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Measuring information

▶ Classical information theory: For a random variable
that has n values with probabilities p1, . . . , pn, its
Shannon entropy is defined as

∑
pi log(1/pi).

▶ Algorithmic information theory: The Kolmogorov
complexity of a finite object x is the minimal length of a
program that produces x.

A page from Kolmogorov’s autograph

Randomness for finite objects

▶ One of these two sequences was obtained by a physical random process:
▷ 101001110010101110110111001010000110001
▷ 101010101010101010101010101010101010101

Which one? Can you justify your answer?
▶ Algorithmic information theory: Randomness is high complexity (the

shortest program that prints a sequence is as long as the sequence itself)
▶ For finite objects: randomness = maximal complexity

Randomness for infinite sequences

▶ Martin-Löf: infinite sequences may be random or non-random
▶ Non-random sequence = a sequence that violates some effective law of

probability theory (statement that is true for all sequences except for some
effectively null set)

▶ Schnorr characterization: sequence is random iff no martingale
(gambling system) wins infinitely much against it

▶ Levin–Schnorr characterization: sequence is random iff its prefixes are
incompressible

Local rules and global complexity

▶ Nature: local interaction in crystals produces nice periodic structures we
observe; we believe that local interaction produces nice aperiodic structures
in quasicrystals

▶ Mathematical model of local interaction: tiles
▶ Many tile sets are known that produce aperiodic tilings
▶ A technique for constructing robust tilings is developed based on

computer science tools (Kleene’s fixed-point theorem).

Randomness paradox

A factory produces decks of cards. To make them ready for use, after the
printing machine there is a shuffling machine that puts cards in a random
order. The management wants to add a quality control unit that checks
whether the shuffling machine does its job correctly.

Should the quality control reject some decks of cards as ‘badly shuffled ’?

▶ yes, to prevent an angry customer saying that he bought a deck and found
the cards in an increasing order;

▶ no: rejecting some orders destroys the randomness which requires that all
ordering appear equally often.

On-line randomness

▶ Randomness depends on context
▶ Example: each match in a football tournament starts with coin tossing (it

determines who starts the game)
▶ bad: if the outcome of today’s coin tossing can be computed from the

contents of yesterday’s newspaper
▶ normal: if it can be computed from the tomorrow’s newspaper
▶ mathematical definition of on-line randomness and on-line complexity;

generalization of Levin–Schnorr characterization of randomness for the
online case; generalization of martingale characterization of
randomness for the online case; relation to randomness with respect to the
class of measures; non-additivity for on-line complexity (with possible
application to the causality problem).

Online randomness: formal definition

▶ Formally : x1, b1, x2, b2, x3, b3, . . .; here xi are strings representing context
information, bi are presumable random bits

▶ Example: bi = Φ(xi) is bad . . . and bi = Φ(xi+1) is OK
▶ On-line measure: No probability assumption on xi; assumed conditional

probabilities for bi
▶ On-line effectively null sets: for every ε > 0 one can algorithmically

find a covering by interval with upper probability less than ε
▶ Upper probability can be defined as the upper bound of probabilities wrt all

distributions where conditional probability of each next bit is 1/2

On-line complexity

▶ complexity of (x1 → b1; x2 → b2; . . .) = the minimal length of an
on-line program that gets x1, prints b1, then gets x2, prints b2, etc.

▶ Theorem: in the sequence of bits x1, y1, x2, y2, . . .

K(x1 → y1; x2 → y2; . . .) + K(x1; y1 → x2; y2 → x3; . . .)

cannot be smaller than the complexity of K(x1y1x2y2 . . .) but can
significantly exceed the latter, and also K(y1 → x1; y2 → x2, . . .).

▶ Philosophers can interpret these results as a mathematical way to
reconstruct causality from dependence.

An object that combines structure and randomness
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