
On the expressive power of
quasi-periodic SFT

Bruno Durand and Andrei Romashchenko

MFCS 2017

1 / 19

Subshits: motivations and central notions

Subshifts: finite type, sofic, effective

Symbolic dynamics

(“discretization” of dynamical systems)

computability theory, logic

(Entscheidungsproblem)

physics

(crystals, quasicrystals, etc.)

Central idea: local rules =⇒ global properties

2 / 19

Subshits: motivations and central notions

Subshifts: finite type

, sofic, effective

Symbolic dynamics

(“discretization” of dynamical systems)

computability theory, logic

(Entscheidungsproblem)

physics

(crystals, quasicrystals, etc.)

Central idea: local rules =⇒ global properties

2 / 19

Subshits: motivations and central notions

Subshifts: finite type, sofic

, effective

Symbolic dynamics

(“discretization” of dynamical systems)

computability theory, logic

(Entscheidungsproblem)

physics

(crystals, quasicrystals, etc.)

Central idea: local rules =⇒ global properties

2 / 19

Subshits: motivations and central notions

Subshifts: finite type, sofic, effective

Symbolic dynamics

(“discretization” of dynamical systems)

computability theory, logic

(Entscheidungsproblem)

physics

(crystals, quasicrystals, etc.)

Central idea: local rules =⇒ global properties

2 / 19

Subshits: motivations and central notions

Subshifts: finite type, sofic, effective

Symbolic dynamics

(“discretization” of dynamical systems)

computability theory, logic

(Entscheidungsproblem)

physics

(crystals, quasicrystals, etc.)

Central idea: local rules =⇒ global properties

2 / 19

Subshits: motivations and central notions

Subshifts: finite type, sofic, effective

Symbolic dynamics

(“discretization” of dynamical systems)

computability theory, logic

(Entscheidungsproblem)

physics

(crystals, quasicrystals, etc.)

Central idea: local rules =⇒ global properties

2 / 19

Subshits: motivations and central notions

Subshifts: finite type, sofic, effective

Symbolic dynamics

(“discretization” of dynamical systems)

computability theory, logic

(Entscheidungsproblem)

physics

(crystals, quasicrystals, etc.)

Central idea: local rules =⇒ global properties

2 / 19

Subshits: motivations and central notions

Subshifts: finite type, sofic, effective

Symbolic dynamics

(“discretization” of dynamical systems)

computability theory, logic

(Entscheidungsproblem)

physics

(crystals, quasicrystals, etc.)

Central idea: local rules =⇒ global properties

2 / 19

Subshits: motivations and central notions

Subshifts: finite type, sofic, effective

Symbolic dynamics

(“discretization” of dynamical systems)

computability theory, logic

(Entscheidungsproblem)

physics

(crystals, quasicrystals, etc.)

Central idea: local rules =⇒ global properties

2 / 19

Subshits: motivations and central notions

Subshifts: finite type, sofic, effective

Symbolic dynamics

(“discretization” of dynamical systems)

computability theory, logic

(Entscheidungsproblem)

physics

(crystals, quasicrystals, etc.)

Central idea: local rules =⇒ global properties

2 / 19

Subshits: motivations and central notions

Subshifts: finite type, sofic, effective

Symbolic dynamics

(“discretization” of dynamical systems)

computability theory, logic

(Entscheidungsproblem)

physics

(crystals, quasicrystals, etc.)

Central idea: local rules =⇒ global properties

2 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Follows from the definition:

A subshift is shift-invariant

A subshift is topologically closed

3 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Follows from the definition:

A subshift is shift-invariant

A subshift is topologically closed

3 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Follows from the definition:

A subshift is shift-invariant

A subshift is topologically closed

3 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Follows from the definition:

A subshift is shift-invariant

A subshift is topologically closed

3 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

4 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

Very simple example:

dim = 1 and F =
{

0 0 , 1 1
}

SF =

 . . . 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 . . .

. . . 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 . . .


In dim = 1 all SFT are pretty simple

5 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

Very simple example:

dim = 1 and F =
{

0 0 , 1 1
}

SF =

 . . . 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 . . .

. . . 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 . . .


In dim = 1 all SFT are pretty simple

5 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

Very simple example:

dim = 1 and F =
{

0 0 , 1 1
}

SF =

 . . . 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 . . .

. . . 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 . . .



In dim = 1 all SFT are pretty simple

5 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

Very simple example:

dim = 1 and F =
{

0 0 , 1 1
}

SF =

 . . . 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 . . .

. . . 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 . . .


In dim = 1 all SFT are pretty simple

5 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

Another simple example:

dim = 2 and F =
{

, , ,
}

configurations: checkerboard,

6 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

Another simple example:

dim = 2 and F =
{

, , ,
}

configurations: checkerboard,

6 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

Another simple example:

dim = 2 and F =
{

, , ,
}

configurations: checkerboard,

6 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

Milestones: for dim ≥ 2 there exist a finite set of patterns F s.t.

SF contains only aperiodic configurations [Berger 66]

SF contains only non-computable configurations [Hanf 74]

SF contains only configurations of high Kolmogorov complexity,

i.e., complexity of every n × n-pattern is Ω(nd−1) [DLS 08]

So for dim ≥ 2 the SFTs are not that trivial!

7 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

Milestones: for dim ≥ 2 there exist a finite set of patterns F s.t.

SF contains only aperiodic configurations [Berger 66]

SF contains only non-computable configurations [Hanf 74]

SF contains only configurations of high Kolmogorov complexity,

i.e., complexity of every n × n-pattern is Ω(nd−1) [DLS 08]

So for dim ≥ 2 the SFTs are not that trivial!

7 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

Milestones: for dim ≥ 2 there exist a finite set of patterns F s.t.

SF contains only aperiodic configurations [Berger 66]

SF contains only non-computable configurations [Hanf 74]

SF contains only configurations of high Kolmogorov complexity,

i.e., complexity of every n × n-pattern is Ω(nd−1) [DLS 08]

So for dim ≥ 2 the SFTs are not that trivial!

7 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

Milestones: for dim ≥ 2 there exist a finite set of patterns F s.t.

SF contains only aperiodic configurations [Berger 66]

SF contains only non-computable configurations [Hanf 74]

SF contains only configurations of high Kolmogorov complexity,

i.e., complexity of every n × n-pattern is Ω(nd−1) [DLS 08]

So for dim ≥ 2 the SFTs are not that trivial!

7 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

Milestones: for dim ≥ 2 there exist a finite set of patterns F s.t.

SF contains only aperiodic configurations [Berger 66]

SF contains only non-computable configurations [Hanf 74]

SF contains only configurations of high Kolmogorov complexity

,

i.e., complexity of every n × n-pattern is Ω(nd−1) [DLS 08]

So for dim ≥ 2 the SFTs are not that trivial!

7 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

Milestones: for dim ≥ 2 there exist a finite set of patterns F s.t.

SF contains only aperiodic configurations [Berger 66]

SF contains only non-computable configurations [Hanf 74]

SF contains only configurations of high Kolmogorov complexity,

i.e., complexity of every n × n-pattern is Ω(nd−1) [DLS 08]

So for dim ≥ 2 the SFTs are not that trivial!

7 / 19

Subshits: formal definition

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns on Zd over Σ

subshift SF : the set of infinite configurations f : Zd → Σ

that contain no patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

Milestones: for dim ≥ 2 there exist a finite set of patterns F s.t.

SF contains only aperiodic configurations [Berger 66]

SF contains only non-computable configurations [Hanf 74]

SF contains only configurations of high Kolmogorov complexity,

i.e., complexity of every n × n-pattern is Ω(nd−1) [DLS 08]

So for dim ≥ 2 the SFTs are not that trivial!

7 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT:

Simple example. π() = , π() = , π() =

π : −→

a factor of an SFT is called sofic

8 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT:

Simple example. π() = , π() = , π() =

π : −→

a factor of an SFT is called sofic

8 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT:

Simple example.

π() = , π() = , π() =

π : −→

a factor of an SFT is called sofic

8 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT:

Simple example. π() = , π() = , π() =

π : −→

a factor of an SFT is called sofic

8 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT:

Simple example. π() = , π() = , π() =

π : −→

a factor of an SFT is called sofic

8 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT:

Simple example. π() = , π() = , π() =

π : −→

a factor of an SFT is called sofic
8 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT is called sofic

dim = 1:

sofic subshift = subshift recognized by a nondeterministic finite automata

9 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT is called sofic

dim = 1:

sofic subshift = subshift recognized by a nondeterministic finite automata

9 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT is called sofic

dim = 1:

sofic subshift = subshift recognized by a nondeterministic finite automata

9 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT is called sofic

dim = 2, less trivial example:

Every substitutive system defines
a sofic subshift.

A typical pattern corresponding
to the Thue–Morse system:

10 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT is called sofic

dim = 2, less trivial example:

Every substitutive system defines
a sofic subshift.

A typical pattern corresponding
to the Thue–Morse system:

10 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT is called sofic

dim = 2, less trivial example:

Every substitutive system defines
a sofic subshift.

A typical pattern corresponding
to the Thue–Morse system:

10 / 19

Example: Thue–Morse substitution rule


ρ : 7→

ρ : 7→

7→ 7→ 7→ 7→ 7→...

The limit of this sequence results in a sofic subshift!

11 / 19

Example: Thue–Morse substitution rule


ρ : 7→

ρ : 7→

7→ 7→ 7→ 7→ 7→...

The limit of this sequence results in a sofic subshift!

11 / 19

Example: Thue–Morse substitution rule


ρ : 7→

ρ : 7→

7→

7→ 7→ 7→ 7→...

The limit of this sequence results in a sofic subshift!

11 / 19

Example: Thue–Morse substitution rule


ρ : 7→

ρ : 7→

7→ 7→

7→ 7→ 7→...

The limit of this sequence results in a sofic subshift!

11 / 19

Example: Thue–Morse substitution rule


ρ : 7→

ρ : 7→

7→ 7→ 7→

7→ 7→...

The limit of this sequence results in a sofic subshift!

11 / 19

Example: Thue–Morse substitution rule


ρ : 7→

ρ : 7→

7→ 7→ 7→ 7→

7→...

The limit of this sequence results in a sofic subshift!

11 / 19

Example: Thue–Morse substitution rule


ρ : 7→

ρ : 7→

7→ 7→ 7→ 7→ 7→...

The limit of this sequence results in a sofic subshift!

11 / 19

Example: Thue–Morse substitution rule


ρ : 7→

ρ : 7→

7→ 7→ 7→ 7→ 7→...

The limit of this sequence results in a sofic subshift!

11 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT is called sofic

dim = 2, highly nontrivial example:

The ocean of white squares with
(ni × ni)-islands of black squares
where {ni} are pairwise different
prime numbers.

This subshift is sophic
[L. B. Westrick 2016]

12 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT is called sofic

dim = 2, highly nontrivial example:

The ocean of white squares with
(ni × ni)-islands of black squares
where {ni} are pairwise different
prime numbers.

This subshift is sophic
[L. B. Westrick 2016]

12 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT is called sofic

dim = 2, highly nontrivial example:

The ocean of white squares with
(ni × ni)-islands of black squares
where {ni} are pairwise different
prime numbers.

This subshift is sophic
[L. B. Westrick 2016]

12 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT is called sofic

dim = 2, highly nontrivial example:

The ocean of white squares with
(ni × ni)-islands of black squares

where {ni} are pairwise different
prime numbers.

This subshift is sophic
[L. B. Westrick 2016]

12 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT is called sofic

dim = 2, highly nontrivial example:

The ocean of white squares with
(ni × ni)-islands of black squares
where {ni} are pairwise different
prime numbers.

This subshift is sophic
[L. B. Westrick 2016]

12 / 19

SFTs simulate more sophisticate structures:
(1) sofic subshifts

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a factor (letter-by-letter projection) of an SFT is called sofic

dim = 2, highly nontrivial example:

The ocean of white squares with
(ni × ni)-islands of black squares
where {ni} are pairwise different
prime numbers.

This subshift is sophic
[L. B. Westrick 2016]

12 / 19

SFTs simulate more sophisticate structures:
(2) subdynamics

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a restriction to a subspace

13 / 19

SFTs simulate more sophisticate structures:
(2) subdynamics

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a restriction to a subspace

Example: horizontal stripes in a 2-dim configuration

13 / 19

SFTs simulate more sophisticate structures:
(2) subdynamics

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a restriction to a subspace

Example: horizontal stripes in a 2-dim configuration

13 / 19

SFTs simulate more sophisticate structures:
(2) subdynamics

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a restriction to a subspace

Example: horizontal stripes in a 2-dim configuration

13 / 19

SFTs simulate more sophisticate structures:
(2) subdynamics

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a restriction to a subspace

Example: horizontal stripes in a 2-dim configuration

13 / 19

SFTs simulate more sophisticate structures:
(2) subdynamics

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a restriction to a subspace

Example: horizontal stripes in a 2-dim configuration

13 / 19

SFTs simulate more sophisticate structures:
(2) subdynamics

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a restriction to a subspace

Example: horizontal stripes in a 2-dim configuration

13 / 19

SFTs simulate more sophisticate structures:
(2) subdynamics

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a restriction to a subspace

Example: horizontal stripes in a 2-dim configuration

13 / 19

SFTs simulate more sophisticate structures:
(2) subdynamics

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a restriction to a subspace

Example: horizontal stripes in a 2-dim configuration

13 / 19

SFTs simulate more sophisticate structures:
(2) subdynamics

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a restriction to a subspace

Example: horizontal stripes in a 2-dim configuration

13 / 19

SFTs simulate more sophisticate structures:
(2) subdynamics

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a restriction to a subspace

Example: horizontal stripes in a 2-dim configuration

13 / 19

SFTs simulate more sophisticate structures:
(2) subdynamics

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a restriction to a subspace

Example: horizontal stripes in a 2-dim configuration

13 / 19

SFTs simulate more sophisticate structures:
(2) subdynamics

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a restriction to a subspace

Example: horizontal stripes in a 2-dim configuration

−→
{
.
.

}

13 / 19

SFTs simulate more sophisticate structures:
(2) subdynamics

Subshift on Zd over an alphabet Σ :

let F be a set of “forbidden” finite patterns

subshift SF : the set of infinite configurations that contain no
forbidden patterns from F

Subshift of finite type (SFT) : the set of forbidden patterns F is finite

a restriction to a subspace

Example: horizontal stripes in a 2-dim configuration

−→
{
.
.

}

restriction to a subspace can make things much more complex

13 / 19

SFT simulates any effective subshift

Theorem [Hochman, D-R-Shen, Aubrun-Sablik]

For every effective subshift S1 there exists an SFT S2 that simulates S1.

simulation = [restriction to subspaces] + [a letter-by-letter projection]

Remark 1: dimension(S2) := dimension(S1)++

Remark 2:
The known proofs are artificial,
the simulating SFT is very complex (combinatorially/algorithmically).

Problem:
Extend this result on natural classes of subshifts,
with a simple (combinatorially/topologically/algorithmically) structure

Partial answer:
Yes, we can! We can transfer this result to minimal subshifts.

14 / 19

SFT simulates any effective subshift

Theorem [Hochman, D-R-Shen, Aubrun-Sablik]

For every effective subshift S1 there exists an SFT S2 that simulates S1.

simulation = [restriction to subspaces] + [a letter-by-letter projection]

Remark 1: dimension(S2) := dimension(S1)++

Remark 2:
The known proofs are artificial,
the simulating SFT is very complex (combinatorially/algorithmically).

Problem:
Extend this result on natural classes of subshifts,
with a simple (combinatorially/topologically/algorithmically) structure

Partial answer:
Yes, we can! We can transfer this result to minimal subshifts.

14 / 19

SFT simulates any effective subshift

Theorem [Hochman, D-R-Shen, Aubrun-Sablik]

For every effective subshift S1 there exists an SFT S2 that simulates S1.

simulation = [restriction to subspaces] + [a letter-by-letter projection]

Remark 1: dimension(S2) := dimension(S1)++

Remark 2:
The known proofs are artificial,
the simulating SFT is very complex (combinatorially/algorithmically).

Problem:
Extend this result on natural classes of subshifts,
with a simple (combinatorially/topologically/algorithmically) structure

Partial answer:
Yes, we can! We can transfer this result to minimal subshifts.

14 / 19

SFT simulates any effective subshift

Theorem [Hochman, D-R-Shen, Aubrun-Sablik]

For every effective subshift S1 there exists an SFT S2 that simulates S1.

simulation = [restriction to subspaces] + [a letter-by-letter projection]

Remark 1: dimension(S2) := dimension(S1)++

Remark 2:
The known proofs are artificial

,
the simulating SFT is very complex (combinatorially/algorithmically).

Problem:
Extend this result on natural classes of subshifts,
with a simple (combinatorially/topologically/algorithmically) structure

Partial answer:
Yes, we can! We can transfer this result to minimal subshifts.

14 / 19

SFT simulates any effective subshift

Theorem [Hochman, D-R-Shen, Aubrun-Sablik]

For every effective subshift S1 there exists an SFT S2 that simulates S1.

simulation = [restriction to subspaces] + [a letter-by-letter projection]

Remark 1: dimension(S2) := dimension(S1)++

Remark 2:
The known proofs are artificial,
the simulating SFT is very complex (combinatorially/algorithmically).

Problem:
Extend this result on natural classes of subshifts,
with a simple (combinatorially/topologically/algorithmically) structure

Partial answer:
Yes, we can! We can transfer this result to minimal subshifts.

14 / 19

SFT simulates any effective subshift

Theorem [Hochman, D-R-Shen, Aubrun-Sablik]

For every effective subshift S1 there exists an SFT S2 that simulates S1.

simulation = [restriction to subspaces] + [a letter-by-letter projection]

Remark 1: dimension(S2) := dimension(S1)++

Remark 2:
The known proofs are artificial,
the simulating SFT is very complex (combinatorially/algorithmically).

Problem:
Extend this result on natural classes of subshifts

,
with a simple (combinatorially/topologically/algorithmically) structure

Partial answer:
Yes, we can! We can transfer this result to minimal subshifts.

14 / 19

SFT simulates any effective subshift

Theorem [Hochman, D-R-Shen, Aubrun-Sablik]

For every effective subshift S1 there exists an SFT S2 that simulates S1.

simulation = [restriction to subspaces] + [a letter-by-letter projection]

Remark 1: dimension(S2) := dimension(S1)++

Remark 2:
The known proofs are artificial,
the simulating SFT is very complex (combinatorially/algorithmically).

Problem:
Extend this result on natural classes of subshifts,
with a simple (combinatorially/topologically/algorithmically) structure

Partial answer:
Yes, we can! We can transfer this result to minimal subshifts.

14 / 19

SFT simulates any effective subshift

Theorem [Hochman, D-R-Shen, Aubrun-Sablik]

For every effective subshift S1 there exists an SFT S2 that simulates S1.

simulation = [restriction to subspaces] + [a letter-by-letter projection]

Remark 1: dimension(S2) := dimension(S1)++

Remark 2:
The known proofs are artificial,
the simulating SFT is very complex (combinatorially/algorithmically).

Problem:
Extend this result on natural classes of subshifts,
with a simple (combinatorially/topologically/algorithmically) structure

Partial answer:
Yes, we can! We can transfer this result to minimal subshifts.

14 / 19

minimal SFTs simulate any effective minimal subshift

Definition.

A subshift S is minimal if there is no nonempty subshifts S ′ (S .

Here minimal means simple, irreducible, primary
(cf. prime numbers, prime groups, irreducible dynamical systems, etc.)

Main Theorem.

For every minimal effective subshift S1 there exists a minimal SFT S2

that simulates S1.

simulation = [restriction on a subspace] + [a letter-by-letter projection]

Remark: dimension(S2) := dimension(S1)++

15 / 19

minimal SFTs simulate any effective minimal subshift

Definition.

A subshift S is minimal if there is no nonempty subshifts S ′ (S .

Here minimal means simple, irreducible, primary

(cf. prime numbers, prime groups, irreducible dynamical systems, etc.)

Main Theorem.

For every minimal effective subshift S1 there exists a minimal SFT S2

that simulates S1.

simulation = [restriction on a subspace] + [a letter-by-letter projection]

Remark: dimension(S2) := dimension(S1)++

15 / 19

minimal SFTs simulate any effective minimal subshift

Definition.

A subshift S is minimal if there is no nonempty subshifts S ′ (S .

Here minimal means simple, irreducible, primary
(cf. prime numbers, prime groups, irreducible dynamical systems, etc.)

Main Theorem.

For every minimal effective subshift S1 there exists a minimal SFT S2

that simulates S1.

simulation = [restriction on a subspace] + [a letter-by-letter projection]

Remark: dimension(S2) := dimension(S1)++

15 / 19

minimal SFTs simulate any effective minimal subshift

Definition.

A subshift S is minimal if there is no nonempty subshifts S ′ (S .

Here minimal means simple, irreducible, primary
(cf. prime numbers, prime groups, irreducible dynamical systems, etc.)

Main Theorem.

For every minimal effective subshift S1 there exists a minimal SFT S2

that simulates S1.

simulation = [restriction on a subspace] + [a letter-by-letter projection]

Remark: dimension(S2) := dimension(S1)++

15 / 19

minimal SFTs simulate any effective minimal subshift

Definition.

A subshift S is minimal if there is no nonempty subshifts S ′ (S .

Here minimal means simple, irreducible, primary
(cf. prime numbers, prime groups, irreducible dynamical systems, etc.)

Main Theorem.

For every minimal effective subshift S1 there exists a minimal SFT S2

that simulates S1.

simulation = [restriction on a subspace] + [a letter-by-letter projection]

Remark: dimension(S2) := dimension(S1)++

15 / 19

minimal SFTs simulate any effective minimal subshift

Definition.

A subshift S is minimal if there is no nonempty subshifts S ′ (S .

Here minimal means simple, irreducible, primary
(cf. prime numbers, prime groups, irreducible dynamical systems, etc.)

Main Theorem.

For every minimal effective subshift S1 there exists a minimal SFT S2

that simulates S1.

simulation = [restriction on a subspace] + [a letter-by-letter projection]

Remark: dimension(S2) := dimension(S1)++

15 / 19

minimal SFTs simulate any effective minimal subshift

Main Theorem.

For every minimal effective subshift S1 there exists
a minimal SFT S2 such that S2 simulates S1.

One More Theorem (for experts).

For every quasiperiodic effective subshift S1 there exists
a quasiperiodic SFT S2 such that S2 simulates S1.

Corollary.

There exists a quasiperiodic 2-dim SFT where Kolmogorov complexity
of all n × n patterns is equal to Ω(n).

16 / 19

minimal SFTs simulate any effective minimal subshift

Main Theorem.

For every minimal effective subshift S1 there exists
a minimal SFT S2 such that S2 simulates S1.

One More Theorem (for experts).

For every quasiperiodic effective subshift S1 there exists
a quasiperiodic SFT S2 such that S2 simulates S1.

Corollary.

There exists a quasiperiodic 2-dim SFT where Kolmogorov complexity
of all n × n patterns is equal to Ω(n).

16 / 19

minimal SFTs simulate any effective minimal subshift

Main Theorem.

For every minimal effective subshift S1 there exists
a minimal SFT S2 such that S2 simulates S1.

One More Theorem (for experts).

For every quasiperiodic effective subshift S1 there exists
a quasiperiodic SFT S2 such that S2 simulates S1.

Corollary.

There exists a quasiperiodic 2-dim SFT where Kolmogorov complexity
of all n × n patterns is equal to Ω(n).

16 / 19

under the hood: gear wheels in the proof

Algorithmic part:
recursive programming (a program handling its own text)

Combinatorial part:
combinatorics on quasiperiodic words

17 / 19

under the hood: gear wheels in the proof

Algorithmic part:
recursive programming (a program handling its own text)

Combinatorial part:
combinatorics on quasiperiodic words

17 / 19

under the hood: gear wheels in the proof

Algorithmic part:
recursive programming (a program handling its own text)

Combinatorial part:
combinatorics on quasiperiodic words

17 / 19

under the hood: gear wheels in the proof

Algorithmic part:
recursive programming (a program handling its own text)

Self-simulation: a block of symbols behaves like a single symbol

Universal
Turing
machine

program

... + enforced quasi-periodicity + combinatorial lemmas

18 / 19

under the hood: gear wheels in the proof

Algorithmic part:
recursive programming (a program handling its own text)

Self-simulation: a block of symbols behaves like a single symbol

Universal
Turing
machine

program

... + enforced quasi-periodicity + combinatorial lemmas

18 / 19

under the hood: gear wheels in the proof

Algorithmic part:
recursive programming (a program handling its own text)

Self-simulation: a block of symbols behaves like a single symbol

Universal
Turing
machine

program

... + enforced quasi-periodicity + combinatorial lemmas

18 / 19

under the hood: gear wheels in the proof

Algorithmic part:
recursive programming (a program handling its own text)

Self-simulation: a block of symbols behaves like a single symbol

Universal
Turing
machine

program

... + enforced quasi-periodicity + combinatorial lemmas

18 / 19

under the hood: gear wheels in the proof

Combinatorial part (folklore?): combinatorics on quasiperiodic words

Lemma 1.

If x = (xn) is recurrent (quasiperiodic) and y = (yn) is periodic, then the
product x⊗ y

. . .
x0 x1 x2 x3 x4
y0 y1 y2 y3 y4

. . .

is also recurrent.

Lemma 2.

If a subshift S is minimal and a sequence y is periodic, then the subshift

{
. . .

x0 x1 x2 x3 x4
y0 y1 y2 y3 y4

. . . where . . . x0x1x2x3x4 . . . belongs to S

}

is also minimal.

19 / 19

under the hood: gear wheels in the proof

Combinatorial part (folklore?): combinatorics on quasiperiodic words

Lemma 1.

If x = (xn) is recurrent (quasiperiodic) and y = (yn) is periodic, then the
product x⊗ y

. . .
x0 x1 x2 x3 x4
y0 y1 y2 y3 y4

. . .

is also recurrent.

Lemma 2.

If a subshift S is minimal and a sequence y is periodic, then the subshift

{
. . .

x0 x1 x2 x3 x4
y0 y1 y2 y3 y4

. . . where . . . x0x1x2x3x4 . . . belongs to S

}

is also minimal.
19 / 19

