
Graph expansion, Tseitin formulas and
resolution proofs for CSP?

Dmitry Itsykson1 and Vsevolod Oparin2

1 Steklov Institute of Mathematics at St.Petersburg
dmitrits@pdmi.ras.ru

2 St.Petersburg Academic University of Russian Academy of Sciences
oparin.vsevolod@gmail.com

Abstract. We study the resolution complexity of Tseitin formulas over
arbitrary rings in terms of combinatorial properties of graphs. We give
some evidence that the expansion of a graph is a good characterization
of the resolution complexity of Tseitin formulas. We extend the method
of Ben-Sasson and Wigderson of proving lower bound on the size of res-
olution proofs to the constraint satisfaction problem under an arbitrary
finite alphabet. For Tseitin formulas under the alphabet of cardinality d
we prove stronger lower bound de(G)−k on the tree-like resolution com-
plexity, where e(G) is the graph expansion that is equal to the minimal
cut such that sizes of its parts differ in at most 2 times and k is an upper
bound on the degree of the graph. We give a formal argument why a large
graph expansion is necessary for lower bounds. Let G = 〈V,E〉 be the
dependency graph of the CSP, vertices of G correspond to constraints;
two constraints are connected by an edge for every common variable.
We prove that the tree-like resolution complexity of the CSP is at most

d
e(H)·log 3

2
|V |

for some subgraph H of G.

1 Introduction

Using backtracking algorithms is the most popular approach to solving NP-
hard problems. The running of backtracking algorithms for SAT on unsatisfiable
formulas is closely connected with the tree-like resolution proof system. Lower
bounds on the complexity of resolution proofs imply the same lower bounds on
the running time of backtracking algorithms. First superpolynomial lower bound
for resolutions was proved by Tseitin [?]; Tseitin used formulas that code the
following simple fact: in every graph the number of vertices with odd degree is
even. First exponential lower bound was proved by Urqhart [?]. The strongest
known lower bound were proved using the methods introduced by Ben-Sasson
and Wigderson in [?]. From practical point of view it is more interesting to
have lower bound for backtracking algorithms on satisfiable formulas; there are

? partially supported by the grants MK-4108.2012.1 from the President of RF, by
RFBR grant 12-01-31239-mol-a and by the Programme of Fundamental Research of
RAS, by Réseau STIC franco-russe and ANR NAFIT 008-01.

several lower bounds on satisfiable formulas [?,?,?,?] under various restrictions
on heuristics that choose a variable for splitting and a value that would be
investigated at first. However all known lower bounds on satisfiable formulas are
proved by reduction to lower bounds on unsatisfiable ones.

Baker [?] introduced very natural extension of resolution proof system for
constraint satisfaction problems (CSP) and defined the system NG-RES. Baker
studied different backtracking algorithms for CSP; Baker introduced the notion
of width of CSP and proved that there exists resolution prove of size that is
exponential only on the width and polynomial on other parameters. Baker also
gave a hard distribution for backtracking algorithms for CSP and proved super
polynomial lower bound for NG-RES. Mitchell [?] introduced the proof system C-
RES that is more powerful than NG-RES and proved exponential lower bound for
random CSP in C-RES. Mitchell [?] proved superpolynomial separation between
C-RES and NG-RES and Hwang [?] proved exponential separation.

The paper [?] proves that linear degree lower bound in Polynomial Calculus
implies the exponential lower bound on the proof size in Polynomial Calculus.
The paper [?] presents a linear lower bound on the degree of proofs of Tseitin
formulas in Polynomial Calculus under fields and rings. This lower bounds are
proved only for alphabets of cardinality pm for primes p; and also this result
does not claim to be optimal.

In this paper we are interested in precise complexity of backtracking algo-
rithms (or tree-like resolution) on Tseitin formulas under an arbitrary finite
alphabet. In the propositional case the strongest lower bound for Tseitin formu-
las follows from the paper of Ben-Sasson and Wigderson. Namely every tree-like
resolution proof of Tseitin formula based on a graph with maximal degree at
most k has size at least 2e(G)−k, where e(G) is an expansion of the graph that
is equal to the size of minimal cut such that sizes of its parts differ in at most 2
times. Method of Ben-Sasson and Wigderson consists of two stage: first stage is
the statement about of a connection between the proof size and the width of the
proof; the second stage is a connection between the width of the proof and the
expansion of the CSP. Mitchell in [?] extends the connection between size and
width of the proof to nonbinary case. The trivial extension of the connection
between the width and the expansion to the alphabet of size d implies the lower
bound 2ed(G)−k for the tree-like resolution complexity of Tseitin formulas, where
ed is the size of the minimal cut such that sizes of its parts differ in at most d
times. Generally speaking ed(G) may be much smaller than e(G) = e2(G). We
improve the connection between the width and the expansion such that it implies
lower bound 2e(G)−k−1 on the tree-like resolution complexity of Tseitin formulas.
Using more specific analysis for Tseitin formulas we improve above lower bound
and get d(e(G)−k).

For arbitrary CSP φ using the results of [?] we get the following extension of
[?]:

1. ST (φ) ≥ 2e(φ)−k−1,

2. S(φ) ≥ exp
(

(e(φ)−k−1)2
n

)
,

where ST (φ) and S(φ) are tree-like and general resolution complexity of φ, e(φ)
is expansion of CSP φ and exp is the natural exponent function.

It is well known that lower bound proofs for Tseitin formulas use the good
expansion of the graph. We study the question whether the good expansion
is indeed necessary for lower bounds or not. We give the answer for arbitrary
CSP: let G = 〈V,E〉 be the dependency graph of CSP; vertices of G corre-
spond to constraints; two constraints are connected by an edge for every com-
mon variable. We prove that the tree-like resolution complexity of the CSP is

at most d
e(H)·log 3

2
|V |

for some subgraph H of G. Thus for Tseitin formula φ
based on the graph G = 〈V,E〉 we have that there is subgraph H of G such that

de(H)−k ≤ ST (φ) ≤ de(H)·log 3
2
|V |

.
In Section 2 we give definitions of basic concepts. In Section 3 we give the

connection between width of the proof and the expansion of the CSP. In Sec-
tion 4 we prove the stronger lower bound for the tree-like resolution complexity
of Tseitin formulas. In Section 5 we prove the upper bound on the tree-like
resolution complexity of the CSP in terms of the expansion of the dependency
graph.

2 Preliminaries

2.1 Constraint satisfaction problem (CSP)

Let X = {x1, x2, . . . , xn} be a finite set of variables that take values from a finite
set D, and S be a set of constraints; every constraint defines a subset of variables
X ′ and a set of possible values that variables of X ′ can take at the same time.
A triplet 〈X,D, S〉 is called a constraint satisfaction problem (CSP). If every
constraint restricts at most k variables than we call such problem k-CSP.

A partial substitution is a mapping ρ : X → D ∪ {∗}, where ‘*’ means
unspecified value; a support of substitution is the set ρ−1(D). A substitution is
complete if its support equals to X.

A partial substitution ρ satisfies a constraint R ∈ S if after the substitution
values of variables from the support of ρ the constraint R is satisfied indepen-
dently of values of other variables. A substitution ρ satisfies CSP 〈X,D, S〉 if ρ
satisfies every constraint R ∈ S. CSP φ is satisfiable if there exists at least one
substitution that satisfies φ.

We call a constraint of the type ¬(x1 = a1∧ · · ·∧xk = ak) the nogood, where
x1, . . . , xk ∈ X, a1, . . . , ak ∈ D. The notion of the nogood is an extension of the
notion of the clause in the propositional case (D = {0, 1}). For example the
nogood ¬(x1 = 0 ∧ x2 = 1) is equivalent to the clause (x1 ∨ x̄2).

In that follows we consider only k-CSP and denote |D| = d. Every restriction
in k-CSP may be written as a conjunction of at most dk nogoods.

2.2 Backtracking algorithms

We define backtracking algorithms for CSP.

Backtracking algorithm is parameterized by two heuristics B and C and a
simplification procedure S. A heuristic B takes CSP φ and returns a variable x
for splitting. A heuristic C takes a pair (φ, x) and returns an order on D (in this
order an algorithm substitutes values from D to x).

The simplification procedure S(φ, x := a) removes from the φ[x := a] all
constraints that have been already satisfied.

A backtracking algorithm A(φ) is defined as follows

– If φ does not contain constraints, return SATISFIABLE.

– If φ contains already falsified constraint, return UNSATISFIABLE.

– Pick variable x := B(φ). According the order given by C(φ, x), for all a ∈ D
make a recursive call A(S(φ, x := a)). If one of recursive call returns SAT-
ISFIABLE, immediately return SATISFIABLE, otherwise return UNSAT-
ISFIABLE.

The running time of the backtracking algorithm is the size of the recursion
tree. We ignore the computational complexity of heuristics B and C.

2.3 Resolution proof system

We consider only unsatisfiable instances of CSP.

We define a resolution proof system that extends well known system in the
propositional case. This definition is due to [?].

The resolution proof system is a way to show that given CSP is unsatisfiable.
We assume that all constraints are represented as a set of nogoods.

Let {Na}a∈D be a set of nogoods such that Na = ¬(x = a ∧ αa) for every
a ∈ D. A nogood ¬(

∧
a∈D αa) is a resolvent of {Na}a∈D.

Definition 1. A sequence of nogoods π = {Ni} is a resolution proof for CSP φ
if

– every nogood Ni is either a nogood of φ or a resolvent of d nogoods that
preceded by Ni: Nj1 , . . . , Njd , where j1, . . . , jd < i;

– last nogood in the π is an empty nogood ¬() (i.e. contradiction).

Every resolution proof may be represented as a directed acyclic graph with
nogoods as vertices, there is an arc between Ni and Nj if Ni is in the premise of
the resolution rule that produced Nj . The proof is tree-like if the graph above
is a tree. The tree-like resolution proof system accepts only tree-like proofs.

Running of backtracking algorithms on unsatisfiable CSPs and tree-like reso-
lution proofs are equivalent similarly to the propositional case [?,?]. Thus upper
and lower bounds on the size of tree-like resolution proofs provide the same
upper and lower bounds on the running time of backtracking algorithms.

2.4 Tseitin formulas and expansion

The paper [?] extends Tseitin formulas [?] to the nonbinary case. Consider a
graph G = 〈V,E〉 and a function f : V → Zd. Every edge e ∈ E we associate
with a variable xe. For every vertex u we have a constraint of type∑

(u,v)

γ(u,v) · x(u,v)∈E = f(u) mod d

where γ(u,v) ∈ {+1,−1}. Every edge (u, v) corresponds a variable x(u,v) and two
values γ(u,v) and γ(v,u) that satisfy γ(u,v) +γ(v,u) = 0. Note that x(u,v) and x(v,u)
denote the same variable.

The following lemma is very similar to the propositional case.

Lemma 1. Tseitin formula φ(G, f) based on connected graph G is satisfiable if
and only if

∑
v f(v) = 0.

Definition 2. The expansion of a graph G = 〈V,E〉 is e(G) = minA⊆V, 1
3 |V |≤|A|≤

2
3 |V |
|E(A, Ā)|.

Further we will see a connection between the expansion of a graph and the
size of resolution proofs of Tseitin formulas.

3 Resolution width and expansion

The paper [?] introduced a technique of proving strong enough lower bounds in
the propositional resolution proof system. We extend that result to CSP.

Let’s consider a k-CSP φ = 〈X,D, S〉 that is represented by a set of nogoods.
A width of a nogood is the number of variables that appear in it. If π is a

resolution proof of φ, then a width of π is the maximal width of nogood in π;
we denote it by W (π). A width of refutation of CSP φ is the minimal width of
all resolution proofs of φ; we denote it by W (φ ` 0).

Theorem 1 ([?]). For every k-CSP φ the following inequalities are satisfied

ST (φ) ≥ 2W (φ`0)−k,

S(φ) ≥ exp

(
(W (φ ` 0)− k)2

n

)
,

where ST (φ) is the minimal size of a tree-like resolution proof of φ and Sφ is the
minimal size of a resolution proof of φ.

Let’s consider CSP φ; let S be the set of constraints of φ (it is not necessary
that all constraints are nogoods). Let F be some subset of the set of constraints
S; we denote by ∂F the set of variables x such that there exactly one constraint
in F that depends on x. The expansion of φ is defined as follows

e(φ) = min
F
|∂F |,

where the minimum is over all F ⊆ S such that 1
3 |S| ≤ |F | ≤

2
3 |S|.

Definition 3. Let φ be an unsatisfiable CSP with a set of constraints S. We
say the CSP φ is minimally unsatisfiable if omitting any constraint of S implies
satisfiability of φ.

Theorem 2. Let φ be a minimally unsatisfiable CSP and S be a constraint set
of φ. Let φ satisfies the following property:

– for every constraint f ∈ S every two substitutions that violate f differ in at
least two variables.

Then W (φ ` 0) ≥ e(φ)− 1.

Proof. We say that a nogood N is semantically implied from F ⊆ S, if every
substitution that satisfies F also satisfies N . We denote this implication by
F |= N . We define Ben-Sasson-Wigderson measure on the set of all nogoods
For a nogood N we define µ(N) = min{|F | | F ⊆ S, F |= N}. The following
properties are straightforward:

– µ(N) ≤ 1 for every nogood N from φ;
– µ(¬()) = |S|;
– If N is the resolvent of {Na}a∈D, then µ(N) ≤

∑
a∈D µ(Na).

Lemma 2. Let F be the minimal set of constraints that semantically implies
N . Then the size of N is at least |∂F |.

Proof. Note that for every constraint f ∈ F there is the substitution ρf that
refutes N and f , but ρf satisfies every other constraint g ∈ F . Otherwise we
may remove such constraint from F and this contradicts to the minimality of F .

For x ∈ ∂F let f ∈ F be the constraint depended on x. Then there exists
such a ∈ D that changing a value of variable x in ρf by a satisfies f and therefore
satisfies N . Thus N depends on x.

In propositional case we may finish the proof since the properties of a measure
µ implies that every resolution proof contains a nogood N with measure in
[13 |S|,

2
3 |S|]. Lemma 2 implies that N contains at least e(φ) variables. However

for arbitrary d we can’t guarantee that such nogood N exists. We choose another
way.

Any resolution proof of the formula φ contains the nogood N such that it is
the resolvent of nogoods Na on a variable x, a ∈ D, µ(N) > 1

3 |S| and for every
premise Na the following inequality is satisfied µ(Na) ≤ 1

3 |S|.
Let Fa be the minimal subset of constraints such that Fa |= Na. Since |Fa| ≤

1
3 · |S|, we can choose D′ ⊆ D in such a way that for F ′ defined as

⋃
a∈D′ Fa

we have 1
3 · |S| ≤ |F

′| ≤ 2
3 · |S|. Thus |∂F ′| ≥ e(φ), and by Lemma 2 for every

variable y ∈ ∂F ′ there exists the nogood Na (a ∈ D′) that is depended on y.
Therefore (∂F ′\{x}) ⊆ Vars(N), hence |Vars(N)| ≥ e(A)− 1, where Vars(N) is
a set of variables from the nogood N .

Corollary 1. If a Tseitin formula φ(G, f) is unsatisfiable, then W (φ(G, f) `
0) ≥ e(G)− 1

Proof. Follows from Theorem 2 and Lemma 1.

Finally if the degree of all vertices in a graph G is at most k and Tseitin
formula φ(G, f) is unsatisfiable, then Corollary 1 and Theorem 1 implies the
following lower bounds:

1. ST (φ) ≥ 2e(G)−k−1,

2. S(φ) ≥ exp
(

(e(G)−k−1)2
n

)
,

Note that we have 2 in the base of the exponent in the tree-like case as it was
for binary alphabet. But it is more natural to have number d in the base of the
exponent since every node of the tree has d children. In the next section we give
more accurate analysis for Tseitin formulas and prove a lower bound de(G)−k for
tree-like resolution.

4 Lower bound for Tseitin formulas

In this section we prove the lower bound for size of the tree-like resolution proofs
of Tseitin formulas that is stronger than the lower bound from the previous
section. Let’s consider a graph G = 〈V,E〉 and the unsatisfiable Tseitin formula
φ based on it. Let the maximal degree of G is at most k. We assume that the
domain D equals Zd. We prove that ST (φ) ≥ de(G)−k, where ST is the size of
the minimal tree-like resolution proof of φ.

4.1 Reduced splitting tree

Let G = 〈V,E〉 be a connected graph with the maximal degree at most k. We
consider the protocol of backtracking algorithm and define the notion of the
complexity of the graph G that in fact equals the minimal size of resolution
proof of φ(G, f). We define as follows

C(G) =

{
1, if —V—=1
mine∈E T (G \ e) + 1, otherwise.

T (G) =

{
d · C(G), if G is connected;
(d− 1) · C(G1) + C(G2), otherwise.

whereG1 andG2 are two connected components of graphG and C(G1) ≤ C(G2).
Note that the domain of C is the set of all connected graphs while the domain
of T is just the set of graphs with at most two connected components.

Lemma 3. The minimal running time of backtracking algorithm on unsatisfi-
able Tseitin formula φ(G, f) based on connected graph G does not depend on
function f and equals C(G).

Proof. We prove it by induction on the number of edges. Base of induction is
trivial. Let’s consider an arbitrary graph G = 〈V,E〉 and a function f : V → Zd.

Let optimal backtracking algorithm start with the splitting on a variable xe.
In the first case G \ e is connected. Then we have to solve d subproblems of the
type φ(G \ e, f ′a), where the function f ′a differs from f in the ends of the edge e.
By induction hypothesis the minimal running time of backtracking algorithm,
on the formula φ(G \ e, f ′a) is equal to C(G \ e). Therefore the total number of
steps of the optimal backtracking algorithm is d · C(G \ e).

In the second case the edge e is the bridge of the graph G. Let G1 and G2

be two connected components of G \ e. After substitution xe := a, the formula
φ(G, f) splits on two independent subformulas φ1 and φ2, that correspond to
graphs G1, G2 and to functions f1,a, f2,a, respectively. Denote the functions on
vertices of graphs G1 and G2 by f1,a and f2,a, respectively.

We show that there is exactly one value of xe that makes formula φi satisfiable
for i = 1, 2. Using inductive hypothesis it implies that the minimal complexity
of a backtracking algorithm is (d− 1) · C(G1) + C(G2) + 1.

Let an edge e connect vertices u and v and vertex v belong to G1. Note that
function values of f1,a and f on the vertices of the graph G1 can differ only at
vertex v. Lemma 1 implies that if we fix f1,a-values for all vertices in G1 except
v, then there exists exactly one value of f1,a(v) that makes φ1 satisfiable.

Using Lemma 3 we present a protocol of backtracking algorithm in an econ-
omy way. We define a rooted tree; nodes of this tree are marked with connected
graphs. For the Tseitin formula φ(G, f) our tree T looks like as follows

– The root of the tree is marked by G.

– Every leaf of the tree is marked by a graph with one vertex.

– Every node of the tree has either one or two children.

– Let node v be marked by graph Gv. If v has only one child then it is marked
by Gv \ e for some edge e. If v has two children then each of them is marked
by the corresponding connected component of Gv \ e for some bridge e in
Gv.

We call such tree a reduced splitting tree.

We define a function f on the nodes of a reduced splitting tree.

f(v) =

1, if v is a leaf;
d · f(u) + 1, if u is a unique child of v;
(d− 1) · f(u1) + f(u2) + 1, where u1, u2 are children of v and f(u1) ≤ f(u2);

For reduced splitting tree T we define F (T) = f(r), where r is a root of T .
It is easy to see that

C(G) = min
T
F (T),

where the minimum is over all reduced splitting tree for a given graph G.

4.2 Lower bound

We define the notion of the width of the reduced splitting tree.
Let G = 〈V,E〉 be a connected graph and φ be an unsatisfiable CSP based

on G. Let T be a reduced splitting tree for φ. We consider a node v marked with
Gv = 〈Vv, Ev〉. Let Eext = {(x, y) ∈ E|x ∈ V ∨ y ∈ Vv} be a number of edges
that has at least one end in the set Vv. We define a value w(v) = |Eext \Ev| that
is the number of removed edges that are incident to some vertices from Vv. A
width of the tree is W (T) = maxv w(v), where the maximum is over all nodes
of T .

Lemma 4. For every connected graph G = 〈V,E〉 with the expansion e(G) and
for every reduced splitting tree of an unsatisfiable formula φ(G, f) the inequality
W (T) ≥ e(G) holds.

Proof. Let T be a reduced splitting tree. T contains a node v that is marked by
Gv = 〈Vv, Ev〉 such that

– |Vv| > 2
3 · |V |;

– v has two children;
– if u is a child of v, then |Vu| ≤ 2

3 · |V |.

There exists the node u, that is a child of v and |Vu| is between 1
3 |V | and

2
3 |V |. Thus by the definition of the expansion w(u) ≥ e(G).

Lemma 5. Let T be the reduced splitting tree for Tseitin formula φ(G), then
there exists a reduced splitting tree T ′ for φ(G) such that W (T ′) ≤ k+logd F (T).

Proof. By induction on the number of nodes in the tree T we show that if
F (T) ≤ db, then there exists such a tree T ′ for φ(G) that W (T ′) ≤ k + b. The
base of induction is obvious.

Let r be the root of T and r has only one child v. Let Tv be a subtree of T
with root v. If F (T) ≤ db, then F (Tv) ≤ db−1. By induction hypothesis we have
a tree T ′v such that W (T ′) ≤ b− 1 + k. We attach the tree T ′v to r and get a tree
T ′ such that W (T ′) ≤ (b− 1 + k) + 1 = b+ k.

Let r has two children v1 and v2. Let T1 and T2 be subtrees with roots in
v1 and v2, respectively; G1 and G2 are labels of v1 and v2 respectively. By the
definition of F

F (T) = (d− 1) · F (T1) + F (T2) + 1,

We know that d · F (T1) < F (T). Thus if F (T) ≤ db, then F (T1) ≤ db−1 and
F (T2) ≤ db. Therefore by induction hypothesis there exists reduced splitting
trees T ′1 and T ′2 for G1 and G2 respectively, such that W (T ′1) ≤ k + b − 1 and
W (T ′2) ≤ k+b. We show that T ′1 and T ′2 may be used in the construction of such
a reduced splitting tree T ′ for φ(G) that W (T) ≤ k + b.

Let the root r of the tree is marked by G and children v1 and v2 are marked
by connected components of G \ e. Let an edge e connect a vertex z from G1

with a vertex y from G2. We construct T ′ as follows.

We modify the tree T ′2: to every label that contains the vertex y we attach
a copy of graph G1 to y by edge e. The original tree T ′2 contains a leaf that is
marked by the graph with only one vertex y; after the modification this leaf is
marked by y with attached G1 by the edge e. We make a splitting in this leaf on
the variable xe. We get a leaf that is marked by z and a leaf w that is marked
by G1. We attach a tree T ′1 to w. So we get a reduced splitting tree T ′ for φ(G)
such that W (T ′) ≤ max{W (T ′2),W (T ′1) + 1, k} ≤ k + b.

Corollary 2. e(G) ≤ k + logd C(G).

Lemma 6 ([?]). The size of the smallest tree-like resolution refutation is exactly
the same as the size of the minimal recursion tree of the backtracking algorithm.

Finally we prove the following theorem:

Theorem 3. If degrees of all vertices of a graph G are at most k, then the size
of the tree-like resolution proof of unsatisfiable Tseitin formula φ(G, f) is at least
de(G)−k.

5 Upper bound for CSP

We consider an arbitrary unsatisfiable CSP φ = 〈X,D, S〉. Let |D| = d. For
every constraint C ∈ S we denote by Vars(C) the set of variables x such that C
depends on x.

We construct a dependency graph G = 〈V,E〉 of CSP φ. Vertices of this graph
correspond to constraints from S. Two constraints Ci and Cj are connected with
|Vars(Ci)∩Vars(Cj)| edges, every edge is labeled by common variable of Ci and
Cj .

Note that a dependency graph of Tseitin formula based on graph H is iso-
morphic to H.

Theorem 4. In the dependency graph G = 〈V,E〉 of unsatisfiable CSP φ there
is a subgraph H with the expansion

e(H) ≥ logd ST (φ)

log 3
2
|V |

,

where ST (φ) is a size of minimal tree-like resolution refutation of φ.

Proof. We consider the following backtracking algorithm A(φ)

– It constructs a dependency graph G = 〈V,E〉 of φ.
– It finds a minimal cut U ⊆ V such that 1

3 · |V | ≤ |U | ≤
2
3 · |V |.

– For all variables that correspond to edges that connect U with its comple-
ment, algorithm A chooses them for splitting one by one.

– Now graph contains several connected component. Algorithm chooses unsat-
isfiable component and make recursive call on it

Let Time be a running time of algorithm A; it equals to the size of some
tree-like resolution proof of φ.

Execution protocol of A may be represented by a tree T with weighted edges
(edges correspond to cuts and weights corresponded to sizes of cuts). Vertices
of the tree T are labeled by CSPs (starting points of recursion). Let vertex v
contain a formula φ and the algorithm A find cut U in the dependency graph of
φ.

Let Xφ,U be the set of variables corresponding to edges in this cut. The
weight of the edge that corresponds to this cut is |Xφ,U |. A weighted height of
the T is the maximal weight of the path from the root of T to a leaf. Let us
denote weighted height of T by h. Note that Time ≤ dh.

The number of vertices in the dependency graph of CSP in the child of T is
less in at least 3

2 times than the number of vertices in the parent. Let a vertex
u be the parent of a vertex v then the number of vertices in the dependency
graph of the CSP in the vertex u is at least 3

2 times the number of vertices in
the dependency graph of the CSP in the vertex v

Let us denote unweighted height of T by hu; then hu is at most log 3
2
|V |.

Hence there exists an edge (v, u) with weight at least h
log 3

2
|V | ≥

logd Time
log 3

2
|V | .

Let CSP in v correspond to a dependency graph H. Therefore:

e(H) ≥ logd Time

log 3
2
|V |

.

Corollary 3.

Time ≤ de(H)·log 3
2
|V |
.

Corollary 4. For unsatisfiable Tseitin formula φ based on the graph G = 〈V,E〉
with maximal degree at most k with domain D = Zd, there exists a subgraph H
of G such that

ST (φ) ≤ de(H)·log 3
2
|V |
.

Proof. The dependency graph of φ is isomorphic to G. Therefore by Theorem 4
there is a subgraph H in G such that

ST (φ) ≤ de(H)·log 3
2
|V |
.

Thus the minimal running time of the backtracking algorithm on Tseitin
formula based on G satisfies inequalities

de(G)−k ≤ Time ≤ de(H)·log 3
2
|V |

for some subgraph H of G.

6 Open questions

– To prove (or refute) that there exists c > 1 such that dag-like resolution proof
of Tseitin formula based on G is at least ce(G). Such lower bound exists if
e(G) = Ω(n). This is also true for doubled graphs where every edge has a
parallel copy.

– To reduce the gap between the upper and lower bounds.

