
Compressibility and probabilistic proofs

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen

LIRMM CNRS & University of Montpellier

CiE 2017

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Probabilistic existence proofs

An object with some properties exists. . . because a random
object has these properties (with positive probability)

A noncomputable binary sequence exists. . .
. . . because the probability for a random sequence of fair coin
tossings to be computable is 0
. . . because the probability of a random sequence to be
computed by a given algorithm is 0 and we have countably
many algorithms.

cardinality argument in disguise, but we immediately get. . .

Kleene, Post: there are non-comparable Turing degrees, i.e.,
two binary sequences that do not compute each other (being
used as oracles)

The probability of “β computes α” for random independent α
and β is zero (fixed β + Fubini’s theorem), and vice versa

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Probabilistic existence proofs

An object with some properties exists. . .

because a random
object has these properties (with positive probability)

A noncomputable binary sequence exists. . .
. . . because the probability for a random sequence of fair coin
tossings to be computable is 0
. . . because the probability of a random sequence to be
computed by a given algorithm is 0 and we have countably
many algorithms.

cardinality argument in disguise, but we immediately get. . .

Kleene, Post: there are non-comparable Turing degrees, i.e.,
two binary sequences that do not compute each other (being
used as oracles)

The probability of “β computes α” for random independent α
and β is zero (fixed β + Fubini’s theorem), and vice versa

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Probabilistic existence proofs

An object with some properties exists. . . because a random
object has these properties (with positive probability)

A noncomputable binary sequence exists. . .
. . . because the probability for a random sequence of fair coin
tossings to be computable is 0
. . . because the probability of a random sequence to be
computed by a given algorithm is 0 and we have countably
many algorithms.

cardinality argument in disguise, but we immediately get. . .

Kleene, Post: there are non-comparable Turing degrees, i.e.,
two binary sequences that do not compute each other (being
used as oracles)

The probability of “β computes α” for random independent α
and β is zero (fixed β + Fubini’s theorem), and vice versa

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Probabilistic existence proofs

An object with some properties exists. . . because a random
object has these properties (with positive probability)

A noncomputable binary sequence exists. . .

. . . because the probability for a random sequence of fair coin
tossings to be computable is 0
. . . because the probability of a random sequence to be
computed by a given algorithm is 0 and we have countably
many algorithms.

cardinality argument in disguise, but we immediately get. . .

Kleene, Post: there are non-comparable Turing degrees, i.e.,
two binary sequences that do not compute each other (being
used as oracles)

The probability of “β computes α” for random independent α
and β is zero (fixed β + Fubini’s theorem), and vice versa

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Probabilistic existence proofs

An object with some properties exists. . . because a random
object has these properties (with positive probability)

A noncomputable binary sequence exists. . .
. . . because the probability for a random sequence of fair coin
tossings to be computable is 0

. . . because the probability of a random sequence to be
computed by a given algorithm is 0 and we have countably
many algorithms.

cardinality argument in disguise, but we immediately get. . .

Kleene, Post: there are non-comparable Turing degrees, i.e.,
two binary sequences that do not compute each other (being
used as oracles)

The probability of “β computes α” for random independent α
and β is zero (fixed β + Fubini’s theorem), and vice versa

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Probabilistic existence proofs

An object with some properties exists. . . because a random
object has these properties (with positive probability)

A noncomputable binary sequence exists. . .
. . . because the probability for a random sequence of fair coin
tossings to be computable is 0
. . . because the probability of a random sequence to be
computed by a given algorithm is 0 and we have countably
many algorithms.

cardinality argument in disguise, but we immediately get. . .

Kleene, Post: there are non-comparable Turing degrees, i.e.,
two binary sequences that do not compute each other (being
used as oracles)

The probability of “β computes α” for random independent α
and β is zero (fixed β + Fubini’s theorem), and vice versa

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Probabilistic existence proofs

An object with some properties exists. . . because a random
object has these properties (with positive probability)

A noncomputable binary sequence exists. . .
. . . because the probability for a random sequence of fair coin
tossings to be computable is 0
. . . because the probability of a random sequence to be
computed by a given algorithm is 0 and we have countably
many algorithms.

cardinality argument in disguise, but we immediately get. . .

Kleene, Post: there are non-comparable Turing degrees, i.e.,
two binary sequences that do not compute each other (being
used as oracles)

The probability of “β computes α” for random independent α
and β is zero (fixed β + Fubini’s theorem), and vice versa

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Probabilistic existence proofs

An object with some properties exists. . . because a random
object has these properties (with positive probability)

A noncomputable binary sequence exists. . .
. . . because the probability for a random sequence of fair coin
tossings to be computable is 0
. . . because the probability of a random sequence to be
computed by a given algorithm is 0 and we have countably
many algorithms.

cardinality argument in disguise, but we immediately get. . .

Kleene, Post: there are non-comparable Turing degrees, i.e.,
two binary sequences that do not compute each other (being
used as oracles)

The probability of “β computes α” for random independent α
and β is zero (fixed β + Fubini’s theorem), and vice versa

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Probabilistic existence proofs

An object with some properties exists. . . because a random
object has these properties (with positive probability)

A noncomputable binary sequence exists. . .
. . . because the probability for a random sequence of fair coin
tossings to be computable is 0
. . . because the probability of a random sequence to be
computed by a given algorithm is 0 and we have countably
many algorithms.

cardinality argument in disguise, but we immediately get. . .

Kleene, Post: there are non-comparable Turing degrees, i.e.,
two binary sequences that do not compute each other (being
used as oracles)

The probability of “β computes α” for random independent α
and β is zero (fixed β + Fubini’s theorem), and vice versa

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Finite probabilistic existence proof

Boolean matrices n × n

k × k minor: fix arbitrary k rows and k columns

monochromatic minor: all zeros/all ones

Theorem: for k = 3 log n and large n there exists a matrix
without k × k monochromatic minors

Proof: for a random matrix the probability to have a large
monochromatic minor is small (and therefore < 1)

the probability to have a k × k monochromatic minor at a
given position: 2× 2−k

2

number of possible positions: ≤ nk × nk = 22k log n

2k log n� k2 if k � 2 log n, so the union bound works

Just counting (of course)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Finite probabilistic existence proof

Boolean matrices n × n

k × k minor: fix arbitrary k rows and k columns

monochromatic minor: all zeros/all ones

Theorem: for k = 3 log n and large n there exists a matrix
without k × k monochromatic minors

Proof: for a random matrix the probability to have a large
monochromatic minor is small (and therefore < 1)

the probability to have a k × k monochromatic minor at a
given position: 2× 2−k

2

number of possible positions: ≤ nk × nk = 22k log n

2k log n� k2 if k � 2 log n, so the union bound works

Just counting (of course)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Finite probabilistic existence proof

Boolean matrices n × n

k × k minor: fix arbitrary k rows and k columns

monochromatic minor: all zeros/all ones

Theorem: for k = 3 log n and large n there exists a matrix
without k × k monochromatic minors

Proof: for a random matrix the probability to have a large
monochromatic minor is small (and therefore < 1)

the probability to have a k × k monochromatic minor at a
given position: 2× 2−k

2

number of possible positions: ≤ nk × nk = 22k log n

2k log n� k2 if k � 2 log n, so the union bound works

Just counting (of course)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Finite probabilistic existence proof

Boolean matrices n × n

k × k minor: fix arbitrary k rows and k columns

monochromatic minor: all zeros/all ones

Theorem: for k = 3 log n and large n there exists a matrix
without k × k monochromatic minors

Proof: for a random matrix the probability to have a large
monochromatic minor is small (and therefore < 1)

the probability to have a k × k monochromatic minor at a
given position: 2× 2−k

2

number of possible positions: ≤ nk × nk = 22k log n

2k log n� k2 if k � 2 log n, so the union bound works

Just counting (of course)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Finite probabilistic existence proof

Boolean matrices n × n

k × k minor: fix arbitrary k rows and k columns

monochromatic minor: all zeros/all ones

Theorem: for k = 3 log n and large n there exists a matrix
without k × k monochromatic minors

Proof: for a random matrix the probability to have a large
monochromatic minor is small (and therefore < 1)

the probability to have a k × k monochromatic minor at a
given position: 2× 2−k

2

number of possible positions: ≤ nk × nk = 22k log n

2k log n� k2 if k � 2 log n, so the union bound works

Just counting (of course)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Finite probabilistic existence proof

Boolean matrices n × n

k × k minor: fix arbitrary k rows and k columns

monochromatic minor: all zeros/all ones

Theorem: for k = 3 log n and large n there exists a matrix
without k × k monochromatic minors

Proof: for a random matrix the probability to have a large
monochromatic minor is small (and therefore < 1)

the probability to have a k × k monochromatic minor at a
given position: 2× 2−k

2

number of possible positions: ≤ nk × nk = 22k log n

2k log n� k2 if k � 2 log n, so the union bound works

Just counting (of course)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Finite probabilistic existence proof

Boolean matrices n × n

k × k minor: fix arbitrary k rows and k columns

monochromatic minor: all zeros/all ones

Theorem: for k = 3 log n and large n there exists a matrix
without k × k monochromatic minors

Proof: for a random matrix the probability to have a large
monochromatic minor is small (and therefore < 1)

the probability to have a k × k monochromatic minor at a
given position: 2× 2−k

2

number of possible positions: ≤ nk × nk = 22k log n

2k log n� k2 if k � 2 log n, so the union bound works

Just counting (of course)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Finite probabilistic existence proof

Boolean matrices n × n

k × k minor: fix arbitrary k rows and k columns

monochromatic minor: all zeros/all ones

Theorem: for k = 3 log n and large n there exists a matrix
without k × k monochromatic minors

Proof: for a random matrix the probability to have a large
monochromatic minor is small (and therefore < 1)

the probability to have a k × k monochromatic minor at a
given position: 2× 2−k

2

number of possible positions: ≤ nk × nk = 22k log n

2k log n� k2 if k � 2 log n, so the union bound works

Just counting (of course)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Finite probabilistic existence proof

Boolean matrices n × n

k × k minor: fix arbitrary k rows and k columns

monochromatic minor: all zeros/all ones

Theorem: for k = 3 log n and large n there exists a matrix
without k × k monochromatic minors

Proof: for a random matrix the probability to have a large
monochromatic minor is small (and therefore < 1)

the probability to have a k × k monochromatic minor at a
given position: 2× 2−k

2

number of possible positions: ≤ nk × nk = 22k log n

2k log n� k2 if k � 2 log n, so the union bound works

Just counting (of course)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Finite probabilistic existence proof

Boolean matrices n × n

k × k minor: fix arbitrary k rows and k columns

monochromatic minor: all zeros/all ones

Theorem: for k = 3 log n and large n there exists a matrix
without k × k monochromatic minors

Proof: for a random matrix the probability to have a large
monochromatic minor is small (and therefore < 1)

the probability to have a k × k monochromatic minor at a
given position: 2× 2−k

2

number of possible positions: ≤ nk × nk = 22k log n

2k log n� k2 if k � 2 log n, so the union bound works

Just counting (of course)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Same proof using the compression language

n × n matrix can be encoded as a n2-bit string

most strings are incompressible (cannot be described by fewer
bits)

if matrix with a k × k monochromatic minor for k � 2 log n is
compressible

why? it has a short description:

each of 2k rows/columns of the minor requires log n bits,
2k log n in total

one bit for the color of the minor

the rest of the matrix (n2 − k2 bits)

replacing k2 by 2k log n + 1: compression if k � 2 log n

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Same proof using the compression language

n × n matrix can be encoded as a n2-bit string

most strings are incompressible (cannot be described by fewer
bits)

if matrix with a k × k monochromatic minor for k � 2 log n is
compressible

why? it has a short description:

each of 2k rows/columns of the minor requires log n bits,
2k log n in total

one bit for the color of the minor

the rest of the matrix (n2 − k2 bits)

replacing k2 by 2k log n + 1: compression if k � 2 log n

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Same proof using the compression language

n × n matrix can be encoded as a n2-bit string

most strings are incompressible (cannot be described by fewer
bits)

if matrix with a k × k monochromatic minor for k � 2 log n is
compressible

why? it has a short description:

each of 2k rows/columns of the minor requires log n bits,
2k log n in total

one bit for the color of the minor

the rest of the matrix (n2 − k2 bits)

replacing k2 by 2k log n + 1: compression if k � 2 log n

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Same proof using the compression language

n × n matrix can be encoded as a n2-bit string

most strings are incompressible (cannot be described by fewer
bits)

if matrix with a k × k monochromatic minor for k � 2 log n is
compressible

why? it has a short description:

each of 2k rows/columns of the minor requires log n bits,
2k log n in total

one bit for the color of the minor

the rest of the matrix (n2 − k2 bits)

replacing k2 by 2k log n + 1: compression if k � 2 log n

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Same proof using the compression language

n × n matrix can be encoded as a n2-bit string

most strings are incompressible (cannot be described by fewer
bits)

if matrix with a k × k monochromatic minor for k � 2 log n is
compressible

why? it has a short description:

each of 2k rows/columns of the minor requires log n bits,
2k log n in total

one bit for the color of the minor

the rest of the matrix (n2 − k2 bits)

replacing k2 by 2k log n + 1: compression if k � 2 log n

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Same proof using the compression language

n × n matrix can be encoded as a n2-bit string

most strings are incompressible (cannot be described by fewer
bits)

if matrix with a k × k monochromatic minor for k � 2 log n is
compressible

why? it has a short description:

each of 2k rows/columns of the minor requires log n bits,
2k log n in total

one bit for the color of the minor

the rest of the matrix (n2 − k2 bits)

replacing k2 by 2k log n + 1: compression if k � 2 log n

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Same proof using the compression language

n × n matrix can be encoded as a n2-bit string

most strings are incompressible (cannot be described by fewer
bits)

if matrix with a k × k monochromatic minor for k � 2 log n is
compressible

why? it has a short description:

each of 2k rows/columns of the minor requires log n bits,
2k log n in total

one bit for the color of the minor

the rest of the matrix (n2 − k2 bits)

replacing k2 by 2k log n + 1: compression if k � 2 log n

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Same proof using the compression language

n × n matrix can be encoded as a n2-bit string

most strings are incompressible (cannot be described by fewer
bits)

if matrix with a k × k monochromatic minor for k � 2 log n is
compressible

why? it has a short description:

each of 2k rows/columns of the minor requires log n bits,
2k log n in total

one bit for the color of the minor

the rest of the matrix (n2 − k2 bits)

replacing k2 by 2k log n + 1: compression if k � 2 log n

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Same proof using the compression language

n × n matrix can be encoded as a n2-bit string

most strings are incompressible (cannot be described by fewer
bits)

if matrix with a k × k monochromatic minor for k � 2 log n is
compressible

why? it has a short description:

each of 2k rows/columns of the minor requires log n bits,
2k log n in total

one bit for the color of the minor

the rest of the matrix (n2 − k2 bits)

replacing k2 by 2k log n + 1: compression if k � 2 log n

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

So what?

may be the compression language is more intuitive

but not very impressive. . .

more interesting examples

Lovasz local lemma instead of the union bound

algorithmic version due to Moses-Tardos

do not need to know what is LL and MT algorithm

scheme: we try to most natural randomized algorithm

it succeeds with high probability. . .

because if it fails, the random bits used are compressible

A: forbidden factors (Ochem, Gonçalves)

B: CNF with bounded neighborhood (Moser, Fortnow)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

So what?

may be the compression language is more intuitive

but not very impressive. . .

more interesting examples

Lovasz local lemma instead of the union bound

algorithmic version due to Moses-Tardos

do not need to know what is LL and MT algorithm

scheme: we try to most natural randomized algorithm

it succeeds with high probability. . .

because if it fails, the random bits used are compressible

A: forbidden factors (Ochem, Gonçalves)

B: CNF with bounded neighborhood (Moser, Fortnow)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

So what?

may be the compression language is more intuitive

but not very impressive. . .

more interesting examples

Lovasz local lemma instead of the union bound

algorithmic version due to Moses-Tardos

do not need to know what is LL and MT algorithm

scheme: we try to most natural randomized algorithm

it succeeds with high probability. . .

because if it fails, the random bits used are compressible

A: forbidden factors (Ochem, Gonçalves)

B: CNF with bounded neighborhood (Moser, Fortnow)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

So what?

may be the compression language is more intuitive

but not very impressive. . .

more interesting examples

Lovasz local lemma instead of the union bound

algorithmic version due to Moses-Tardos

do not need to know what is LL and MT algorithm

scheme: we try to most natural randomized algorithm

it succeeds with high probability. . .

because if it fails, the random bits used are compressible

A: forbidden factors (Ochem, Gonçalves)

B: CNF with bounded neighborhood (Moser, Fortnow)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

So what?

may be the compression language is more intuitive

but not very impressive. . .

more interesting examples

Lovasz local lemma instead of the union bound

algorithmic version due to Moses-Tardos

do not need to know what is LL and MT algorithm

scheme: we try to most natural randomized algorithm

it succeeds with high probability. . .

because if it fails, the random bits used are compressible

A: forbidden factors (Ochem, Gonçalves)

B: CNF with bounded neighborhood (Moser, Fortnow)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

So what?

may be the compression language is more intuitive

but not very impressive. . .

more interesting examples

Lovasz local lemma instead of the union bound

algorithmic version due to Moses-Tardos

do not need to know what is LL and MT algorithm

scheme: we try to most natural randomized algorithm

it succeeds with high probability. . .

because if it fails, the random bits used are compressible

A: forbidden factors (Ochem, Gonçalves)

B: CNF with bounded neighborhood (Moser, Fortnow)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

So what?

may be the compression language is more intuitive

but not very impressive. . .

more interesting examples

Lovasz local lemma instead of the union bound

algorithmic version due to Moses-Tardos

do not need to know what is LL and MT algorithm

scheme: we try to most natural randomized algorithm

it succeeds with high probability. . .

because if it fails, the random bits used are compressible

A: forbidden factors (Ochem, Gonçalves)

B: CNF with bounded neighborhood (Moser, Fortnow)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

So what?

may be the compression language is more intuitive

but not very impressive. . .

more interesting examples

Lovasz local lemma instead of the union bound

algorithmic version due to Moses-Tardos

do not need to know what is LL and MT algorithm

scheme: we try to most natural randomized algorithm

it succeeds with high probability. . .

because if it fails, the random bits used are compressible

A: forbidden factors (Ochem, Gonçalves)

B: CNF with bounded neighborhood (Moser, Fortnow)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

So what?

may be the compression language is more intuitive

but not very impressive. . .

more interesting examples

Lovasz local lemma instead of the union bound

algorithmic version due to Moses-Tardos

do not need to know what is LL and MT algorithm

scheme: we try to most natural randomized algorithm

it succeeds with high probability. . .

because if it fails, the random bits used are compressible

A: forbidden factors (Ochem, Gonçalves)

B: CNF with bounded neighborhood (Moser, Fortnow)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

So what?

may be the compression language is more intuitive

but not very impressive. . .

more interesting examples

Lovasz local lemma instead of the union bound

algorithmic version due to Moses-Tardos

do not need to know what is LL and MT algorithm

scheme: we try to most natural randomized algorithm

it succeeds with high probability. . .

because if it fails, the random bits used are compressible

A: forbidden factors (Ochem, Gonçalves)

B: CNF with bounded neighborhood (Moser, Fortnow)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

So what?

may be the compression language is more intuitive

but not very impressive. . .

more interesting examples

Lovasz local lemma instead of the union bound

algorithmic version due to Moses-Tardos

do not need to know what is LL and MT algorithm

scheme: we try to most natural randomized algorithm

it succeeds with high probability. . .

because if it fails, the random bits used are compressible

A: forbidden factors (Ochem, Gonçalves)

B: CNF with bounded neighborhood (Moser, Fortnow)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

So what?

may be the compression language is more intuitive

but not very impressive. . .

more interesting examples

Lovasz local lemma instead of the union bound

algorithmic version due to Moses-Tardos

do not need to know what is LL and MT algorithm

scheme: we try to most natural randomized algorithm

it succeeds with high probability. . .

because if it fails, the random bits used are compressible

A: forbidden factors (Ochem, Gonçalves)

B: CNF with bounded neighborhood (Moser, Fortnow)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Forbidden factors

F1, . . . ,Fk : binary strings (“forbidden strings”)

is there an infinite bit sequence that does not have any of Fi
as a substring?

infinite ⇔ arbitrarily long

the answer depends on the list: 0, 11 does not exist;
0, 00 does exist

for a fixed list we get a regular expression / finite automaton

quantitative results: “if there are not too many forbidden
strings of each length, then there are long sequences without
forbidden strings”

Let an be the number of forbidden strings of length i . If∑
ai t

i < 2t − 1 for some t > 0

then there exist arbitrarily long forbidden strings

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Forbidden factors

F1, . . . ,Fk : binary strings (“forbidden strings”)

is there an infinite bit sequence that does not have any of Fi
as a substring?

infinite ⇔ arbitrarily long

the answer depends on the list: 0, 11 does not exist;
0, 00 does exist

for a fixed list we get a regular expression / finite automaton

quantitative results: “if there are not too many forbidden
strings of each length, then there are long sequences without
forbidden strings”

Let an be the number of forbidden strings of length i . If∑
ai t

i < 2t − 1 for some t > 0

then there exist arbitrarily long forbidden strings

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Forbidden factors

F1, . . . ,Fk : binary strings (“forbidden strings”)

is there an infinite bit sequence that does not have any of Fi
as a substring?

infinite ⇔ arbitrarily long

the answer depends on the list: 0, 11 does not exist;
0, 00 does exist

for a fixed list we get a regular expression / finite automaton

quantitative results: “if there are not too many forbidden
strings of each length, then there are long sequences without
forbidden strings”

Let an be the number of forbidden strings of length i . If∑
ai t

i < 2t − 1 for some t > 0

then there exist arbitrarily long forbidden strings

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Forbidden factors

F1, . . . ,Fk : binary strings (“forbidden strings”)

is there an infinite bit sequence that does not have any of Fi
as a substring?

infinite ⇔ arbitrarily long

the answer depends on the list: 0, 11 does not exist;
0, 00 does exist

for a fixed list we get a regular expression / finite automaton

quantitative results: “if there are not too many forbidden
strings of each length, then there are long sequences without
forbidden strings”

Let an be the number of forbidden strings of length i . If∑
ai t

i < 2t − 1 for some t > 0

then there exist arbitrarily long forbidden strings

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Forbidden factors

F1, . . . ,Fk : binary strings (“forbidden strings”)

is there an infinite bit sequence that does not have any of Fi
as a substring?

infinite ⇔ arbitrarily long

the answer depends on the list: 0, 11 does not exist;

0, 00 does exist

for a fixed list we get a regular expression / finite automaton

quantitative results: “if there are not too many forbidden
strings of each length, then there are long sequences without
forbidden strings”

Let an be the number of forbidden strings of length i . If∑
ai t

i < 2t − 1 for some t > 0

then there exist arbitrarily long forbidden strings

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Forbidden factors

F1, . . . ,Fk : binary strings (“forbidden strings”)

is there an infinite bit sequence that does not have any of Fi
as a substring?

infinite ⇔ arbitrarily long

the answer depends on the list: 0, 11 does not exist;
0, 00 does exist

for a fixed list we get a regular expression / finite automaton

quantitative results: “if there are not too many forbidden
strings of each length, then there are long sequences without
forbidden strings”

Let an be the number of forbidden strings of length i . If∑
ai t

i < 2t − 1 for some t > 0

then there exist arbitrarily long forbidden strings

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Forbidden factors

F1, . . . ,Fk : binary strings (“forbidden strings”)

is there an infinite bit sequence that does not have any of Fi
as a substring?

infinite ⇔ arbitrarily long

the answer depends on the list: 0, 11 does not exist;
0, 00 does exist

for a fixed list we get a regular expression / finite automaton

quantitative results: “if there are not too many forbidden
strings of each length, then there are long sequences without
forbidden strings”

Let an be the number of forbidden strings of length i . If∑
ai t

i < 2t − 1 for some t > 0

then there exist arbitrarily long forbidden strings

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Forbidden factors

F1, . . . ,Fk : binary strings (“forbidden strings”)

is there an infinite bit sequence that does not have any of Fi
as a substring?

infinite ⇔ arbitrarily long

the answer depends on the list: 0, 11 does not exist;
0, 00 does exist

for a fixed list we get a regular expression / finite automaton

quantitative results: “if there are not too many forbidden
strings of each length, then there are long sequences without
forbidden strings”

Let an be the number of forbidden strings of length i . If∑
ai t

i < 2t − 1 for some t > 0

then there exist arbitrarily long forbidden strings

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Forbidden factors

F1, . . . ,Fk : binary strings (“forbidden strings”)

is there an infinite bit sequence that does not have any of Fi
as a substring?

infinite ⇔ arbitrarily long

the answer depends on the list: 0, 11 does not exist;
0, 00 does exist

for a fixed list we get a regular expression / finite automaton

quantitative results: “if there are not too many forbidden
strings of each length, then there are long sequences without
forbidden strings”

Let ai be the number of forbidden strings of length i . If∑
ai t

i < mt − 1 for some t > 0

then there exist arbitrarily long strings without forbidden
factors. (For the case of m letters)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

0

0

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

0 0

00

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

0 0 1

001

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

0 0 1

001

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

0

001

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

0 1

0011

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

0 1

0011

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

0011

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

1

00111

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

1 1

001111

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

1 1 0

0011110

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

1 1 0

0011110

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

0011110

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

1

00111101

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

1 0

001111010

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

1 0 0

0011110100

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

1 0 0 0

00111101000

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

1 0 0 0 1

001111010001

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

1 0 0 0 1

001111010001

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

1 0 0

001111010001

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tetris algorithm

Forbidden strings: 01, 110

1 0 0 0

0011110100010

Random bits are added one by one; if a forbidden string appears
(at the end), it vanishes, and the process continues

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Will it grow indefinitely?

alphabet size m

an is the number of forbidden strings of length n ≥ 2

assume that
∑

n ant
n < mt − 1 for some t > 0

Claim: if the string remains short forever, then the sequence
of random bits is compressible

log file: sequence of signs like +, +01, +110 for adding the
new bit (not indicated) without or with cancelled string

going backwards: + means deletion of the last bit, +u means
adding u and then deleting the last bit

current sequence + log file → random bits used

few forbidden strings ⇒ few symbols in log file ⇒ efficient
encoding

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Will it grow indefinitely?

alphabet size m

an is the number of forbidden strings of length n ≥ 2

assume that
∑

n ant
n < mt − 1 for some t > 0

Claim: if the string remains short forever, then the sequence
of random bits is compressible

log file: sequence of signs like +, +01, +110 for adding the
new bit (not indicated) without or with cancelled string

going backwards: + means deletion of the last bit, +u means
adding u and then deleting the last bit

current sequence + log file → random bits used

few forbidden strings ⇒ few symbols in log file ⇒ efficient
encoding

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Will it grow indefinitely?

alphabet size m

an is the number of forbidden strings of length n ≥ 2

assume that
∑

n ant
n < mt − 1 for some t > 0

Claim: if the string remains short forever, then the sequence
of random bits is compressible

log file: sequence of signs like +, +01, +110 for adding the
new bit (not indicated) without or with cancelled string

going backwards: + means deletion of the last bit, +u means
adding u and then deleting the last bit

current sequence + log file → random bits used

few forbidden strings ⇒ few symbols in log file ⇒ efficient
encoding

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Will it grow indefinitely?

alphabet size m

an is the number of forbidden strings of length n ≥ 2

assume that
∑

n ant
n < mt − 1 for some t > 0

Claim: if the string remains short forever, then the sequence
of random bits is compressible

log file: sequence of signs like +, +01, +110 for adding the
new bit (not indicated) without or with cancelled string

going backwards: + means deletion of the last bit, +u means
adding u and then deleting the last bit

current sequence + log file → random bits used

few forbidden strings ⇒ few symbols in log file ⇒ efficient
encoding

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Will it grow indefinitely?

alphabet size m

an is the number of forbidden strings of length n ≥ 2

assume that
∑

n ant
n < mt − 1 for some t > 0

Claim: if the string remains short forever, then the sequence
of random bits is compressible

log file: sequence of signs like +, +01, +110 for adding the
new bit (not indicated) without or with cancelled string

going backwards: + means deletion of the last bit, +u means
adding u and then deleting the last bit

current sequence + log file → random bits used

few forbidden strings ⇒ few symbols in log file ⇒ efficient
encoding

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Will it grow indefinitely?

alphabet size m

an is the number of forbidden strings of length n ≥ 2

assume that
∑

n ant
n < mt − 1 for some t > 0

Claim: if the string remains short forever, then the sequence
of random bits is compressible

log file: sequence of signs like +, +01, +110 for adding the
new bit (not indicated) without or with cancelled string

going backwards: + means deletion of the last bit, +u means
adding u and then deleting the last bit

current sequence + log file → random bits used

few forbidden strings ⇒ few symbols in log file ⇒ efficient
encoding

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Will it grow indefinitely?

alphabet size m

an is the number of forbidden strings of length n ≥ 2

assume that
∑

n ant
n < mt − 1 for some t > 0

Claim: if the string remains short forever, then the sequence
of random bits is compressible

log file: sequence of signs like +, +01, +110 for adding the
new bit (not indicated) without or with cancelled string

going backwards: + means deletion of the last bit, +u means
adding u and then deleting the last bit

current sequence + log file → random bits used

few forbidden strings ⇒ few symbols in log file ⇒ efficient
encoding

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Will it grow indefinitely?

alphabet size m

an is the number of forbidden strings of length n ≥ 2

assume that
∑

n ant
n < mt − 1 for some t > 0

Claim: if the string remains short forever, then the sequence
of random bits is compressible

log file: sequence of signs like +, +01, +110 for adding the
new bit (not indicated) without or with cancelled string

going backwards: + means deletion of the last bit, +u means
adding u and then deleting the last bit

current sequence + log file → random bits used

few forbidden strings ⇒ few symbols in log file ⇒ efficient
encoding

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Will it grow indefinitely?

alphabet size m

an is the number of forbidden strings of length n ≥ 2

assume that
∑

n ant
n < mt − 1 for some t > 0

Claim: if the string remains short forever, then the sequence
of random bits is compressible

log file: sequence of signs like +, +01, +110 for adding the
new bit (not indicated) without or with cancelled string

going backwards: + means deletion of the last bit, +u means
adding u and then deleting the last bit

current sequence + log file → random bits used

few forbidden strings ⇒ few symbols in log file ⇒ efficient
encoding

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

More details

current string + log file → sequence of random bits

current string is O(1) if it doesn’t grow indefinitely

the length of log file is the number of random bits

so we need to encode the log file efficiently (< 1 bit/symbol)

large alphabet +x but most symbols are +

arithmetic coding: use less that 1 bit for +

the savings due to +’s are used for encoding +x letters

amortized analysis: + increases the length by 1 and +x

decreases the length by |x | − 1

so there couldn’t be many +x unless there are many +

role of t: parameter for amortized analysis of the encoding
efficiency

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

More details

current string + log file → sequence of random bits

current string is O(1) if it doesn’t grow indefinitely

the length of log file is the number of random bits

so we need to encode the log file efficiently (< 1 bit/symbol)

large alphabet +x but most symbols are +

arithmetic coding: use less that 1 bit for +

the savings due to +’s are used for encoding +x letters

amortized analysis: + increases the length by 1 and +x

decreases the length by |x | − 1

so there couldn’t be many +x unless there are many +

role of t: parameter for amortized analysis of the encoding
efficiency

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

More details

current string + log file → sequence of random bits

current string is O(1) if it doesn’t grow indefinitely

the length of log file is the number of random bits

so we need to encode the log file efficiently (< 1 bit/symbol)

large alphabet +x but most symbols are +

arithmetic coding: use less that 1 bit for +

the savings due to +’s are used for encoding +x letters

amortized analysis: + increases the length by 1 and +x

decreases the length by |x | − 1

so there couldn’t be many +x unless there are many +

role of t: parameter for amortized analysis of the encoding
efficiency

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

More details

current string + log file → sequence of random bits

current string is O(1) if it doesn’t grow indefinitely

the length of log file is the number of random bits

so we need to encode the log file efficiently (< 1 bit/symbol)

large alphabet +x but most symbols are +

arithmetic coding: use less that 1 bit for +

the savings due to +’s are used for encoding +x letters

amortized analysis: + increases the length by 1 and +x

decreases the length by |x | − 1

so there couldn’t be many +x unless there are many +

role of t: parameter for amortized analysis of the encoding
efficiency

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

More details

current string + log file → sequence of random bits

current string is O(1) if it doesn’t grow indefinitely

the length of log file is the number of random bits

so we need to encode the log file efficiently (< 1 bit/symbol)

large alphabet +x but most symbols are +

arithmetic coding: use less that 1 bit for +

the savings due to +’s are used for encoding +x letters

amortized analysis: + increases the length by 1 and +x

decreases the length by |x | − 1

so there couldn’t be many +x unless there are many +

role of t: parameter for amortized analysis of the encoding
efficiency

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

More details

current string + log file → sequence of random bits

current string is O(1) if it doesn’t grow indefinitely

the length of log file is the number of random bits

so we need to encode the log file efficiently (< 1 bit/symbol)

large alphabet +x but most symbols are +

arithmetic coding: use less that 1 bit for +

the savings due to +’s are used for encoding +x letters

amortized analysis: + increases the length by 1 and +x

decreases the length by |x | − 1

so there couldn’t be many +x unless there are many +

role of t: parameter for amortized analysis of the encoding
efficiency

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

More details

current string + log file → sequence of random bits

current string is O(1) if it doesn’t grow indefinitely

the length of log file is the number of random bits

so we need to encode the log file efficiently (< 1 bit/symbol)

large alphabet +x but most symbols are +

arithmetic coding: use less that 1 bit for +

the savings due to +’s are used for encoding +x letters

amortized analysis: + increases the length by 1 and +x

decreases the length by |x | − 1

so there couldn’t be many +x unless there are many +

role of t: parameter for amortized analysis of the encoding
efficiency

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

More details

current string + log file → sequence of random bits

current string is O(1) if it doesn’t grow indefinitely

the length of log file is the number of random bits

so we need to encode the log file efficiently (< 1 bit/symbol)

large alphabet +x but most symbols are +

arithmetic coding: use less that 1 bit for +

the savings due to +’s are used for encoding +x letters

amortized analysis: + increases the length by 1 and +x

decreases the length by |x | − 1

so there couldn’t be many +x unless there are many +

role of t: parameter for amortized analysis of the encoding
efficiency

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

More details

current string + log file → sequence of random bits

current string is O(1) if it doesn’t grow indefinitely

the length of log file is the number of random bits

so we need to encode the log file efficiently (< 1 bit/symbol)

large alphabet +x but most symbols are +

arithmetic coding: use less that 1 bit for +

the savings due to +’s are used for encoding +x letters

amortized analysis: + increases the length by 1 and +x

decreases the length by |x | − 1

so there couldn’t be many +x unless there are many +

role of t: parameter for amortized analysis of the encoding
efficiency

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

More details

current string + log file → sequence of random bits

current string is O(1) if it doesn’t grow indefinitely

the length of log file is the number of random bits

so we need to encode the log file efficiently (< 1 bit/symbol)

large alphabet +x but most symbols are +

arithmetic coding: use less that 1 bit for +

the savings due to +’s are used for encoding +x letters

amortized analysis: + increases the length by 1 and +x

decreases the length by |x | − 1

so there couldn’t be many +x unless there are many +

role of t: parameter for amortized analysis of the encoding
efficiency

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

More details

current string + log file → sequence of random bits

current string is O(1) if it doesn’t grow indefinitely

the length of log file is the number of random bits

so we need to encode the log file efficiently (< 1 bit/symbol)

large alphabet +x but most symbols are +

arithmetic coding: use less that 1 bit for +

the savings due to +’s are used for encoding +x letters

amortized analysis: + increases the length by 1 and +x

decreases the length by |x | − 1

so there couldn’t be many +x unless there are many +

role of t: parameter for amortized analysis of the encoding
efficiency

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details

arithmetic coding: each symbol z has some weight pz > 0∑
z pz ≤ 1

encoding z by log(1/pz) bits

allocate weight q0 for + and total weight qn for all +u where
u are forbidden strings of length n.

code lengths: − log q0, for “+”
− log qn + log an, for each “+u” with |u| = n

each log symbol corresponds to one random symbol, so we
want to encode log symbols with less than logm bits

+ increases the length by 1, and +u decreases the length by
n − 1 for |u| = n

amortized analysis: when increasing length (+), reserve δ;
when decreasing length n − 1, use δ(n − 1) from reserves.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details

arithmetic coding: each symbol z has some weight pz > 0

∑
z pz ≤ 1

encoding z by log(1/pz) bits

allocate weight q0 for + and total weight qn for all +u where
u are forbidden strings of length n.

code lengths: − log q0, for “+”
− log qn + log an, for each “+u” with |u| = n

each log symbol corresponds to one random symbol, so we
want to encode log symbols with less than logm bits

+ increases the length by 1, and +u decreases the length by
n − 1 for |u| = n

amortized analysis: when increasing length (+), reserve δ;
when decreasing length n − 1, use δ(n − 1) from reserves.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details

arithmetic coding: each symbol z has some weight pz > 0∑
z pz ≤ 1

encoding z by log(1/pz) bits

allocate weight q0 for + and total weight qn for all +u where
u are forbidden strings of length n.

code lengths: − log q0, for “+”
− log qn + log an, for each “+u” with |u| = n

each log symbol corresponds to one random symbol, so we
want to encode log symbols with less than logm bits

+ increases the length by 1, and +u decreases the length by
n − 1 for |u| = n

amortized analysis: when increasing length (+), reserve δ;
when decreasing length n − 1, use δ(n − 1) from reserves.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details

arithmetic coding: each symbol z has some weight pz > 0∑
z pz ≤ 1

encoding z by log(1/pz) bits

allocate weight q0 for + and total weight qn for all +u where
u are forbidden strings of length n.

code lengths: − log q0, for “+”
− log qn + log an, for each “+u” with |u| = n

each log symbol corresponds to one random symbol, so we
want to encode log symbols with less than logm bits

+ increases the length by 1, and +u decreases the length by
n − 1 for |u| = n

amortized analysis: when increasing length (+), reserve δ;
when decreasing length n − 1, use δ(n − 1) from reserves.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details

arithmetic coding: each symbol z has some weight pz > 0∑
z pz ≤ 1

encoding z by log(1/pz) bits

allocate weight q0 for + and total weight qn for all +u where
u are forbidden strings of length n.

code lengths: − log q0, for “+”
− log qn + log an, for each “+u” with |u| = n

each log symbol corresponds to one random symbol, so we
want to encode log symbols with less than logm bits

+ increases the length by 1, and +u decreases the length by
n − 1 for |u| = n

amortized analysis: when increasing length (+), reserve δ;
when decreasing length n − 1, use δ(n − 1) from reserves.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details

arithmetic coding: each symbol z has some weight pz > 0∑
z pz ≤ 1

encoding z by log(1/pz) bits

allocate weight q0 for + and total weight qn for all +u where
u are forbidden strings of length n.

code lengths: − log q0, for “+”
− log qn + log an, for each “+u” with |u| = n

each log symbol corresponds to one random symbol, so we
want to encode log symbols with less than logm bits

+ increases the length by 1, and +u decreases the length by
n − 1 for |u| = n

amortized analysis: when increasing length (+), reserve δ;
when decreasing length n − 1, use δ(n − 1) from reserves.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details

arithmetic coding: each symbol z has some weight pz > 0∑
z pz ≤ 1

encoding z by log(1/pz) bits

allocate weight q0 for + and total weight qn for all +u where
u are forbidden strings of length n.

code lengths: − log q0, for “+”
− log qn + log an, for each “+u” with |u| = n

each log symbol corresponds to one random symbol, so we
want to encode log symbols with less than logm bits

+ increases the length by 1, and +u decreases the length by
n − 1 for |u| = n

amortized analysis: when increasing length (+), reserve δ;
when decreasing length n − 1, use δ(n − 1) from reserves.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details

arithmetic coding: each symbol z has some weight pz > 0∑
z pz ≤ 1

encoding z by log(1/pz) bits

allocate weight q0 for + and total weight qn for all +u where
u are forbidden strings of length n.

code lengths: − log q0, for “+”
− log qn + log an, for each “+u” with |u| = n

each log symbol corresponds to one random symbol, so we
want to encode log symbols with less than logm bits

+ increases the length by 1, and +u decreases the length by
n − 1 for |u| = n

amortized analysis: when increasing length (+), reserve δ;
when decreasing length n − 1, use δ(n − 1) from reserves.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details

arithmetic coding: each symbol z has some weight pz > 0∑
z pz ≤ 1

encoding z by log(1/pz) bits

allocate weight q0 for + and total weight qn for all +u where
u are forbidden strings of length n.

code lengths: − log q0, for “+”
− log qn + log an, for each “+u” with |u| = n

each log symbol corresponds to one random symbol, so we
want to encode log symbols with less than logm bits

+ increases the length by 1, and +u decreases the length by
n − 1 for |u| = n

amortized analysis: when increasing length (+), reserve δ;
when decreasing length n − 1, use δ(n − 1) from reserves.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details-2

code lengths: − log q0, for “+”
− log qn + log an, for each “+u” with |u| = n

each log symbol corresponds to one random symbol, so we
want to encode log symbols with less than logm bits

+ increases the length by 1, and +u decreases the length by
n − 1 for |u| = n

amortized analysis: when increasing length (+), reserve δ;
when decreasing length n − 1, use δ(n − 1) from reserves.

− log q0 ≤ logm − δ
− log qn + log an ≤ logm + (n − 1)δ∑

n qn < 1

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details-2

code lengths: − log q0, for “+”
− log qn + log an, for each “+u” with |u| = n

each log symbol corresponds to one random symbol, so we
want to encode log symbols with less than logm bits

+ increases the length by 1, and +u decreases the length by
n − 1 for |u| = n

amortized analysis: when increasing length (+), reserve δ;
when decreasing length n − 1, use δ(n − 1) from reserves.

− log q0 ≤ logm − δ

− log qn + log an ≤ logm + (n − 1)δ∑
n qn < 1

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details-2

code lengths: − log q0, for “+”
− log qn + log an, for each “+u” with |u| = n

each log symbol corresponds to one random symbol, so we
want to encode log symbols with less than logm bits

+ increases the length by 1, and +u decreases the length by
n − 1 for |u| = n

amortized analysis: when increasing length (+), reserve δ;
when decreasing length n − 1, use δ(n − 1) from reserves.

− log q0 ≤ logm − δ
− log qn + log an ≤ logm + (n − 1)δ

∑
n qn < 1

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details-2

code lengths: − log q0, for “+”
− log qn + log an, for each “+u” with |u| = n

each log symbol corresponds to one random symbol, so we
want to encode log symbols with less than logm bits

+ increases the length by 1, and +u decreases the length by
n − 1 for |u| = n

amortized analysis: when increasing length (+), reserve δ;
when decreasing length n − 1, use δ(n − 1) from reserves.

− log q0 ≤ logm − δ
− log qn + log an ≤ logm + (n − 1)δ∑

n qn < 1

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details-3

− log q0 ≤ logm − δ
− log qn + log an ≤ logm + (n − 1)δ∑

n qn < 1

(1/m)2δ + (1/m)2δ
∑

n an(2−δ)n < 1

1 +
∑

n an(2−δ)n < m(2−δ)

let t = 2−δ∑
n a

ntn < mt − 1, as stated

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details-3

− log q0 = logm − δ
− log qn + log an = logm + (n − 1)δ∑

n qn < 1

(1/m)2δ + (1/m)2δ
∑

n an(2−δ)n < 1

1 +
∑

n an(2−δ)n < m(2−δ)

let t = 2−δ∑
n a

ntn < mt − 1, as stated

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details-3

− log q0 = logm − δ; q0 = (1/m)2δ

− log qn + log an = logm + (n − 1)δ; qn = (1/m)an2δ2−nδ∑
n qn < 1

(1/m)2δ + (1/m)2δ
∑

n an(2−δ)n < 1

1 +
∑

n an(2−δ)n < m(2−δ)

let t = 2−δ∑
n a

ntn < mt − 1, as stated

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details-3

− log q0 = logm − δ; q0 = (1/m)2δ

− log qn + log an = logm + (n − 1)δ; qn = (1/m)an2δ2−nδ∑
n qn < 1

(1/m)2δ + (1/m)2δ
∑

n an(2−δ)n < 1

1 +
∑

n an(2−δ)n < m(2−δ)

let t = 2−δ∑
n a

ntn < mt − 1, as stated

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details-3

− log q0 = logm − δ; q0 = (1/m)2δ

− log qn + log an = logm + (n − 1)δ; qn = (1/m)an2δ2−nδ∑
n qn < 1

(1/m)2δ + (1/m)2δ
∑

n an(2−δ)n < 1

1 +
∑

n an(2−δ)n < m(2−δ)

let t = 2−δ∑
n a

ntn < mt − 1, as stated

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details-3

− log q0 = logm − δ; q0 = (1/m)2δ

− log qn + log an = logm + (n − 1)δ; qn = (1/m)an2δ2−nδ∑
n qn < 1

(1/m)2δ + (1/m)2δ
∑

n an(2−δ)n < 1

1 +
∑

n an(2−δ)n < m(2−δ)

let t = 2−δ

∑
n a

ntn < mt − 1, as stated

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Technical details-3

− log q0 = logm − δ; q0 = (1/m)2δ

− log qn + log an = logm + (n − 1)δ; qn = (1/m)an2δ2−nδ∑
n qn < 1

(1/m)2δ + (1/m)2δ
∑

n an(2−δ)n < 1

1 +
∑

n an(2−δ)n < m(2−δ)

let t = 2−δ∑
n a

ntn < mt − 1, as stated

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

CNF with bounded neighborhood

CNF: clause ∧ clause ∧ . . .∧ clause

clause: literal ∨ literal ∨ . . .∨ literal

literal: propositional variable or its negation

(p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q)

each clause prohibits some combination of values

here all four combinations are prohibited, unsatisfiable

Assume all clauses are with n literals, thus prohibiting one
combination for some n variables. To make the CNF
unsatisfiable, we need about 2n of them and they should have
more or less the same variables:

Claim: If each clause has n literals and has at most 2n−3

neighbors (=clauses that have common variable), then CNF is
satisfiable.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

CNF with bounded neighborhood

CNF: clause ∧ clause ∧ . . .∧ clause

clause: literal ∨ literal ∨ . . .∨ literal

literal: propositional variable or its negation

(p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q)

each clause prohibits some combination of values

here all four combinations are prohibited, unsatisfiable

Assume all clauses are with n literals, thus prohibiting one
combination for some n variables. To make the CNF
unsatisfiable, we need about 2n of them and they should have
more or less the same variables:

Claim: If each clause has n literals and has at most 2n−3

neighbors (=clauses that have common variable), then CNF is
satisfiable.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

CNF with bounded neighborhood

CNF: clause ∧ clause ∧ . . .∧ clause

clause: literal ∨ literal ∨ . . .∨ literal

literal: propositional variable or its negation

(p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q)

each clause prohibits some combination of values

here all four combinations are prohibited, unsatisfiable

Assume all clauses are with n literals, thus prohibiting one
combination for some n variables. To make the CNF
unsatisfiable, we need about 2n of them and they should have
more or less the same variables:

Claim: If each clause has n literals and has at most 2n−3

neighbors (=clauses that have common variable), then CNF is
satisfiable.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

CNF with bounded neighborhood

CNF: clause ∧ clause ∧ . . .∧ clause

clause: literal ∨ literal ∨ . . .∨ literal

literal: propositional variable or its negation

(p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q)

each clause prohibits some combination of values

here all four combinations are prohibited, unsatisfiable

Assume all clauses are with n literals, thus prohibiting one
combination for some n variables. To make the CNF
unsatisfiable, we need about 2n of them and they should have
more or less the same variables:

Claim: If each clause has n literals and has at most 2n−3

neighbors (=clauses that have common variable), then CNF is
satisfiable.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

CNF with bounded neighborhood

CNF: clause ∧ clause ∧ . . .∧ clause

clause: literal ∨ literal ∨ . . .∨ literal

literal: propositional variable or its negation

(p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q)

each clause prohibits some combination of values

here all four combinations are prohibited, unsatisfiable

Assume all clauses are with n literals, thus prohibiting one
combination for some n variables. To make the CNF
unsatisfiable, we need about 2n of them and they should have
more or less the same variables:

Claim: If each clause has n literals and has at most 2n−3

neighbors (=clauses that have common variable), then CNF is
satisfiable.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

CNF with bounded neighborhood

CNF: clause ∧ clause ∧ . . .∧ clause

clause: literal ∨ literal ∨ . . .∨ literal

literal: propositional variable or its negation

(p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q)

each clause prohibits some combination of values

here all four combinations are prohibited, unsatisfiable

Assume all clauses are with n literals, thus prohibiting one
combination for some n variables. To make the CNF
unsatisfiable, we need about 2n of them and they should have
more or less the same variables:

Claim: If each clause has n literals and has at most 2n−3

neighbors (=clauses that have common variable), then CNF is
satisfiable.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

CNF with bounded neighborhood

CNF: clause ∧ clause ∧ . . .∧ clause

clause: literal ∨ literal ∨ . . .∨ literal

literal: propositional variable or its negation

(p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q)

each clause prohibits some combination of values

here all four combinations are prohibited, unsatisfiable

Assume all clauses are with n literals, thus prohibiting one
combination for some n variables. To make the CNF
unsatisfiable, we need about 2n of them and they should have
more or less the same variables:

Claim: If each clause has n literals and has at most 2n−3

neighbors (=clauses that have common variable), then CNF is
satisfiable.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

CNF with bounded neighborhood

CNF: clause ∧ clause ∧ . . .∧ clause

clause: literal ∨ literal ∨ . . .∨ literal

literal: propositional variable or its negation

(p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q)

each clause prohibits some combination of values

here all four combinations are prohibited, unsatisfiable

Assume all clauses are with n literals, thus prohibiting one
combination for some n variables.

To make the CNF
unsatisfiable, we need about 2n of them and they should have
more or less the same variables:

Claim: If each clause has n literals and has at most 2n−3

neighbors (=clauses that have common variable), then CNF is
satisfiable.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

CNF with bounded neighborhood

CNF: clause ∧ clause ∧ . . .∧ clause

clause: literal ∨ literal ∨ . . .∨ literal

literal: propositional variable or its negation

(p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q)

each clause prohibits some combination of values

here all four combinations are prohibited, unsatisfiable

Assume all clauses are with n literals, thus prohibiting one
combination for some n variables. To make the CNF
unsatisfiable, we need about 2n of them and they should have
more or less the same variables:

Claim: If each clause has n literals and has at most 2n−3

neighbors (=clauses that have common variable), then CNF is
satisfiable.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

CNF with bounded neighborhood

CNF: clause ∧ clause ∧ . . .∧ clause

clause: literal ∨ literal ∨ . . .∨ literal

literal: propositional variable or its negation

(p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q)

each clause prohibits some combination of values

here all four combinations are prohibited, unsatisfiable

Assume all clauses are with n literals, thus prohibiting one
combination for some n variables. To make the CNF
unsatisfiable, we need about 2n of them and they should have
more or less the same variables:

Claim: If each clause has n literals and has at most 2n−3

neighbors (=clauses that have common variable), then CNF is
satisfiable.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Fixing clauses

{ C is false }
Fix(C : clause):

Resample(C)
for all C ′ that are neighbors of C (including C):

if C ′ is false then Fix(C ′)
{ C is true; all clauses that were true remain true }

this is enough (fixing clauses one by one)

conditional correctness

termination?

Claim: if no termination after a long time, the sequence of
random bits used for resampling is compressible

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Fixing clauses

{ C is false }
Fix(C : clause):

Resample(C)
for all C ′ that are neighbors of C (including C):

if C ′ is false then Fix(C ′)
{ C is true; all clauses that were true remain true }

this is enough (fixing clauses one by one)

conditional correctness

termination?

Claim: if no termination after a long time, the sequence of
random bits used for resampling is compressible

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Fixing clauses

{ C is false }
Fix(C : clause):

Resample(C)
for all C ′ that are neighbors of C (including C):

if C ′ is false then Fix(C ′)
{ C is true; all clauses that were true remain true }

this is enough (fixing clauses one by one)

conditional correctness

termination?

Claim: if no termination after a long time, the sequence of
random bits used for resampling is compressible

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Fixing clauses

{ C is false }
Fix(C : clause):

Resample(C)
for all C ′ that are neighbors of C (including C):

if C ′ is false then Fix(C ′)
{ C is true; all clauses that were true remain true }

this is enough (fixing clauses one by one)

conditional correctness

termination?

Claim: if no termination after a long time, the sequence of
random bits used for resampling is compressible

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Fixing clauses

{ C is false }
Fix(C : clause):

Resample(C)
for all C ′ that are neighbors of C (including C):

if C ′ is false then Fix(C ′)
{ C is true; all clauses that were true remain true }

this is enough (fixing clauses one by one)

conditional correctness

termination?

Claim: if no termination after a long time, the sequence of
random bits used for resampling is compressible

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Fixing clauses

{ C is false }
Fix(C : clause):

Resample(C)
for all C ′ that are neighbors of C (including C):

if C ′ is false then Fix(C ′)
{ C is true; all clauses that were true remain true }

long (unfinished) execution of Fix(C)

log file: list of clauses for all calls Fix(C ′)

only false clauses are fixed

knowing this list, and the current values of variable we can go
backwards and reconstruct the values of variables and bits
used for resampling — and the log file is the compressed
encoding of the bits used for the resampling

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Fixing clauses

{ C is false }
Fix(C : clause):

Resample(C)
for all C ′ that are neighbors of C (including C):

if C ′ is false then Fix(C ′)
{ C is true; all clauses that were true remain true }

long (unfinished) execution of Fix(C)

log file: list of clauses for all calls Fix(C ′)

only false clauses are fixed

knowing this list, and the current values of variable we can go
backwards and reconstruct the values of variables and bits
used for resampling — and the log file is the compressed
encoding of the bits used for the resampling

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Fixing clauses

{ C is false }
Fix(C : clause):

Resample(C)
for all C ′ that are neighbors of C (including C):

if C ′ is false then Fix(C ′)
{ C is true; all clauses that were true remain true }

long (unfinished) execution of Fix(C)

log file: list of clauses for all calls Fix(C ′)

only false clauses are fixed

knowing this list, and the current values of variable we can go
backwards and reconstruct the values of variables and bits
used for resampling — and the log file is the compressed
encoding of the bits used for the resampling

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Fixing clauses

{ C is false }
Fix(C : clause):

Resample(C)
for all C ′ that are neighbors of C (including C):

if C ′ is false then Fix(C ′)
{ C is true; all clauses that were true remain true }

long (unfinished) execution of Fix(C)

log file: list of clauses for all calls Fix(C ′)

only false clauses are fixed

knowing this list, and the current values of variable we can go
backwards and reconstruct the values of variables and bits
used for resampling — and the log file is the compressed
encoding of the bits used for the resampling

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Fixing clauses

{ C is false }
Fix(C : clause):

Resample(C)
for all C ′ that are neighbors of C (including C):

if C ′ is false then Fix(C ′)
{ C is true; all clauses that were true remain true }

long (unfinished) execution of Fix(C)

log file: list of clauses for all calls Fix(C ′)

only false clauses are fixed

knowing this list, and the current values of variable we can go
backwards and reconstruct the values of variables and bits
used for resampling — and the log file is the compressed
encoding of the bits used for the resampling

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tree traversal

{ C is false }
Fix(C : clause):

Resample(C)
for all C ′ that are neighbors of C (including C):

if C ′ is false then Fix(C ′)
{ C is true; all clauses that were true remain true }

main observation: C ′ is a neighbor of C

in the tree of recursive calls sons are neighbors

we specify a neighbor using n − 3 bits instead of n needed to
specify resampling bits: compression

techically incorrect, since we also go down the tree (return
from recursive calls) - we need to reserve two more bits
((n − 3) + 2 < n)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tree traversal

{ C is false }
Fix(C : clause):

Resample(C)
for all C ′ that are neighbors of C (including C):

if C ′ is false then Fix(C ′)
{ C is true; all clauses that were true remain true }

main observation: C ′ is a neighbor of C

in the tree of recursive calls sons are neighbors

we specify a neighbor using n − 3 bits instead of n needed to
specify resampling bits: compression

techically incorrect, since we also go down the tree (return
from recursive calls) - we need to reserve two more bits
((n − 3) + 2 < n)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tree traversal

{ C is false }
Fix(C : clause):

Resample(C)
for all C ′ that are neighbors of C (including C):

if C ′ is false then Fix(C ′)
{ C is true; all clauses that were true remain true }

main observation: C ′ is a neighbor of C

in the tree of recursive calls sons are neighbors

we specify a neighbor using n − 3 bits instead of n needed to
specify resampling bits: compression

techically incorrect, since we also go down the tree (return
from recursive calls) - we need to reserve two more bits
((n − 3) + 2 < n)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tree traversal

{ C is false }
Fix(C : clause):

Resample(C)
for all C ′ that are neighbors of C (including C):

if C ′ is false then Fix(C ′)
{ C is true; all clauses that were true remain true }

main observation: C ′ is a neighbor of C

in the tree of recursive calls sons are neighbors

we specify a neighbor using n − 3 bits instead of n needed to
specify resampling bits: compression

techically incorrect, since we also go down the tree (return
from recursive calls) - we need to reserve two more bits
((n − 3) + 2 < n)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tree traversal

{ C is false }
Fix(C : clause):

Resample(C)
for all C ′ that are neighbors of C (including C):

if C ′ is false then Fix(C ′)
{ C is true; all clauses that were true remain true }

main observation: C ′ is a neighbor of C

in the tree of recursive calls sons are neighbors

we specify a neighbor using n − 3 bits instead of n needed to
specify resampling bits: compression

techically incorrect, since we also go down the tree (return
from recursive calls) - we need to reserve two more bits
((n − 3) + 2 < n)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tree traversal: counting bits

C1

C2

C3 C4

C5 C6

C7

C8 C9

n − 3 bits: neighbor number

plus 1 direction bit “up” (when
going up)

1 direction bit (when going down)

(n− 3) + 1 + 1 per one move up (n
sampling bits): (n− 1) instead of n

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tree traversal: counting bits

C1

C2

C3 C4

C5 C6

C7

C8 C9

n − 3 bits: neighbor number

plus 1 direction bit “up” (when
going up)

1 direction bit (when going down)

(n− 3) + 1 + 1 per one move up (n
sampling bits): (n− 1) instead of n

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tree traversal: counting bits

C1

C2

C3 C4

C5 C6

C7

C8 C9

n − 3 bits: neighbor number

plus 1 direction bit “up” (when
going up)

1 direction bit (when going down)

(n− 3) + 1 + 1 per one move up (n
sampling bits): (n− 1) instead of n

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tree traversal: counting bits

C1

C2

C3 C4

C5 C6

C7

C8 C9

n − 3 bits: neighbor number

plus 1 direction bit “up” (when
going up)

1 direction bit (when going down)

(n− 3) + 1 + 1 per one move up (n
sampling bits): (n− 1) instead of n

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

Tree traversal: counting bits

C1

C2

C3 C4

C5 C6

C7

C8 C9

n − 3 bits: neighbor number

plus 1 direction bit “up” (when
going up)

1 direction bit (when going down)

(n− 3) + 1 + 1 per one move up (n
sampling bits): (n− 1) instead of n

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

History and references

Probabilistic/averaging arguments — Littlewood
(Mathematical miscellany?)

Lovasz local lemma (1975)

Moser (2008)–Tardos (2009)

Miller (potential, ≤ 2011)

Golod–Shafarevich (1964)

Ochem, Gonçalves (2014)

Thanks for the attention!

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

History and references

Probabilistic/averaging arguments — Littlewood
(Mathematical miscellany?)

Lovasz local lemma (1975)

Moser (2008)–Tardos (2009)

Miller (potential, ≤ 2011)

Golod–Shafarevich (1964)

Ochem, Gonçalves (2014)

Thanks for the attention!

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

History and references

Probabilistic/averaging arguments — Littlewood
(Mathematical miscellany?)

Lovasz local lemma (1975)

Moser (2008)–Tardos (2009)

Miller (potential, ≤ 2011)

Golod–Shafarevich (1964)

Ochem, Gonçalves (2014)

Thanks for the attention!

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

History and references

Probabilistic/averaging arguments — Littlewood
(Mathematical miscellany?)

Lovasz local lemma (1975)

Moser (2008)–Tardos (2009)

Miller (potential, ≤ 2011)

Golod–Shafarevich (1964)

Ochem, Gonçalves (2014)

Thanks for the attention!

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

History and references

Probabilistic/averaging arguments — Littlewood
(Mathematical miscellany?)

Lovasz local lemma (1975)

Moser (2008)–Tardos (2009)

Miller (potential, ≤ 2011)

Golod–Shafarevich (1964)

Ochem, Gonçalves (2014)

Thanks for the attention!

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

History and references

Probabilistic/averaging arguments — Littlewood
(Mathematical miscellany?)

Lovasz local lemma (1975)

Moser (2008)–Tardos (2009)

Miller (potential, ≤ 2011)

Golod–Shafarevich (1964)

Ochem, Gonçalves (2014)

Thanks for the attention!

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

History and references

Probabilistic/averaging arguments — Littlewood
(Mathematical miscellany?)

Lovasz local lemma (1975)

Moser (2008)–Tardos (2009)

Miller (potential, ≤ 2011)

Golod–Shafarevich (1964)

Ochem, Gonçalves (2014)

Thanks for the attention!

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

History and references

Probabilistic/averaging arguments — Littlewood
(Mathematical miscellany?)

Lovasz local lemma (1975)

Moser (2008)–Tardos (2009)

Miller (potential, ≤ 2011)

Golod–Shafarevich (1964)

Ochem, Gonçalves (2014)

Thanks for the attention!

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Compressibility and probabilistic proofs

