(log N) additional bits to specify N in addition to p.)

This shows that the information about the complexities of strings of length N
is enough to solve the halting problem for all programs of size N — O(log N). So
the halting problem is decidable with C as oracle (the result mentioned above).

It remains to note that this argument can be formalized in PA. Using axioms
that guarantee the complexity of all strings up to length N, we can prove the
value of B(N). Also we can prove that each program p of size at most N —
O(log N) terminates in B(N) steps or does not terminate at all. Therefore, we
can prove that p does not terminate if it is the case. It remains to note that
every II;-statement is provably equivalent to non-termination of some program
(namely, the program looking for a counterexample for this statement). ad

Remark:

1. To be precise, in the last theorem we need to specify how the function C is
represented by an arithmetic formula. It is enough to assume that C is defined
as the minimal length Cp(z) of the program that produces x with respect to an
interpreter D, where the interpreter D is provably optimal, i.e., for all D’, there
exists a constant ¢ such that

PAFVz [Cp(z) < Cp/ () + ¢].

We always assume that C is represented in this way.

2. A sceptic could (rightfully) claim that the exact value of Kolmogorov
complexity can encode some additional irrelevant information (in particular,
about II;-statements’ truth values). For example, it is not obvious a priori that
the theory obtained by adding the full information about the values of C does not
depend on the choice of optimal programming language fixed in the definition
of Kolmogorov complexity. Also one may ask whether a similar result is true for
prefix complexity.

10

To address all these questions, we may consider weaker axioms. Assume, for
example, that for every x the complexity of x is guaranteed up to a factor 2, i.e.,
some axiom C(z) > ¢, is added where ¢, is at least half of the true complexity
of z. Is it enough to add these axioms for all x to prove all true II;-statements?
The answer is positive, and a similar argument can be used. Let B(N) to be the
minimal ¢ such that C*(z) < 2c, for all strings « of length N. Then, knowing
N and any number ¢ greater than B(N), we can compute C!(z) for all strings z
of length N, and get a lower bound ¢, > C'(z)/2 for C(z). Taking x such that
C'(z) > N for this ¢ (such an z exists since C? is an upper bound for C), we
find a string of length N that has complexity at least N/2 (such a string always
exists).

Therefore, every program of length less than N/2 — O(log N) terminates
before B(IV) steps, otherwise we could use the termination time to get a contra-
diction. Knowing (from the added axioms) the value of C(x) up to factor 2, we
can prove for some ¢ that this is the case, and therefore prove non-termination
for non-terminating programs (as before).

3.2 Complexity of Il;-statements

Let us introduce the notion of complexity of a (closed) II;-statement that can
be considered as a formal version of the ideas of [CC09a,CC09b).

Let U(x) be a II;-statement in the language of PA with one free variable x
(for simplicity we identify strings and natural numbers, so we consider x as a
string variable). We say that U is universal if for every closed II;-statement T
there exists some string ¢ such that

PAE [T < U(t)). (%)

For a universal U we can define the U-complexity of a closed II;-statement T
as the minimal length of ¢ that satisfies (x). As usual, the following statement is
true:

Theorem 6 There exists an optimal I1;-statement U(x) such that the corre-
sponding complexity function is minimal up to O(1) additive term.

Proof. Let V(p,x) be a II;-statement with two parameters such that for every
IT;-statement W (x) with one parameter there exists some string p such that

PAFVz [W(z) < V(p,x)].

Then we let U(px) = V(p,) where p is some self-delimiting encoding of p, e.g.,
p with doubled bits and 01 added at the end. a

We fix some optimal universal statement U(z) and measure the complexity
of II;-statements with respect to U(x); the complexity function is well defined
up to O(1) additive term.

Evidently, the complexity of all false II;-statements is the same constant; the
same is true for all provable II;-statements. Since one can construct a computable

11

sequence of non-equivalent (in PA) closed IIj-statements, it is easy to see that
the number of non-equivalent statements of complexity at most n is ©(2™).

Informally speaking, II;-statement of complexity at most n are statements
about non-termination of programs of complexity at most n, and their provable
equivalents. (The exact formulation allows O(1)-change in n.)

3.3 The axiomatic power of the complexity table up to length n

Now we can describe the axiomatic power of the complexity table up to some n:
it is roughly equivalent to all true II;-statements of complexity at most n. This
informal description requires several clarifications.

First, the complexity (both for strings and for II;-statements) is defined only
up to O(1) additive term. To take this into account, we say that two sequences
Ty,T5,... and S1,S;. ... of theories are O(1)- equivalent if T, C S, 4. and S,, C
T4c for some ¢ and all n. (The inclusion U C V means that every theorem of U
is a theorem of V'; we could also write V = U.)

Second, we need to specify what we mean by a “complexity table up to n”.
There are several possibilities. We may consider axioms that give full information
about complexities of all strings of length at most n. Or we may consider axioms
that specify the list of all strings of complezity at most n and complexities of all
these strings. All these variants work; one can even consider one specific string
of length n, the lexicographically first string r, of complexity at least n, and
consider a theory with only one axiom C(r,) > n. In the following theorem
we consider these “minimal” and “maximal” versions and show that they are
essentially equivalent.

Theorem 7 The following sequences of theories are O(1)-equivalent:

A, o Clry) > n

By, : the list of all strings that have complexity at most n, and full information
about their complexities (for each string of complexity at most n we add an
axiom specifying its complexity, and also add an axiom that says that all
other strings have complezity greater than n);

C, : all true Iy -statements of complexity at most n.

In particular, adding axioms C(r,) > n for infinitely many n, we get PA plus
all true II;-statements.

Proof. Tt is easy to see that B,, implies A,,.

To prove that C), . implies A,,, consider a II;-statement Rand(r) which says
that C(r) > |r| (where |r| is the length of 7). Then A,, is Rand(r,,) and therefore
A,, consists of a II;-statement of complexity at most n + O(1).

It remains to show that A, implies B, _. and C,,_.. This is similar to the
proof of Theorem 5.

Lemma 1. Let A(p) be some algorithm with input p. There exists some ¢ such
that for every n and for every input string p of length at most n — ¢ such that
A(p) does not terminate, the theory A, proves non-termination of A(p).

12

This lemma shows that A, implies B, _. since A, allows to prove non-
termination of all non-terminating programs of size at most n — ¢, so the true
values of complexities can be guaranteed if they do not exceed n — ¢. Similarly,
A,, implies Cy,_, since II;-statement U (z) claims that the program with input x
that searches for the counterexample to this statement, never terminates.

It remains to prove the lemma.

We know that C(r,,) > n and for all preceding strings y of length n we have
C(y) < n. Consider the minimal ¢ such that C*(y) < n for all these y. We denote
this value by B(n). Let us prove that for a suitable ¢ (that does not depend on
n) and for every string p of length at most n — ¢ the computation A(p) either
does not terminate or terminates in at most B(n) steps.

Every string p determines the number of steps needed for the termination
of A(p). Knowing p and n, we find this number ¢(p) and then take the first y
of length n such that C*®)(y) > n. If t(p) exceeds B(n), then we get 7,. On
the other hand, for every p such that A(p) terminates and for every n we get
some string of length n whose complexity does not exceed C(p,n)+ O(1), where
C(p,n) stands for the Kolmogorov complexity of the pair (p,n). Note that C(p, n)
is bounded by |p| + O(log(n — p)) + O(1) (we add to p a prefix that is a self-
delimiting description of n — p). If ¢ is large enough, for every string p of length
n — c or less we get a contradiction (assuming that ¢(p) steps are not enough for
the termination of A(p)). So all computations A(p) for |p| < n — ¢ terminate in
B(n) steps.

This reasoning can be formalized in PA. Having C(r,,) > n as an axiom, we
can prove that r, is the first string of complexity at least n: all the preceding
strings have a short description, and we can wait long enough to confirm that
it is indeed the case. Then we can prove the value of B(n) and prove that
every computation A(p) for short p either terminates in B(n) steps or does not
terminate at all. ad

Remark: To be closer to the initial framework, we may fix some constant c
and for every n consider the lexicographically first string y of length n such that
C(y) > n— c. Then we add to PA the statement C(y) > n — ¢ for this y and get
a theory AS. For this theory the statement of Theorem 7 is also true (and can
be proved in the same way); of course, the constant in O(1)-equivalence depends
on c.

This theorem leaves the following question open.

Question 1. Characterize precisely the true IT; statements of complexity n which
prove all true II; statements of complexity n — O(1).

It is natural to ask whether the power of theories of Theorem 7 strictly in-
creases as n increases. It is indeed the case, as the following “generalized Chaitin’s
theorem” shows:

Theorem 8 There exists some ¢ such that no statement of the form C(z) > n+c
can be proved in A, for any n.

13

(Theorem 7 allows us to replace A,, in the statement by B,, or C),.)

Proof. Consider the following program: given the string r, and some d, it starts
to look for PA-consequences of A,, saying that C(y) > n + d for some y and d.
(Note that n can be reconstructed as the length of r,,). When (and if) such a y
is found, it is the output of the program.

If the program terminates, the complexity of the output is at most n +
O(log d); on the other hand, it is at least n + d, so for all such cases we have
n 4+ O(logd) > n + d, and therefore d < O(1). O

This theorem has an interesting consequence that can be formulated without
any reference to complexities. Note that for every number n one can write an
arithmetic formula with one parameter = that in provably equivalent to x = n
and has length O(logn). (The standard formula with successor function has
length O(n), but we can use binary representation.) Using this fact, it is easy to
show that complexity of a II;-formula can be defined up to O(1)-factor as the
minimal length of provably equivalent formula. We know that one axiom of A4,
is enough to prove all axioms of C,,. In terms of lengths we get the following
statement:

Theorem 9 For everyn there exists a true Iy -formula of size O(n) that implies
in PA every true Il;-formula of size at most n.

3.4 Not all random strings are equally useful

Theorem 7 shows that it is enough to claim the incompressibility of one properly
chosen string r,, to derive all true IT;-statements of complexity n—O(1). However,
this is a very special property of this incompressible string, as we see in this
section.

Recall that there is ©(2") incompressible strings of length n. Indeed, there
are at most 2" — 1 programs of length less than n, but some of them are needed
to produce longer strings of complexity less than n. There is ©(2") such strings;
for example, one can consider strings xa where z is a string of length n — O(1).
So we have ©(2") incompressible strings of length n.

The following result shows that we can add many of them and still have
a theory that is weaker that theories of Theorem 7. We formulate this result
for the more general case of c-incompressible strings. (A string x is called c-
incompressible if C(x) > |z| — ¢.)

Theorem 10 Fiz a constant c. Let m(n) be a computable provable lower bound
for the number of c-incompressible strings of length n. For example, we can let
m(n) =2" —2""°¢ or m(n) = 2" for c = 0.

Let ¢ be a formula not provable in PA. Then it is possible to choose m(n)
strings of length n (for each n) in such a way that with PA with azioms C(x) >
n — c for all these x does not prove .

(The strings added are necessarily c-incompressible, otherwith the theory is
inconsistent and therefore proves ¢.)

14

Proof. We choose m(n) strings of length n sequentially for n = 1,2,... in such a
way that ¢ remains unprovable after each step. Assume that we did this for all
lengths smaller than n and ¢ is unprovable in the resulting theory. Let ¢t = m(n).
We want to add ¢ axioms of the form C(z) > n—c so that ¢ remains unprovable.
Imagine that this is impossible. Then for every ¢ strings x1,...,z; one can prove
(in the current extension of PA) that

(Clx1) >n—c)A(Clz2) >n—c)A...AN(C(zy) >n—c) = .

Note that this is the case for every x1,...,x, even if one of the statements
C(x;) > n — c is false, since then the left hand side is provably false. Therefore,
we can also prove

\/ (Clx1) >n—c)A(Claz) >n—c)A...AN(C(z:) > n—c) = ¢,

T1,..., Tt

and the left hand side is provable in PA due to the lower bound m(n). So we
conclude that ¢ was already provable before the induction step, contrary to the
induction assumption. a

Remark: In this proof it is important that m(n) is not just a computable lower
bound for the number of c-incompressible strings, but a provable lower bound.
Without this condition (m is only assumed to be a computable lower bound),
one can prove a weaker result: it is possible to add m(n) many axioms of type
“C(z) > n” (for all n) in such a way that the resulting theory does not prove
all true II;-statements. The reason is that the set C consisting of sequences of
statements of type “C(x) > n” which are consistent with PA and contain at least
m(n) elements for all n is (modulo proper encoding) a I1Y subset of 2% (the set
of infinite binary sequences). Hence C must contain an element S (sequence of
statements) which does not compute the halting set 0’ (this follows from the
low basis theorem of Jockusch and Soare [JS72]). However, any theory proving
all true II;-statements can Turing-compute C and therefore can compute 0’. So
adding the sequence S does not allow us to prove all true II;-statements. This
type of argument combining computability theory and logic will be an important
tool in Section 4.

3.5 Usefulness of random axioms is fragile

Theorem 7 says that for carefully chosen r,, the incompressibility axioms are
rather strong (imply all true IT;-statements) while for many other incompressible
strings this is not the case (Theorem 10).

In this subsection, we show that the usefulness of the well-chosen incom-
pressibility axioms is not solely due to the strings r,, themselves, but also to the
accuracy of the axiom. Namely, we prove the following:

Theorem 11 Let (r,) be a sequence of strings such that |r,| = n and C(r,) >
n — O(1). There exists a constant ¢ such that the azioms “C(rp,) > n — clogn”
(for all n) do not prove all true Iy -statements.

15

The first step of the proof of this theorem is the following lemma.’

Lemma 2. Let (r,) be a sequence of strings such that C(r,) > n. Suppose
Y € 2¥ computes the sequence (ry), and Y is uniformly Martin-Lof random
with respect to some oracle Z € 2. Then C%(r,) > n — clogn for some ¢ and
for all n.

Proof. To prove the lemma, it is enough to proof the following inequality:
C(r) < C%(r) + CY(r) +d?(Y) + O(log C(r)),

where d?(Y) stands for the expectation-bounded randomness deficiency of Y
with oracle Z. (This deficiency was introduced by Levin and Gécs, see [BGHT 11]
for details; dZ(Y) is finite if and only if Y is Martin-Lof random with oracle Z.
In this subsection we assume that the reader is familiar with the definition and
properties of randomness deficiency.)

Indeed, for r = 7, the value of C(r) is at least n; the value of CY (r) is
O(logn), since r, is computable with oracle Y from n; the deficiency is finite;
finally, the last term is O(logn). So we get CZ(r,) > n — O(logn).

It remains to prove the inequality above. We may use prefix complexity K
instead of plain complexity C, since our inequality has logarithmic precision
anyway (all complexities are bounded by C(r) and we have O(log C(r)) term).
So we need to prove that

K(r) < KZ(r) + KY (r) + dZ(Y) 4+ O(log K(r)),

For given r we consider all infinite sequences Y that (being used as oracle)
decrease the (prefix) complexity of 7 from K(r) to K¥ (r). The set W of all such
sequences is effectively open (since only finite information about an oracle can be
used). It contains Y (by construction) and has small measure: we will show that
its measure is O(27%) where s = K(r) — K¥ (r) is the decrease in complexity.
To describe W, it is sufficient to specify r and KY (r), so the complexity of
W given Z is bounded by KZ(r) 4+ O(log K(r)). The last step: if an effectively
open set W of measure 27P has description of complexity at most ¢, all its
elements have deficiency at least p — O(logp) — ¢q. (We apply this observation
with p = K(r) — K¥ (r) and ¢ = KZ(r) + O(log K(r)), using Z as an oracle.)

Let us prove two statements used in this argument.

(1) Let x be a string. The probability that (uniformly) random oracle Y de-
creases the prefix complezity of x at least by some s, does not exceed O(27%).

Assume that K(z) = ¢. Let us first (uniformly) generate a random oracle U
and then generate a string according to a priori distribution m(z|U) using this
oracle. Then we get a lower semicomputable discrete semimeasure on strings,
and it is bounded by (oracle-free) a priori probability m(z). The probability to

9 The idea of proving this lemma came to us by reading an early draft of Higuchi et
al.’s paper [HHSY] where it was stated as an open problem; by the time we wrote
up our proof and informed them of the solution, Higuchi et al. had independently
solved it.

16

get x in such a process is at least Q(pZ_(t_s)), where p is the probability to get
an oracle U that decreases complexity of = from ¢ to t — s (or more), since the
probability to get x using such an oracle is Q(m(z|U)) = Q(2-¢~*)). Since m
is maximal, we get Q(p2~~)) = O(m(z)) = O(27%), so p = O(27%). [Recall
that discrete a priori probabilities m(x) and m(z|U) are equal to 27X and
2~ K=IU) respectively up to a constant factor.]

(2) Let W be an effectively open set of measure 27P whose description has
prefix complexity at most q. Then all elements of W have (expectation-bounded)
randomness deficiency at least p — O(logp) — q.

To construct an expectation-bounded test, let us generate a program v for
effectively open set V' with probability m(v), and independently an integer k
with probability m(k). Then let us consider the indicator function Iy that is
equal to 1 inside V and to 0 outside V, and multiply it by 2*. We trim the
resulting function in such a way that its integral (w.r.t. uniform measure in the
Cantor space) is bounded and the function remains unchanged if the integral
does not exceed 1. Then we add all these functions (with weights m(v) - m(k));
the result is a test (has finite integral). On the other hand, one of the terms
corresponds to V = W and k = p, and this term remains untrimmed due to our
assumptions, so the test is at least 2P°m(v)m(p), and that is what we need, since
m(v) > Q(279) and m(p) = 2-CUoer), O

Corollary 12 Let (r,) be a sequence of strings such that C(r,) > n, and let C be
a non-empty 119-class. Then there exists Z € C such that CZ(r,) > n—O(logn).

Proof. Let (r,) be such a sequence of strings. By the Kucera-Gécs theorem,
there exists some Martin-Lof random real Y that computes this sequence. By
the basis for randomness theorem, there exist some Z € C be such that Y is
random relative to Z. It remains to apply Lemma 2.

The proof of Theorem 11 now goes as follows. Let ¢ be a sentence not provable
in PA. Consider the II9-class of (codes of) complete consistent extensions of
PA U {—p}. It is a non-empty class since PA U {—¢} is a consistent computable
set of axioms. By the above corollary, let Z be a member of this class such that
K?(r,) > n — O(logn). Let T be the theory coded by Z. Since T is complete,
it declares the value of Kolmogorov complexity for every string. Let Cr be
this version of Kolmogorov complexity. It is clear that CZ <* Cp since Crp is
computable with oracle Z and satisfies the quantitative restrictions (no more
than O(2*) strings u have Cr(u) < k). Thus Cr(r,) > n—O(logn), so for some
¢ the theory T contains the sentences “C(r,) > n — clogn” for all n, and also
contains —. Hence the axioms “C(r,) > n — clogn” do not prove . O

3.6 Independence of random axioms

In section 2 we added (to PA) random axioms of the form C(zx) > n — ¢ for
several randomly chosen strings 1, ..., Z.,; we noted that if m27¢ < 1, all the
added axioms are true with probability close to 1. A natural question arises: will
these axioms be independent?

17

Evidently, with positive probability they can be dependent. Imagine that we
add axioms C(z1) > n — ¢ and C(z3) > n — ¢ for two random strings x; and
xo obtained by 2n coin tosses. It may happen (with positive probability) that
xr1 = X2 or x7 is so close to x5 that they provably have the same complexity.
(For example, the decompressor used in the definition of C could give the same
complexity to strings that differ only in the last bit.) Or it may happen that the
first axiom is false, then it implies everything (its negation is provable).

However, the probability of dependence between these two axioms is small.
For example, consider the probability ¢ that

PAE (C(z1) >n—c¢) = (C(z2) >n—2c) (%)

for a randomly chosen pair (z1,z2). We want to show that this probability is
small. Indeed, we can fix 2 in such a way that the probability of (x) for this zo
and random x; is at least e. And Theorem 3 says that this is possible only if
C(z2) > n — c is provable (which implies n = O(1) due to Chaitin’s theorem) or
e < 27¢. So for large enough n the probability of (%) does not exceed 27°.

Similar results are true for other types of dependence. For example, we may
consider three random strings x1, x2, z3 and the event

PAF (C(z1) >n—c)= (C(za) 2n—c) V(C(xz) >n—2c)

This event also has probability at most 27¢ for large enough n. Indeed, the right

hand side implies that C(x2,z3) > n—c—O(1) (the pair has large complexity if

one of its components has large complexity), and we can use the same argument.
One more type of dependence: consider the event

PAE (C(z1) >n—c) A(C(az) >n—c) = (Clzz) >n—c); (%)

let its probability (for independent random 7, z2,23) be €. Then for some 3
the probability of this event (for random x; and x9) is at least e. Then we can
use the same argument as in the proof of Theorem 3. We can prove in PA that
the fraction of pairs (x1,x2) such that left hand side of the implication is false,
does not exceed 2 - 27¢ (each of the two conjuncts is false with probability at
most 27°). Therefore, if the fraction of pairs (21, z3) such that (x*) happens is
greater that 2 -27¢ we can form a disjunction and then prove C(x3) > n — ¢
without additional axioms.

Similar reasoning can be applied to other kind of dependencies, so three
random axioms

C(xl) Zn—c, C(l’g) Z?’l—C, C(‘T3) ZH—C
are independent with probability 1 — O(27°) for sufficiently large n. Here by
the independence of the statements 717,75, T3 we mean that each of 8 possible

combinations of the form

(T, ()T, ()13

18

(with or without negations) is consistent with PA.
A similar result (with the same proof) is true for any constant number of
randomly chosen axioms:

Theorem 13 Fiz some constant m. Let x1, . .., %, be m independent uniformly
randomly chosen strings of length n, and consider m statements

Clzy) >n—c, Clza)>n—c, ... ,Clzm)>n—ec

For large enough n they are PA-independent (all 2™ combinations of these state-
ments, with negations or not, are consistent with PA) with probability 1—O(27°),
where the constant in O-notation depends on m but not on n and c.

3.7 The strange case of disjunction

So far, the results we have established about the axiomatic power of Kolmogorov
complexity were related to its computability-theoretic properties. In this section,
we present an interesting example of a setting where the axiomatic power of a
family of axioms is (in some sense) weaker than its computational power. This
family consists of axioms of type “C(z) = ny V C(z) = ny” where one axiom
of this type is given for each z. The following result of Beigel et al. tells us
that having access, for each x, to a pair of possible values of C is enough to
reconstruct C:

Proposition 14 ([BBF06]) Let f : 2<% — N? be a function such that for
each x, if f(x) = (n1,n2) then C(x) € {n1,n2}. Then the function f Turing-
computes the function C.

Based on that this results and the results presented so far in the paper,
one could conjecture that if for each z we are given a (true) axiom of type
“C(z) = n1 VC(x) =ny”, then we are able to prove all true statements of type
“C(x) =n”. Surprisingly, this turns out to be false.

Theorem 15 Let ¢ be a formula which is not provable in PA. There exists a
family F of true azioms of type “C(z) = n1VC(z) = na”, where one such aziom
is given for any x, such that PAU F does not prove .

Proof. Since ¢ is not provable in PA, the theory PA + —¢ is consistent and has
some model 91. In this model a formula that defines Kolmogorov complexity
function, determines some function €: 91 — 91. Note that for standard natural
numbers n € M the values €(n) are standard (since C(x) < logz 4+ O(1) is
provable in PA). The value €(z) may coincide with C(z) or they may differ (in
this case €(x) is smaller, since a standard description for 2 remains valid in all
models of PA). Then we add the axioms

Clx) = Cl@) v Cla) = Ta)

(containing numerals both for true value C(x) and M-value &€(z), for all strings
x) to PA. Both the standard model and 9% are models of this theory. Therefore,
these axioms are true in the standard model but do not imply ¢. O

19

3.8 Axioms on conditional complexity

What happens if we switch to conditional complexity and add true statements
of the form C(z|y) > n? The unconditional complexity is a special case of con-
ditional one, so if we add all true statements of this form, we can prove all true
II, statements.

However, there is an important difference between conditional and uncondi-
tional case. The following theorem shows that now we do not need unbounded
values of n to get all true II;-statements.

Theorem 16 There exists some constant ¢ such that PA together with all true
statements of the type C(z|y) > ¢ proves all true II; statements.

Proof. Strangely, the proof is quite indirect here. It use the results from recursion
theory about DNC (=diagonally non-computable) functions saying that (1) the
mass problem of constructing a DNC function is equvalent to the mass problem
“given n, construct some string of complexity at least n”, and that (2) every
enumerable oracle that computes DNC function, is Turing complete. Since we
need to translate these results from computation language to proof language, we
need to reproduce them first for our special case.

Lemma 3. There exist a constant ¢ with the following property: having access
to an oracle that for every string x gives us some string y such that C(y|z) > ¢,
we can for every n compute a string of complexity at least n.

To prove the lemma, fix some programming language. Given some program p
and input u, we cannot say whether the computation of p on input u terminates.
However, we know that if it terminates, the output will have O(1)-complexity
conditional to p and w. The constant on O(1) depends on the programming
language (and on the choice of specific complexity function), but not on p and z.
So, having an oracle that for given x produces y such that C(y|z) > ¢ where ¢ is
a bigger constant, we are able for every p and u specify some y that is guaranteed
to be different from the output of p on u (if this output exists).

Our task is, however, more difficult: we want to construct a string of com-
plexity greater than n, so we need this string to be different from the outputs
of many computations (for all programs of length n or less). This can be done
as follows: we may assume that the outputs of computations are not strings
but infinite sequences of strings that have only finitely many non-empty terms.
Such “sequences with finite support” form a countable set and one can establish
a computable one-to-one correspondence between such sequences and strings.
Now, having finitely many computations whose outputs are such sequences, we
construct a sequence that differs from the first computation in the first term,
from the second computation in the second term, etc. This can be done using
the oracle, as we have seen above. Lemma is proven. a

Returning to Theorem 16, consider the following process that uses an ora-
cle providing exact values for C(-|-). Given some n, we construct the string of
complexity greater than n as described above. When a string different from the

20

output of some program p on some input u is needed, we take the first string y
such that C(y|u, p) exceeds some constant ¢ (large enough and fixed in advance).
Finally we produce some string r,, that has complexity greater than n.

While looking for the first strings (denoted by y in the previous paragraph)
we observe that all the previous strings have complexity (with required condi-
tions) less than c¢. Consider the time ¢ needed to establish this fact, i.e., some ¢
such that not only true conditional complexity C but also its upper bound C!
(complexity with time bound ¢) becomes less than c. Let us show that every
number greater than ¢ has complexity at least n — O(logn). Indeed, knowing
some number ¢ > ¢ and n, we do not need the oracle anymore, since we can use
C! instead of C and get the same strings y. This procedure is computable, so it
cannot increase complexity more than by O(1), and we get a string of complex-
ity greater than n. Since we need only O(logn) bits to specify n, the number ¢
should have complexity at least n — O(logn). As before, this implies that ¢ steps
are enough for every terminating program (without input) of size n — O(logn)
to terminate, otherwise this program would describe the number of steps needed
for termination, and this number ¢’ would be greater than ¢ and still have small
complexity.

Now we need to formalize the reasoning above in PA. Having all true state-
ments of the form C(u|v) > ¢ as axioms, we provably know the first strings y that
are found during the described process. (Indeed, we can also prove that previous
strings have small complexity, since this is an existential statement.) We can
also prove that the process intended to generate a string of complexity greater
than n, achieves its goal. Then we can provably establish the value of ¢, and also
prove that every number greater than ¢ has complexity n — O(logn) (with some
specific constant in the O-notation). Finally, we prove that every program of
size n — O(logn) that does not terminate in ¢ steps, never terminates, therefore
proving all true II; statements of complexity at most n — O(logn). Since n is
arbitrary, we can prove all true II;-statements. a

Remark: It would be nice to find a more direct way to construct string of
arbitrary high complexity if we know all the pairs (u,v) such that C(ulv) > c.
One can try to start with some zy that has complexity at least ¢, then find
some 1 such that C(z1]zg) > ¢, then xo such that C(z2|zg,x1) > ¢, but this does
not work because in the formula for the complexity of pair for plain complexity
we have logarithmic error terms that can compensate ¢, and in the prefix version
we also have the prefix complexity in the condition.

4 Adding information about Martin-Lo6f random
sequences

Up to now we considered additional axioms saying that some strings have high
complexity. In this section we want to extend PA in a different way and claim for
some infinite sequence X that X is Martin-Lof random. Some refinements are
needed since an infinite sequence (unlike a string) cannot be made a part of one
axiom. There are several ways to do this. Let us consider different possibilities.

21

4.1 The theory MLR.(X) and its properties

One natural way to express that X = xgx; ... is Martin-Lof random is to make
use of the Levin-Schnorr theorem, by fixing some constant ¢ and to add axioms
“K(X | m) > n— ¢ for all n. Here K stands for prefix complexity (note that
in the previous section we considered plain complexity which was more natural
then, but all the results of that section also hold with K in place of C) where
X | n stands for the n-bit prefix zoxy...x,-1 of X. We denote by MLR.(X)
the theory PA enriched by these additional axioms.

Let us fix X and consider MLR.(X) for different ¢. For small ¢ some of the
additional axioms can be false; then their negation is provable and MLR.(X) is
inconsistent. As ¢ increases, the theory MLR.(X) becomes weaker. If X is Martin-
Lof random, then for large enough c all statements in MLR.(X) are true and
MLR.(X) is consistent. Note also that all axioms of MLR.(X) are IT;-statements,
so in the latter case MLR.(X) is a part of the theory considered above (PA plus
all true II;-statements).

Intuitively, if we believe that “X is Martin-Lo6f random” implies some ¢, then
we would expect ¢ to be provable in all theories MLR.(X). The next theorem
shows that any such formula ¢ is in fact already provable in PA.

Theorem 17 Let X be a Martin-Lof random sequence. If ¢ is provable in all
theories MLR.(X), then ¢ is provable in PA.

Proof. Let X be a Martin-Lof random sequence. We need to show that a formula
¢ provable in MLR.(X) for all ¢ is actually provable in PA alone. Assume that
@ is not provable; we will show that every sequence X such that ¢ is provable
in all MLR.(X) is not random. This is done by constructing a Martin-Lof test
that covers X. For every c consider the set Ag, of infinite binary sequences:

AL ={Y [MLR.(Y) - o}

This is an effectively open set in the Cantor space (recall that each derivation
uses only a finite number of axioms). We claim that the uniform measure of this
set is small. More precisely, u(A‘;) < 27¢ so A forms a Martin-Lof test that
covers X (if ¢ is provable in MLR.(X) for all ¢).

To prove that claim, suppose the contrary, i.e., ,u(AZ',) > 27¢. Since an effec-
tively open set is a union of intervals, this implies that there exists an integer IV
and a set S of more than 27¢- 2"V strings u of length N such that the formula
MLR.(u) — ¢ is provable for all u € S, where MLR(u) says that K(v) > |v| — ¢
for every prefix v of u.

We can then design a proof strategy in the sense of Section 2.1. This strategy
starts with capital 27¢, then proves in PA that there are at least (1 —27¢) .2V
strings u of length N which make MLR.(u) true (this statement is used to prove
Levin—Schnorr theorem relating Martin-Lof randomness and prefix complexity,
and is provable in PA). Then the strategy picks a string u of length N at random
and adds the axiom MLR.(u). By assumption on the cardinality of S, with
probability greater than 27¢ we can prove ¢. By Theorem 3, this would mean
that ¢ is already provable in PA. O

22

However, this theorem does not exclude the possibility that for some X and ¢
the theory MLR.(X) is powerful, even powerful enough to prove all true II;-
statements. The next theorem rules out this possibility.

Theorem 18 If the theory MLR.(X) is consistent, it does not prove all true
11, -statements.

Proof. We start by the following observation. Suppose that for some random X
and for some ¢ theory MLR.(X) proves all IT;-statements while being consistent.
Then, using X as an oracle, one can enumerate all theorems of MLR.(X), so with
oracle X one can decide which II;-statements are true and which are false (false
IT;-statements can be enumerated without oracle), i.e., X computes the halting
problem. So we now can make use of this additional information.

Let X be a random sequence such that K(u) > |u| — ¢ for all prefixes of X,
and X computes 0’ (the halting problem). Identifying complete arithmetical
theories with infinite sequences (where the value of the n-th bit is 1 if and only
if the n-th arithmetical formula, for some canonical order, is in the theory), we
see that the set of complete and consistent extensions of PA is a non-empty I19
class. The Turing degrees of the elements of this I1{ class are commonly referred
to as PA-degrees. By the low basis theorem for randomness (see [DHMNO05,
Proposition 7.4] or [DH10, Theorem 8.7.2]), there exists a complete and consis-
tent extension T of PA such that X is Martin-Lof random relative to T'. Since
T is complete and consistent, for each n there is a unique value k,, such that
TF “K(n) = k,”. Let H: N — N be the function n — k,,. Let us call a the
Turing degree of T and let us make three observations. First H is computable
relative to a. Second, we must have H(n) < K(n): indeed, if K(n) < H(n) = ki,
then the statement “K(n) < k,,” is true and therefore provable in PA, and a for-
tiori in T, a contradiction with the definition of k,,. Third, since it is provable in
PA that “3 2-K(n) < 17 this must also hold in T and therefore Yon 2-H(n) <1
(Note that these inequalities can be considered as statements about finite sums.).
Since H is computable relative to a, Levin’s coding theorem indicates that
K* <H+O0(1). To sum up: K* < H+0(1) < K4+0(1). Since X is a-random and
H > K?*—0(1), we know that H(X [n)—n — 400 (here we use the fact that ev-
ery a-Martin-Lof random X has the property K*(X [n)—n — +oo, see [Cha87]
for the unrelativized version) so there is an N such that H(X [n) > n — ¢ for
alln > N.

Now consider the set of strings R = {u : H(u) > |u| — ¢}. This set is a-
computable and contains all initial segments of X, except (possibly) the first N.
Now, consider PA with additional axioms K(u) > |u| — ¢ for all prefixes u of
X and for all w € R. This theory (called 7" in the sequel) is a-computable
because R is a-computable and we add only finitely many axioms for prefixes
of X. Moreover, it extends MLR.(X) and all T'-theorems are true (recall that
H < K by construction). If MLR.(X) proved all true II;-statements, then so
would the stronger theory 7", hence T” would compute 0’. But 7" is a-computable
so this would yield a > 0’. This is impossible: our initial assumption is that X
is a-random; if a > 0’, then X would be 0’-random (a.k.a. 2-random), but no

23

0’-random sequence can compute 0’ (see for example [Nie09, Theorem 5.3.16]),
and X does compute 0’ by our initial remark. ad

4.2 The theories MLR.(X) and MLR/ (X)

Another possibility is to extend the language of PA by a unary functional sym-
bol f. Then we can add one axiom saying that f(0)f(1)... is a binary sequence
whose prefixes of every length n have complexity at least n — ¢ (note that one
single formula is now enough to claim that all strings f(0)f(1)...f(n) have
complexity at least n — ¢), and a series of axioms that specify the elements of
the sequence: f(0) =z, f(1) = x1, etc. To make this theory reasonable, we also
need to add induction over formulas that contain f (just to prove that f has
some prefix of each length). Evidently, this theory, which we denote by MLR.(X),
proves all the axioms of MLR.(X).

Moreover, it proves some statements that look stronger than MLR.(X). In-
deed, for each n we can prove in MLR,(X) the statement Ext.(X | n) where
Ext.(u) says that for every n > |u| string u is a prefix of some string v of length
n such that for every prefix w of v the inequality K(w) > |w| — ¢ holds. (Let v
be the prefix of f(0)f(1)... of length n.)

So, adding all statements Ext.(X | n) to PA, we get some intermediate theory
between MLR.(X) and MLR,(X) which we denote MLR”(X). Note that this
theory, unlike MLR’,(X), does not contain additional functional symbol f. It is
natural to ask how these three theories compare to one another. Below are some
answers:

Theorem 19 For every X and c, the theory MLR.(X) is a conservative ez-
tension of MLR!(X): both theories prove the same arithmetical formulas (with-

out f).

Proof. Assume that MLR.(X) I~ ¢ and the formula ¢ does not involve the sym-
bol f. We need to prove that MLR” (X) I ¢. Only finitely many axioms f(i) = x;
are involved in the proof of ¢ from MLR.(X). Let N be the maximal i that ap-
pears in these axioms. Now suppose that MLR! (X) does not prove . Consider
a model M of MLRY (X) U {~p}. We want to interpret f in this model and get
a model of MLR.,(X) restricted to axioms “f(n) = z,,” for n < N, in which ¢ is
false, thus contradicting the assumption. Note that 91 may be a non-standard
model.

Consider the string = xp ...z x and all its extensions y with the following
property: all prefixes v of y satisfy the inequality K(v) > |v| — ¢. If the axioms of
MLR! (X) are true in the standard model, these y form a subtree which is infinite.
Konig Lemma then guarantees that this subtree has an infinite branch. Moreover,
we get a definable branch if we take on each level the leftmost vertex in the
subtree that has arbitrarily long extensions in the subtree. Now we can formalize
this argument in PA and observe that the same formula defines some branch (i.e.,
function f) in 9N, and all vertices on this branch satisfy the inequality K(v) >
|v| — ¢ in M. This allows us to extend M to a model of (restricted) MLRL(X),

24

where ¢ is false, thus contradicting our assumption. (Note that induction for
formulas containing f is possible in 9 since f is definable.) a

In contrast to Theorem 18, there is a theory MLR.(X) which is consistent
and proves all true Il -statements.

Theorem 20 For every c, there exists a sequence X such that MLRY(X) is
consistent and proves all true 11 -statements.

Proof. In this proof we use again the ideas from the proof of Theorem 7.
Let
D.={Xe2Y|VnK(X [n)>n—c}

Note that the set of all finite prefixes of strings in D, is a co-c.e. set. Denote
by Z be the leftmost path of D, (Z can be seen as a Chaitin @ number.)

By definition theory MLRY(Z) consists of axioms Ext.(Z | n). For each n,
Z | n is the first (in lexicographic order) string o of length n such that Ext.(o)
holds. Since Ext. is a II; predicate, we can enumerate the strings 7 such that
—Ext.(7). Denote by t the step in this enumeration when we get the list of all
strings smaller than Z [n. Given ¢ and Z | n we can compute this number ¢.
Moreover, given Ext.(7) we can prove that any time s > t has complexity at
least n — O(logn) (similar to the proof Theorem 7). The rest of the proof is
identical to Theorem 7. O

However, the theories MLR (X) are still weak in the sense of Theorem 17: if
a formula ¢ is provable in all theories MLR (X) for a given X, then ¢ is already
provable in PA. The proof is identical.

This has the following interesting corollary.

Corollary 21 Let MLR"(X) be the statement: (3¢) MLRY(X) (which can be
made in PA). Then MLR"(X) is conservative over PA.

Proof. From the above discussion, if ¢ is a formula without constant f that
is not provable in PA, then there exists a constant d such that MLR/(X) does
not prove ¢. Since (3c¢) MLR!(X) is provable from MLR/(X), it follows that
(3¢) MLRY (X)) does not prove . O

4.3 Initial segment complexity of nonrandom sequences

In Theorem 18 we proved that if X is a Martin-Lof sequence such that the axioms
“K(X I'm) > n—¢” are true for all n, then the theory consisting of these axioms
does not prove all true II;-statements. What happens if we consider sequences
X that are not random, but for which “K(X [n) > n — ¢” is still true for
infinitely many n? In constrast to Theorem 18, there is a sequence X and a
constant ¢ such that all true axioms of the form “K(X [n) > n — ¢” prove all
true II;-statements.

25

Theorem 22 Fiz some constant ¢ > 0. There exists a sequence X and an infi-
nite set A C N such that the theory consisting of axioms

KX [n)>n—c”
for all n € A is consistent and proves all true 111 -statements.

Proof. We order all strings by length and then lexicographically. That is, o < T
if and only if |o| < |7], or |o| = |7| and o is lexicographically before 7.

We construct X as follows: let yo be some string with K(yo) < |yo| — ¢
Inductively, let z,, be the first (for the above order) string = that extends y,
with K(z) > |z| — ¢, and let y,, 11 be some string extending x,, such that

K(Wn+1) < |ynt1l = (n+1) —c

Note that z,, must exist, as every string has a Martin-Lof random extension,
and for a Martin-Lof random sequence Z

lim (K(Z | n) —n) = oo.

n—o0

Let X = lim z,,. Consider the axioms
n— 00

“K(xn) Z |:En| —

for all n € N. (That is: A = {|x,| : n € N} in the statement of the theorem.) We
claim that this theory can prove all true II;-statements. The proof is similar to
the proof of Theorem 7.

Let A(p) be any algorithm. As in Theorem 7, it is sufficient to prove that
for every input p such that A(p) does not terminate, our theory proves this
non-termination.

Define t,, to be the first ¢ such that K'(z) < |z| — ¢ for all strings = that
extend y,, and come before z,, in our order. We prove that from the length |p|
of a program p, we can compute a number n such that the computation A(p)
either terminates in less than t,, steps, or does not terminate at all.

Every string p determines the number of steps needed for the termination
of A(p). Knowing p and y,, we find this number ¢(p) and take the first that
extends y,, such that K*®)(z) > |z| — ¢. If A(p) does not halt within ¢, steps,
then we know that x = x,. On the other hand, for every p such that A(p)
terminates we get some string x extending y,, with K(z) < K(p) +K(y,)+ O(1).
By definition, y, has a low complexity. Consequently

K(z) < [p| + [yn] —n — ¢+ O(log |p|)
<z +|p| = n — ¢+ O(log |p|)

Given the program size |p|, we can find an n that is large enough such that
|[p|—n—+O(log |p|) is negative. For such an n, we know that x is different from x,.

26

Hence, whether or not x differs from x,, or not, determines whether A(p) ter-
minates or not. So if A(p) terminates at all, then it must do so in less than ¢,
steps.

As in the proof of Lemma 1, this reasoning can be formalized in PA. Having
“K(zp) > |zn|—¢” as an axiom, we can prove that x,, is the first string extending
yn such that K(z,) > |z,| — c. Then, given y,, we can prove the value of ¢,.
Finally, given p and taking y,, for n suitably large, we can prove (doing the above
prove inside PA) that A(p) either terminates in ¢, steps or does not terminate
at all, as required.

Remark that the sequence X that we constructed in the proof, has arbitrarily
large complexity dips in between the initial segments x,, with complexity at least
|| — c. Hence X is not Martin-Lof random. This is essential by Theorem 18.
Indeed, even if we choose a Martin-Lof random X and a constant ¢ small enough
such that K(X [n) > n — ¢ is not true for all n, it still must be true for all but
finitely many n. In this case the proof of Theorem 18 still works to show that
the theory consisting of all true axioms “K(X [n) > n — ¢” does not prove all
true II;-statements.

For plain complexity, the proof of Theorem 22 does not work. The reason is
that not every string has an extension with high plain complexity.

Question 2. Does there exist a sequence X and a theory T consisting of infinitely
many axioms of the form

“CX Tn)>n—c
such that T is consistent and proves all true II;-statements?

Note that if there does exists such a sequence X, then X must be 2-random.
This makes the question quite different from Theorem 22, as the sequence con-
structed in the proof of the theorem was necessarily non-random, whereas Ques-
tion 2 relates to the properties of random sequences.

Moreover, remark that, although there are no Turing-complete 2-random
sequences, some corresponding theory T might still be Turing complete.

A summary of this section and related results can be found in Figure 2.

5 Acknowledgements

The authors would like to thank all the colleagues with whom they discussed
these results. Special thanks go to Ilya Razenshteyn for bringing Richard Lipton’s
post [LR11] to our attention and to Chris Porter for many helpful comments on
preliminary versions of this paper. This work was supported by ANR-08-EMER-
008 NAFIT and grant EMC ANR-09-BLAN-0164-01.

References

[BBFT06] Richard Beigel, Harry Buhrman, Peter A. Fejer, Lance Fortnow, Piotr
Grabowski, Luc Longpré, Andrej Muchnik, Frank Stephan, and Leen Toren-
vliet. Enumerations of the Kolmogorov function. Journal of Symbolic Logic,
71(2):501-528, 2006.

27

Does there exist A C 2<% such that we can prove all true II;
sentences with consistent axioms. ..

“Clo) > |o| — ¢ “K(o) > |o] —¢”
forcec A foroce A
A contains at most one
string of each length. v v
A contains infinitel
y ? v/

many initial segments of . .
y g Note: axioms imply

a sequence. that sequence is
2-random

A contains all initial

segments of a sequence. Note: axioms imply
that sequence is

1-random

Axioms are never
consistent

Fig. 2. Summary of results about the strength of theories whose axioms express that
certain strings have high complexities.

[BGHT11] Laurent Bienvenu, Peter Gacs, Mathieu Hoyrup, Cristébal Rojas, and
Alexander Shen. Algorithmic tests and randomness with respect to a class
of measures. Proceedings of the Steklov Institute of Mathematics, 274:41—
102, 2011.

[CC09a] Cristian Calude and Elena Calude. Evaluating the complexity of mathe-
matical problems, part 1. Compler Systems, 18:267-285, 2009.

[CCO09b] Cristian Calude and Elena Calude. Evaluating the complexity of mathe-
matical problems, part 2. Compler Systems, 18:387-401, 2009.

[Cha7l] Gregory Chaitin. Computational complexity and Goédel’s incompleteness
theorem. ACM SIGCAT News, 9:11-12, April 1971.

[Cha87] Gregory Chaitin. Incompleteness theorems for random reals. Advances in
Applied Mathematics, 8:119-146, 1987.

[DH10] Rodney Downey and Denis Hirschfeldt. Algorithmic randomness and com-
plexity. Theory and Applications of Computability. Springer, 2010.

[DHMNO5] Rodney Downey, Denis Hirschfeldt, Joseph S. Miller, and André Nies.
Relativizing Chaitin’s halting probability. Journal of Mathematical Logic,
5(2):167-192, 2005.

[HHSY] Kojiro Higuchi, Phil Hudelson, Stephen G. Simpson, and Keita Yokoyama.
Propagation of partial randomness. Submitted.

[JS72] Carl Jockusch and Robert Soare. IT{ classes and degrees of theories. Trans-
action of the American Mathematical Society, 173:33-56, 1972.

[LR11] Richard J. Lipton and Kenneth W. Regan. Random axioms and Go&del
incompleteness. Blog post, March 2011.

28

[LVOS]

[Nie09]

[She00]

[She06]

[Sip96]

Ming Li and Paul Vitdnyi. An introduction to Kolmogorov complexity and
its applications. Texts in Computer Science. Springer-Verlag, New York,
3rd edition, 2008.

André Nies. Computability and randomness. Oxford Logic Guides. Oxford
University Press, 2009.

Alexander Shen. Algorithmic information theory and Kolmogorov com-
plexity. Technical Report 2000-034, Uppsala University, Department of
Information Technology, 2000.

Alexander Shen. Kolmogorov complexity and proof theory: a question. In
International Conference “Methods of Logic in Mathematics. III7 (June 1
- 7, 2006). Saint-Petersburg, Russia., 2006.

Michael Sipser. Introduction to the Theory of Computation. PWS Publish-
ing Company, 2nd edition, 1996.

29

