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Abstract. In algorithmic statistics quality of a statistical hypothesis
(a model) P for a data x is measured by two parameters: Kolmogorov
complexity of the hypothesis and the probability P (x). A class of models
Sij that are the best at this point of view, were discovered. However
these models are too abstract.

To restrict the class of hypotheses for a data, Vereshchaginintroduced
a notion of a strong model for it. An object is called normal if it can be
explained by using strong models not worse than without this restriction.
In this paper we show that there are “many types” of normal strings.
Our second result states that there is a normal object x such that all
models Sij are not strong for x. Our last result states that every best fit
strong model for a normal object is again a normal object.

Keywords: Algorithmic statistics · Minimum description length ·
Stochastic strings · Total conditional complexity · Sufficient statistic ·
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1 Introduction

Let us recall the basic notion of algorithmic information theory and algorithmic
statistics (see [4,6,8] for more details).

We consider strings over the binary alphabet {0, 1}. The set of all strings is
denoted by {0, 1}∗ and the length of a string x is denoted by l(x). The empty
string is denoted by Λ.

1.1 Algorithmic Information Theory

Let D be a partial computable function mapping pairs of strings to strings.
Conditional Kolmogorov complexity with respect to D is defined as

CD(x|y) = min{l(p) | D(p, y) = x}.

In this context the function D is called a description mode or a decompressor.
If D(p, y) = x then p is called a description of x conditional to y or a program
mapping y to x.
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A decompressor D is called universal if for every other decompressor D

there is a string c such that D(p, y) = D(cp, y) for all p, y. By Solomonoff—
Kolmogorov theorem [2] universal decompressors exist. We pick arbitrary univer-
sal decompressor D and call CD(x|y) the Kolmogorov complexity of x conditional
to y, and denote it by C(x|y). Then we define the unconditional Kolmogorov
complexity C(x) of x as C(x|Λ).

Kolmogorov complexity can be naturally extended to other finite objects
(pairs of strings, finite sets of strings, etc.). We fix some computable bijection
(“encoding”) between these objects are binary strings and define the complexity
of an object as the complexity of the corresponding binary string. It is easy to see
that this definition is invariant (change of the encoding changes the complexity
only by O(1) additive term).

In particular, we fix some computable bijection between strings and finite
subsets of {0, 1}∗; the string that corresponds to a finite A ⊂ {0, 1}∗ is denoted
by [A]. Then we understand C(A) as C([A]). Similarly, C(x|A) and C(A|x) are
understood as C(x|[A]) and C([A]|x), etc.

1.2 Algorithmic Statistics: Basic Notions

Algorithmic statistics studies explanations of observed data that are suitable in
the algorithmic sense: an explanation should be simple and capture all the algo-
rithmically discoverable regularities in the data. The data is encoded, say, by a
binary string x. In this paper we consider explanations (statistical hypotheses) of
the form “x was drawn at random from a finite set A with uniform distribution”.

Kolmogorov suggested in a talk [3] in 1974 to measure the quality of an
explanation A  x by two parameters: Kolmogorov complexity C(A) of A and
the log-cardinality log |A|1 of A. The smaller C(A) is the simpler the explanation
is. The log-cardinality measures the fit of A—the lower is |A| the more A fits as
an explanation for any of its elements. For each complexity level m any model A
for x with smallest log |A| among models of complexity at most m for x is called
a best fit hypothesis for x. The trade off between C(A) and log |A| is represented
by the profile of x.

Definition 1. The profile of a string x is the set Px consisting of all pairs (m, l)
of natural numbers such that there exists a finite set A  x with C(A) ≤ m and
log2 |A| ≤ l.

Both parameters C(A) and log |A| cannot be very small simultaneously unless
the string x has very small Kolmogorov complexity. Indeed, C(A) + log |A| �
C(x), since x can be specified by A and its index in A. A model (we also use the
word “statistic”) A  x is called sufficient if C(A) + log |A| ≈ C(x). The value

δ(x|A) = C(A) + log |A| − C(x)

is called the optimality deficiency of A as a model for x. On Fig. 1 parameters
of sufficient statistics lie on the segment BD. A sufficient statistic that has the
1 by log we denote log2.
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Fig. 1. The profile Px of a string x.

minimal complexity is called minimal (MSS), its parameters are represented by
the point B on Fig. 1.

Example 1. Consider a string x ∈ {0, 1}2n such that leading n bits of x are
zeros, and the remaining bits are random, i.e. C(x) ≈ n. Consider the model A
for x that consists of all strings from {0, 1}2n that have n leading zeros. Then
C(A) + log |A| = log n + O(1) + n ≈ C(x), hence A is a sufficient statistic for x.
As the complexity of A is negligible, A is a minimal sufficient statistic for x.

The string from this example has a sufficient statistic of negligible complexity.
Such strings are called stochastic. Are there strings that have no sufficient statis-
tics of negligible complexity? The positive to this question was obtained in [7].
Such strings are called non-stochastic. Moreover, under some natural constraints
for every set P there is a string whose profile is close to P . The constraints are
listed in the following theorem:

Theorem 1. Let x be a string of length n and complexity k. Then Px has the
following properties:

(1) (k + O(log n), 0) ∈ Px.
(2) (O(log n), n) ∈ Px.
(3) if (a, b + c) ∈ Px then (a + b + O(log n), c) ∈ Px.
(4) if (a, b) ∈ Px then a + b > k − O(log n).

In other words, with logarithmic accuracy, the boundary of Px contains a
point (0, a) with a ≤ l(x), contains the point (C(x), 0), decreases with the slope
at least −1 and lies above the line C(A) + log |A| = C(x). Conversely, given a
curve with these property that has low complexity one can find a string x of
length n and complexity about k such that the boundary of Px is close to that
curve:
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Theorem 2 [10]. Assume that we are given k, n and an upward closed set P of
pairs of natural numbers such that (0, n), (k, 0) ∈ P , (a, b+c) ∈ P ⇒ (a+c, b) ∈ P
and (a, b) ∈ P ⇒ a + b ≥ k. Then there is a string x of length n and complexity
k +O(log n) whose profile is C(P )+O(log n)-close to P . (We call subsets of N2

-close if each of them is in the -neighborhood of the other.) By C(P ) we denote
the Kolmogorov complexity of the boundary of P , which is a finite object.

1.3 Universal Models

Assume that A is a sufficient statistic for x. Then A provides a two-part code
y = (the shortest description of A, the index of x in A) for x whose total
length is close to the complexity of x. The symmetry of information implies that
C(y|x) ≈ C(y) + C(x|y) − C(x). Obviously, the term C(x|y) here is negligible
and C(y) is at most its total length, which by assumption is close to C(x).
Thus C(y|x) ≈ 0, that is, x and y have almost the same information. That
is, the two-part code y for x splits the information from x in two parts: the
shortest description of A, the index of x in A. The second part of this two-part
code is incompressible (random) conditional to the first part (as otherwise, the
complexity of x would be smaller than the total length of y). Thus the second
part of this two-part code can be considered as accidental information (noise) in
the data x. In a sense every sufficient statistic A identifies about C(x) − C(A)
bits of accidental information in x. And thus any minimal sufficient statistic for
x extracts almost all useful information from x.

However, it turns out that this viewpoint is inconsistent with the existence of
universal models, discovered in [1]. Let Lm denote the list of strings of complexity
at most m. Let p be an algorithm that enumerates all strings of Lm in some order.
Notice that there is such algorithm of complexity O(log m). Denote by Ωm the
cardinality of Lm. Consider its binary representation, i.e., the sum:

Ωm = 2s1 + 2s2 + ... + 2st , where s1 > s2 > ... > st.

According to this decomposition and p, we split Lm into groups: first 2s1 ele-
ments, next 2s2 elements, etc. Let us denote by Sp

m,s the group of size 2s from
the partition. Notice that Sp

m,s is defined only for s that correspond to ones in
the binary representation of Ωm, so m ≥ s.

If x is a string of complexity at most m, it belongs to some group Sp
m,s and

this group can be considered as a model for x. We may consider different values of
m (starting from C(x)). In this way we get different models Sp

m,s for the same x.
The complexity of Sp

m,s is m−s+O(log m+C(p)). Indeed, chop Lm into portions
of size 2s each, then Sp

m,s is the last full portion and can be identified by m, s
and the number of full portions, which is less than Ωm/2s < 2m−s+1. Thus if m
is close to C(x) and C(p) is small then Sp

m,s is a sufficient statistic for x. More
specifically C(Sp

m,s) + log |Sp
m,s| = C(Sp

m,s) + s = m + O(log m + C(p)).
For every m there is an algorithm p of complexity O(log m) that enumerates

all strings of complexity at most m. We will fix for every m any such algorithm
pm and denote Spm

m,s by Sm,s.
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The models Sm,s were introduced in [1]. The models Sp
m,s are universal in

the following sense:

Theorem 3 [10]. 2Let A be any finite set of strings containing a string x of
length n. Then for every p there are s ≤ m ≤ n + O(1) such that

(1) x ∈ Sp
m,s,

(2) C(Sp
m,s|A) = O(log n+C(p)) (and hence C(Sp

m,s) ≤ C(A)+O(log n+C(p))),
(3) δ(x|Sp

m,s) ≤ δ(x|A) + O(log n + C(p)).

It turns out that the model Sp
m,s has the same information as the the number

Ωm−s:

Lemma 1 [10]. For every a ≤ b and for every s ≤ m:

(1) C(Ωa|Ωb) = O(log b).
(2) C(Ωm−s|Sp

m,s) = O(log m + C(p)) and C(Sp
m,s|Ωm−s) = O(log m + C(p)).

(3) C(Ωa) = a + O(log a).

By Theorem 3 for every data x there is a minimal sufficient statistic for x
of the form Sm,s. Indeed, let A be any minimal sufficient statistic for x and let
Sm,s be any model for x that exists by Theorem 3 for this A. Then by item 3
the statistic Sm,s is sufficient as well and by item 2 its complexity is also close
to minimum. Moreover, since C(Sm,s|A) is negligible and C(Sm,s) ≈ C(A), by
symmetry of information C(A|Sm,s) is negligible as well. Thus A has the same
information as Sm,s, which has the same information as Ωm−s (Lemma 1(2)).
Thus if we agree that every minimal sufficient statistic extracts all useful infor-
mation from the data, we must agree also that information is the same as the
information in the number of strings of complexity at most i for some i.

1.4 Total Conditional Complexity and Strong Models

The paper [9] suggests the following explanation to this situation. Although
conditional complexities C(Sm,s|A) and C(Sm,s|x) are small, the short programs
that map A and x, respectively, to Sm,s work in a huge time. A priori their work
time is not bounded by any total computable function of their input. Thus it
may happen that practically we are not able to find Sm,s (and also Ωm−s) from
a MSS A for x or from x itself.

Let us consider now programs whose work time is bounded by a total com-
putable function for the input. We get the notion of total conditional complexity
CT (y|x), which is the length of the shortest total program that maps x to y.
Total conditional complexity can be much greater than plain one, see for exam-
ple [5]. Intuitively, good sufficient statistics A for x must have not only negligible

2 This theorem was proved in [10, Theorem VIII.4] with accuracy O(max{log C(y) |
y ∈ A} + C(p)) instead of O(log n). Applying [10, Theorem VIII.4] to A = {y ∈ A |
l(y) = n} we obtain the theorem in the present form.
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conditional complexity C(A|x) (which follows from definition of a sufficient sta-
tistic) but also negligible total conditional complexity CT (A|x). The paper [9]
calls such models A strong models for x.

Is it true that for some x there is no strong MSS Sm,s for x? The positive
answer to this question was obtained in [9]: there are strings x for which all
minimal sufficient statistics are not strong for x. Such strings are called strange.
In particular, if Sm,s is a MSS for a strange string x then CT (Sm,s|x) is large.
However, a strange string has no strong MSS at all. An interesting question is
whether there are strings x that do have strong MSS but have no strong MSS of
the form Sm,s? This question was left open in [9]. In this paper we answer this
question in positive. Moreover, we show that there is a “normal” string x that
has no strong MSS of the form Sm,s (Theorem 7). A string x is called normal if
for every complexity level i there is a best fitting model A for x of complexity
at most i (whose parameters thus lie on the border of the set Px) that is strong.
In particular, every normal string has a strong MSS.

Our second result answers yet another question asked in [9]. Assume that
A is a strong MSS for a normal string x. Is it true that the code [A] of A is a
normal string itself? Our Theorem 10 states that this is indeed the case.

Our last result (which comes first in the following exposition) states that
there are normal strings with any given profile, under the same restrictions as
in Theorem 1 (Theorem 4 in Sect. 2).

2 Normal Strings with a Given Profile

In this section we prove an analogue of Theorem 2 for normal strings. We start
with a rigorous definition of strong models and normal strings.

Definition 2. A set A  x is called -strong statistic (model) for a string x if
CT (A|x) < .

To represent the trade off between size and complexity of -strong models for x
consider the -strong profile of x:

P
x = {(a, b) | ∃A  x : CT (A|x) ≤ , C(A) ≤ a, log |A| ≤ b}.

It is not hard to see that the set P
x satisfies the item (3) from Theorem 1:

for all x ∈ {0, 1}n if (a, b+ c) ∈ P
x then (a+ b+O(log n), c) ∈ P

+O(log n)
x .

It follows from the definition that P
x ⊂ Px for all x, . Informally a string is

called normal if for a negligible  we have Px ≈ P
x.

Definition 3. a string x is called (, δ)-normal if (a, b) ∈ Px implies
(a + δ, b + δ) ∈ P

x for all a, b.

The smaller , δ are the stronger is the property of (, δ)-normality. The main
result of this section shows that for some , δ = o(n) for every set P satisfying
the assumptions of Theorem 1 there is an , δ-normal string of length n with
Px ≈ P :
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Theorem 4. Assume that we are given an upward closed set P of pairs
of natural numbers satisfying assumptions of Theorem 2. Then there is an
(O(log n), O(

√
n log n))-normal string x of length n and complexity k + O(log n)

whose profile Px is C(P ) + O(
√

n log n)-close to P .

To prove this theorem we do an excursus to Algorithmic statistics with models
of restricted type.

Models of Restricted Type. It turns out that Theorems 1 and 2 remain valid
(with smaller accuracy) even if we restrict (following [11]) the class of models
under consideration to models from a class A provided the class A has the
following properties.

(1) The family A is enumerable. This means that there exists an algorithm
that prints elements of A as lists of strings, with some separators (saying where
one element of A ends and another one begins).

(2) For every n the class A contains the set {0, 1}n.
(3) There exists some polynomial p with the following property: for every

A ∈ A, for every natural n and for every natural c < |A| the set of all n-bit
strings in A can be covered by at most p(n) · |A|/c sets of cardinality at most c
from A.

Any family of finite sets sets of strings that satisfies these three conditions is
called acceptable.

Let us define the profile of x with respect to A:

PA
x = {(a, b) | ∃A  x : A ∈ A, C(A) ≤ a, log |A| ≤ b}.

Obviously PA
x ⊆ Px. Let us fix any acceptable class A of models.

Theorem 5 [11]. Let x be a string of length n and complexity k. Then P A
x has

the following properties:

(1) (k + O(log n), 0) ∈ P A
x .

(2) (O(log n), n) ∈ PA
x .

(3) if (a, b + c) ∈ P A
x then (a + b + O(log n), c) ∈ P A

x .
(4) if (a, b) ∈ PA

x then a + b > k − O(log n).

Theorem 6 [11]. Assume that we are given k, n and an upward closed set P of
pairs of natural numbers such that (0, n), (k, 0) ∈ P , (a, b+c) ∈ P ⇒ (a+c, b) ∈ P
and (a, b) ∈ P ⇒ a + b ≥ k. Then there is a string x of length n and complexity
k +O(log n) such that both sets P A

x and Px are C(P )+O(
√

n log n)-close to P .

Remark 1. Originally, the conclusion of Theorem 6 stated only that the set P A
x

is close to the given set P . However, as observed in [8], the proof from [11] shows
also that Px is close to P .

Proof (Proof of Theorem 4). We will derive this theorem from Theorem 6. To
this end consider the following family B of sets. A set B is in this family if it has
the form

B = {uv | v ∈ {0, 1}m},
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where u is an arbitrary binary string and m is an arbitrary natural number.
Obviously, the family B is acceptable, that is, it satisfies the properties (1)–(3)
above.

Note that for every x and for every A  x from B the total complexity of A

given x is O(log n). So P B
x ⊆ P

O(log n)
x . By Theorem 6 there is a string x such

that Px and PB
x are C(P ) + O(

√
n log n)-close to P . Since P B

x ⊆ P
O(log n)
x ⊆ Px

we conclude that x is (O(log n), O(
√

n log n))-normal.

Instead of using Theorem 4 one can, in special cases, show this result directly
even within a better accuracy range.

For instance, this happens for the smallest set P , satisfying the assumptions
of Theorem 6, namely for the set

P = {(m, l) | m ≥ k, or m + l ≥ n}.

Strings with such profile are called “antistochastic”.

Definition 4. A string x of length n and complexity k is called -antistochastic
if for all (m, l) ∈ Px either m > k − , or m + l > n −  (Fig. 2).

Fig. 2. The profile of an -antistochastic string x for a small .

We will need later the fact that for every n there is an O(log n)-antistochastic
string x of length n and that such strings are normal:

Lemma 2. For all n and all k ≤ n there is an O(log n)-antistochastic string x
of length n and complexity k+O(log n). Any such string x is (O(log n),O(log n))-
normal.
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Proof. Let x be the lexicographic first string of length n that is not covered by
any set A of cardinality 2n−k and complexity less than k. By a direct counting
such a string exists. The string x can be computed from k, n and the number of
halting programs of length less than k hence C(x) ≤ k +O(log n). To prove that
x is normal it is enough to show that for every i ≤ k there is a O(log n)-strong
statistics Ai for x with C(Ai) ≤ i + O(log n) and log |Ai| = n − i.

Let Ak = {x} and for i < k let Ai be the set of all strings of length n whose the
first i bits are the same as those of x. By the construction C(Ai) ≤ i + O(log n)
and log |Ai| = n − i.

3 Normal Strings Without Universal MSS

Our main result of this section is Theorem 7 which states that there is a normal
string x such that no set Sm,l is a strong MSS for x.

Theorem 7. For all large enough k there exist an (O(log k), O(log k))-normal
string x of complexity 3k + O(log k) and length 4k such that:

(1) The profile Px of x is O(log k)-close to the gray set on Fig. 3.
(2) The string x has a strong MSS. More specifically, there is an O(log k)-strong

model A for x with complexity k + O(log k) and log-cardinality 2k.
(3) For all simple q and all m, l the set Sq

m,l cannot be a strong sufficient statistic
for x. More specifically, for every -strong -sufficient model Sq

m,l for x of
complexity at most k + δ we have O( + δ + C(q)) ≥ k − O(log k)

(The third condition means that there are constants r and t such that r( + δ +
C(q)) ≥ k − t log k for all large enough k).

In the proof of this theorem we will need a rigorous definition of MSS and a
related result from [9].

Fig. 3. The profile Px of a string x from Theorem 7.
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Definition 5. A set A is called a (δ, , D)-minimal sufficient statistic (MSS)
for x if A is an -sufficient statistic for x and there is no model B for x with
C(B) < C(A) − δ and C(B) + log |B| − C(x) <  + D log C(x).

The next theorem states that for every strong MSS B and for every sufficient
statistic A for x the total conditional complexity CT (B|A) is negligible.

Theorem 8 ([9], Theorem 13). For some constant D if B is -strong (δ, , D)-
minimal sufficient statistic for x and A is an -sufficient statistic for x then
CT (B|A) = O( + δ + log C(x)).

Let us fix a constant D satisfying Theorem 8 and call a model (δ, )-MSS if
it is (δ, , D)-MSS. Such models have the following property.

Theorem 9 ([9], Theorem 14). Let x be a string of length n and A be an
-strong -sufficient statistic for x. Then for all b ≥ log |A| we have

(a, b) ∈ Px ⇔ (a + O( + log n), b − log |A| + O( + log n)) ∈ P[A]

and for b ≤ log |A| we have (a, b) ∈ Px ⇔ a + b ≥ C(x) − O(log n).

Proof (The proof of Theorem 7). Define x as the concatenation of strings y and z,
where y is an O(log k)-antistochastic string of complexity k and length 2k (exist-
ing by Lemma 2) and z is a string of length 2k such that C(z|y) = 2k −O(log k)
(and hence C(x) = 3k + O(log k)). Consider the following set A = {yz | l(z) =
2k}. From the shape of Px it is clear that A is an (O(log k), O(log k))-MSS
for x. Also it is clear that A is an O(log k)-strong model for x. So, by Theorem 9
the profile of x is O(log k)-close to the gray set on Fig. 3. From normality of y
(Lemma 2) it is not difficult to see that x is (O(log k), O(log k))-normal.

Let Sq
m,l be an -strong -sufficient model for x of complexity at most k + δ.

We claim that Sq
m,l is an (, δ + O(log k))-MSS for x.

By Theorem 8 we get CT (Sq
m,l|A) = O( + δ + log k) and thus CT (s0|y) =

O( + δ + log k), where s0 is the lexicographic least element in Sq
m,l. Denote by

p a total program of length O( + δ + log k) that transforms y to s0. Consider
the following set B := {p(y) | l(y) = 2k}. We claim that if  and δ are not very
big, then the complexity of any element from B is not greater than m. Indeed, if
+δ ≤ dk for a small constant d, then l(p) < k−O(log k) and hence every element
from B has complexity at most C(B) + log |B| + O(log k) ≤ 3k − O(log k) ≤ m.
The last inequality holds because Sq

m,l is a model for x and hence m ≥ C(x) =
3k + O(log k). (Otherwise, if  + δ > dk then the conclusion of the theorem is
straightforward.)

Let us run the program q until it prints all elements from B. Since s0 ∈ B,
there are at most 2l elements of complexity m that we have been printed yet.
So, we can find the list of all strings of complexity at most m from B, q and
some extra l bits. Since this list has complexity at least m − O(log m) (as from
this list and m we can compute a string of complexity more than m), we get
O(C(B) + C(q)) + l ≥ m − O(log m).
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Recall that the C(Sq
m,l) + log |Sq

m,l| is equal to m + O(log m + C(q)) and is
at most C(x) +  (since Sq

m,l is the strong statistic for x). Hence m ≤ 4k unless
 > k + O(log k + C(q)). Therefore the term O(log m) in the last inequality can
be re-written as O(log k).

Recall that the complexity of Sq
m,l is m− l+O(log m+C(q)). From the shape

of Px it follows that C(Sq
m,l) ≥ k − O(log k) or C(Sq

m,l) + log |Sq
m,l| ≥ C(x) +

k − O(log k). In the latter case  ≥ k − O(log k) and we are done. In the former
case m − l ≥ k − O(log k + C(q)) hence O(C(B) + C(q)) ≥ k − O(log k + C(q))
and so O( + δ + C(q)) ≥ k − O(log k).

4 Hereditary of Normality

In this section we prove that every strong MSS for a normal string is itself normal.
Recall that a string x is called (, δ)-normal if for every model B for x there is a
model A for x with CT (A|x) ≤  and C(A) ≤ C(B) + δ, log |A| ≤ log |B| + δ.

Theorem 10. There is a constant D such that the following holds. Assume that
A is an -strong (δ, , D)-MSS for an (, )-normal string x of length n. Assume
that  ≤ √

n/2. Then the code [A] of A is O(( + δ + log n) · √
n)-normal.

The rest of this section is the proof of this theorem. We start with the fol-
lowing lemma, which is a simple corollary of Theorem 3 and Lemma 1.

Lemma 3. For all large enough D the following holds: if A is a (δ, , D)-MSS
for x ∈ {0, 1}n then C(ΩC(A)|A) = O(δ + log n).

We fix a constant D satisfying Lemma 3 and call a model (δ, )-MSS if it (δ, , D)-
MSS. This D is the constant satisfying Theorem 10

A family of sets A is called partition if for every A1, A2 ∈ A we have A1∩A2 =
∅ ⇒ A1 = A2. Note that for a finite partition we can define its complexity. The
next lemma states that every strong statistic A can be transformed into a strong
statistic A1 such that A1 belongs to some partition of similar complexity.

Lemma 4. Let A be an -strong statistic for x ∈ {0, 1}n. Then there is a set
A1 and a partition A of complexity at most  + O(log n) such that:

(1) A1 is  + O(log n)-strong statistic for x.
(2) CT (A|A1) <  + O(log n) and CT (A1|A) <  + O(log n).
(3) |A1| ≤ |A|.
(4) A1 ∈ A.

Proof. Assume that A is an -strong statistic for x. Then there is a total program
p such that p(x) = A and l(p) ≤ .

We will use the same construction as in Remark 1 in [9]. For every set B
denote by B the following set: {x ∈ B | p(x) = B, x ∈ {0, 1}n}. Notice that
CT (A|A), CT (A|A) and CT (A|x) are less than l(p) + O(log n) =  + O(log n)
and |A| ≤ |A|.

For any x1, x2 ∈ {0, 1}n with p(x1) = p(x2) we have p(x1) ∩ p(x2) = ∅.
Hence A := {p(x)|x ∈ {0, 1}n} is a partition of complexity at most +O(log n).
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By Theorem 3 and Lemma 1 for every A  x there is a B  x such that B is
informational equivalent to ΩC(B) and parameters of B are not worse than those
of A. We will need a similar result for normal strings and for strong models.

Lemma 5. Let x be an (, α)-normal string with length n such that  ≤ n,
α <

√
n/2. Let A be an -strong statistic for x. Then there is a set H such that:

(1) H is an -strong statistic for x.
(2) δ(x|H) ≤ δ(x|A) + O((α + log n) · √

n) and C(H) ≤ C(A).
(3) C(H|ΩC(H)) = O(

√
n).

Proof (Sketch of proof). Consider the sequence A1, B1, A2, B2, . . . of statistics
for x defined as follows. Let A1 := A and let Bi be an improvement of Ai such
that Bi is informational equivalent to ΩC(Bi), which exists by Theorem 3. Let
Ai+1 be a strong statistic for x that has a similar parameters as Bi, which exists
because x is normal. (See Fig. 4.)

Denote by N the minimal integer such that C(AN ) − C(BN ) ≤ √
n. For

i < N the complexity of Bi is more than
√

n less that of Ai. On the other hand,
the complexity of Ai+1 is at most α <

√
n/2 larger than that of Bi. Hence N =

O(
√

n). Let H := AN . By definition AN (and H) is strong. From N = O(
√

n)
it follows that the second condition is satisfied. From C(AN ) − C(BN ) ≤ √

n
and definition of BN it is follows that the third condition is satisfied too (use
symmetry of information).

Proof (Sketch of proof of Theorem 10). Assume that A is a -strong (δ, , D)-
minimal statistic for x, where D satisfies Lemma 3. By Lemma 3 A is informa-
tional equivalent to ΩC(A). We need to prove that the profile of [A] is close to
the strong profile of [A].

Fig. 4. Parameters of statistics Ai and Bi
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Fig. 5. Px is located log |A1| higher than P[A1]

Let A be a simple partition and A1 a model from A which exists by Lemma 4
applied to A, x. As the total conditional complexities CT (A1|A) and CT (A|A1)
are small, the profiles of A and A1 are close to each other. This also applies to
strong profiles. Therefore it suffices to show that (the code of) A1 is normal.

Let (a, b) ∈ P[A1]. The parameters (complexity and log-cardinality) of A1

are not larger than those of A and hence A1 is a sufficient statistic for x. By
Theorem 9 we have (a, b + log |A1|) ∈ Px (see Fig. 5).

As x is normal, the pair (a, b + log |A1|) belongs to the strong profile of x
as well. By Lemma 5 there is a strong model M for x that has low complexity
conditional to ΩC(M) and whose parameters (complexity, optimality deficiency)
are not worse than those of A1.

We claim that C(M |A1) is small. As A is informational equivalent to ΩC(A),
so is A1. From ΩC(A) we can compute ΩC(M) (Lemma 1) and then compute M
(as C(M |ΩC(M)) ≈ 0). This implies that C(M |A1) ≈ 0.

However we will need a stronger inequality CT (M |A1) ≈ 0. To find such M ,
we apply Lemma 4 to M, x and change it to a model M1 with the same para-
meters that belongs to a simple partition M. Item (2) of Lemma 4 guarantees
that M1 is also simple given A1 and that M1 is a strong model for x. Since
C(M |A1) ≈ 0, we have C(M1|A1) ≈ 0 as well.

As A1 lies on the border line of Px and C(M1|A1) ≈ 0, the intersection
A1∩M1 cannot be much less than A1, that is, log |A1∩M1| ≈ log |A1| (otherwise
the model A1 ∩ M1 for x would have much smaller cardinality and almost the
same complexity as A1). The model M1 can be computed by a total program
from A1 and its index among all M  ∈ M with log |A1 ∩ M | ≈ log |A1|. As M
is a partition, there are few such sets M . Hence CT (M1|A1) ≈ 0.
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Finally, let H = {A ∈ A | log |A ∩ M1| = log |A1 ∩ M1|}. The model H
for A1 is strong because the partition A is simple and CT (M1|A1) ≈ 0. The
model H can be computed from M1, A and log |A1 ∩ M1|. As A is simple, we
conclude that C(H) � C(M1). Finally log |H| ≤ log |M1| − log |A1|, because A
is a partition and thus it has few sets that have log |A1 ∩M1| ≈ log |A1| common
elements with M1.

Thus the complexity of H is not larger than that of M1 and the sum of
complexity and cardinality of H is at most a+ b− log |A1|. As the strong profile
of x has the third property from Theorem 1, we can conclude that it includes
the point (a, b).
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