Stopping time complexity and

monotone-conditional complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen

LIRMM CNRS & University of Montpellier

Dagstuhl, February 2017

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

k & Pavlovich idea

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity an otone-conditional complexity

Vovk & Pavlovich idea

@ How to tell which exit on a long road one should take?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

@ How to tell which exit on a long road one should take?

@ "Nth exit”: log N bits of information

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

@ How to tell which exit on a long road one should take?
@ "Nth exit”: log N bits of information
e "First exit after the bridge”: O(1) bits of information

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a long road one should take?
“Nth exit": log N bits of information
“First exit after the bridge”: O(1) bits of information

you get a sequence of bits (one at a time) and decide when to
stop

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a long road one should take?
“Nth exit": log N bits of information
“First exit after the bridge”: O(1) bits of information

you get a sequence of bits (one at a time) and decide when to
stop

@ TM: input one-directional read-only tape

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a long road one should take?
“Nth exit": log N bits of information
“First exit after the bridge”: O(1) bits of information

you get a sequence of bits (one at a time) and decide when to
stop

TM: input one-directional read-only tape

@ stopping time complexity of x = the minimal complexity of a
TM that stops after reading input x without trying to read
the next bit

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a long road one should take?

“Nth exit": log N bits of information

“First exit after the bridge”: O(1) bits of information

you get a sequence of bits (one at a time) and decide when to
stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal complexity of a
TM that stops after reading input x without trying to read
the next bit

= the minimal complexity of an algorithm that enumerates a
prefix-free set of strings containing x

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions — objects

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions — objects

different “topologies” on descriptions and objects

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions — objects

different “topologies” on descriptions and objects

H isolated descriptions | descriptions as prefixes

isolated objects plain complexity prefix complexity
objects as prefixes || decision complexity | monotone complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions — objects

different “topologies” on descriptions and objects

H isolated descriptions | descriptions as prefixes

isolated objects plain complexity prefix complexity
objects as prefixes || decision complexity | monotone complexity

decompressor: descriptions x conditions — objects

8 versions of conditional complexities

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions — objects

different “topologies” on descriptions and objects

H isolated descriptions | descriptions as prefixes

isolated objects plain complexity prefix complexity
objects as prefixes || decision complexity | monotone complexity

decompressor: descriptions x conditions — objects

8 versions of conditional complexities
stopping time complexity of x = C(x|xx)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions — objects

different “topologies” on descriptions and objects

H isolated descriptions | descriptions as prefixes

isolated objects plain complexity prefix complexity
objects as prefixes || decision complexity | monotone complexity

decompressor: descriptions x conditions — objects

8 versions of conditional complexities
stopping time complexity of x = C(x|xx)
objects: isolated;
descriptions: isolated;
conditions: prefixes

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C(y|xx)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C(y|xx)

e D(p,x): partial computable function (conditional
decompressor)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C(y|xx)

e D(p,x): partial computable function (conditional
decompressor)

e Cp(y|x*) = min{|p|: D(p,x) =y} (x is a condition)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen

Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C(y|xx)

e D(p,x): partial computable function (conditional
decompressor)

e Cp(y|xx) = min{|p|: D(p,x) =y} (x is a condition)

@ but D is required to be monotone (‘prefix-stable’) with
respect to condition:

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C(y|xx)

e D(p,x): partial computable function (conditional
decompressor)

e Cp(y|xx) = min{|p|: D(p,x) =y} (x is a condition)

@ but D is required to be monotone (‘prefix-stable’) with
respect to condition:

e if D(p,x) =y, then D(p,x") =y for every extension x’ of x

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C(y|xx)

e D(p,x): partial computable function (conditional
decompressor)

e Cp(y|xx) = min{|p|: D(p,x) =y} (x is a condition)

@ but D is required to be monotone (‘prefix-stable’) with
respect to condition:

e if D(p,x) =y, then D(p,x") =y for every extension x’ of x

@ C(y|x*) = the minimal plain complexity of a prefix-stable
program that maps x to y

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C(y|xx)

e D(p,x): partial computable function (conditional
decompressor)

e Cp(y|xx) = min{|p|: D(p,x) =y} (x is a condition)

@ but D is required to be monotone (‘prefix-stable’) with
respect to condition:

e if D(p,x) =y, then D(p,x") =y for every extension x’ of x

@ C(y|x*) = the minimal plain complexity of a prefix-stable
program that maps x to y

C(x|xx) is not O(1) anymore

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C(y|xx)

e D(p,x): partial computable function (conditional
decompressor)

e Cp(y|x*) = min{|p|: D(p,x) =y} (x is a condition)

@ but D is required to be monotone (‘prefix-stable’) with
respect to condition:

e if D(p,x) =y, then D(p,x") =y for every extension x’ of x

@ C(y|x*) = the minimal plain complexity of a prefix-stable
program that maps x to y

e C(x|xx) is not O(1) anymore

@ an equivalent definition of (plain) stopping time complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

A quantitative characterization

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity an otone-conditional complexity

A quantitative characterization

@ How to define C(x) not mentioning descriptions/programs?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

A quantitative characterization

@ How to define C(x) not mentioning descriptions/programs?

e C(x) is upper semicomputable;

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

A quantitative characterization

@ How to define C(x) not mentioning descriptions/programs?
e C(x) is upper semicomputable;
o #{x: C(x) < n} < 2" for all n;

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

A quantitative characterization

How to define C(x) not mentioning descriptions/programs?
C(x) is upper semicomputable;
#{x: C(x) < n} < 2" for all n;

C(-) is the minimal function with these properties

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

A quantitative characterization

How to define C(x) not mentioning descriptions/programs?
C(x) is upper semicomputable;
#{x: C(x) < n} < 2" for all n;

C(-) is the minimal function with these properties

Stopping time complexity: also upper semicomputable

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

A quantitative characterization

How to define C(x) not mentioning descriptions/programs?
C(x) is upper semicomputable;

#{x: C(x) < n} < 2" for all n;

C(-) is the minimal function with these properties

Stopping time complexity: also upper semicomputable

for every path « in the binary tree and for every n there are
less than 2" strings on this path with C(x|xx) < n.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

A quantitative characterization

How to define C(x) not mentioning descriptions/programs?
C(x) is upper semicomputable;

#{x: C(x) < n} < 2" for all n;

C(-) is the minimal function with these properties

Stopping time complexity: also upper semicomputable

for every path « in the binary tree and for every n there are
less than 2" strings on this path with C(x|xx) < n.

Stopping time complexity is the minimal function in this class.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

A quantitative characterization

@ How to define C(x) not mentioning descriptions/programs?

e C(x) is upper semicomputable;

o #{x: C(x) < n} < 2" for all n;

e C(-) is the minimal function with these properties

@ Stopping time complexity: also upper semicomputable

o for every path « in the binary tree and for every n there are
less than 2" strings on this path with C(x|xx) < n.

@ Stopping time complexity is the minimal function in this class.

@ less obvious (Gleb Posobin)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

What is not true

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity tone-conditional complexity

What is not true

@ C(x|yx) is not the minimal complexity of a prefix-free
function that maps some prefix of y to x;

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

What is not true

@ C(x|yx) is not the minimal complexity of a prefix-free
function that maps some prefix of y to x;

@ C(x|yx) does not have the natural quantitative
characterization as a monotone over y function
[C(x|y0x) < C(x|y*), C(x|ylx) < C(x|yx)] such that for
every y and n there are at most 2" objects x such that
C(x|y*) < n. (Mikhail Andreev)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

@ K(x|yx): the decompressor is monotone (prefix-stable) w.r.t.
both arguments.

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

@ K(x|yx): the decompressor is monotone (prefix-stable) w.r.t.
both arguments.

@ conditions and programs are prefixes, objects are isolated

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

@ K(x|yx): the decompressor is monotone (prefix-stable) w.r.t.
both arguments.

@ conditions and programs are prefixes, objects are isolated
@ Why should we bother?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

@ K(x|yx): the decompressor is monotone (prefix-stable) w.r.t.
both arguments.

@ conditions and programs are prefixes, objects are isolated
@ Why should we bother?

@ Vovk and Pavlovich tried to define this version

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

K (x|yx*): the decompressor is monotone (prefix-stable) w.r.t.
both arguments.

@ conditions and programs are prefixes, objects are isolated
@ Why should we bother?

@ Vovk and Pavlovich tried to define this version

°

separates many things that coincide for prefix complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

@ the length of the shortest prefix-stable program

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

@ the length of the shortest prefix-stable program

@ minus logarithm of the a priori probability

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

@ the length of the shortest prefix-stable program
@ minus logarithm of the a priori probability

@ minus logarithm of the maximal lower semicomputable
semimeasure

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen

Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

@ the length of the shortest prefix-stable program
@ minus logarithm of the a priori probability

@ minus logarithm of the maximal lower semicomputable
semimeasure

Now:

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen

Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

@ the length of the shortest prefix-stable program
@ minus logarithm of the a priori probability

@ minus logarithm of the maximal lower semicomputable
semimeasure

Now:

@ minimal prefix complexity of a prefix-free set containing x
[Vovk-Pavlovic]

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen

Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

@ the length of the shortest prefix-stable program
@ minus logarithm of the a priori probability
@ minus logarithm of the maximal lower semicomputable
semimeasure
Now:

@ minimal prefix complexity of a prefix-free set containing x
[Vovk-Pavlovic]

° > K(x|xx)

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

@ the length of the shortest prefix-stable program
@ minus logarithm of the a priori probability
@ minus logarithm of the maximal lower semicomputable
semimeasure
Now:

@ minimal prefix complexity of a prefix-free set containing x
[Vovk-Pavlovic]

° > K(x|xx)
@ > minus logarithm of the a priori probability (probability for
the universal probabilistic machine to stop at x) [Andreev|

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

@ the length of the shortest prefix-stable program

@ minus logarithm of the a priori probability

@ minus logarithm of the maximal lower semicomputable
semimeasure

Now:

@ minimal prefix complexity of a prefix-free set containing x
[Vovk-Pavlovic]

° > K(x|xx)

@ > minus logarithm of the a priori probability (probability for
the universal probabilistic machine to stop at x) [Andreev|

@ = minus logarithm of the maximal lower semicomputable

function m(x) whose sum along every path does not exceed 1
[Andreev]

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

@ Even more splitting. ..

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

@ Even more splitting. ..

@ A priori probability: random program (for the universal
decompressor) maps y to x

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

@ Even more splitting. ..

@ A priori probability: random program (for the universal
decompressor) maps y to x

e maximal lower semicomputable function m(x|yx*) that is
monotone w.r.t. y and) m(x|yx) <1 for every y

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

@ Even more splitting. ..

@ A priori probability: random program (for the universal
decompressor) maps y to x

e maximal lower semicomputable function m(x|yx*) that is
monotone w.r.t. y and) m(x|yx) <1 for every y

e Now they differ [Andreev]
Open question: can one prove the equivalence of prefix complexity

definitions using prefix-free and prefix-stable decompressors, not
using a priori probability as an intermediate step?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

@ Even more splitting. ..

@ A priori probability: random program (for the universal
decompressor) maps y to x

e maximal lower semicomputable function m(x|yx*) that is
monotone w.r.t. y and) m(x|yx) <1 for every y

e Now they differ [Andreev]

Open question: can one prove the equivalence of prefix complexity
definitions using prefix-free and prefix-stable decompressors, not
using a priori probability as an intermediate step?

Formal version: are the monotone-conditional complexities
obtained using prefix-free and prefix-stable (w.r.t. first argument)
decompressors the same or not?

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen Stopping time complexity and monotone-conditional complexity

