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@ Our goal is to find A 3 x as a suitable explanation for x.

n zeros

——
Let x =000...00. Then {x} is a suitable explanation for x but
{0,1}" is not a good explanation.
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Algorithmic statistics: motivation

@ Let x be a binary string (experimental data).

@ Our goal is to find A 3 x as a suitable explanation for x.

n zeros

——
Let x =000...00. Then {x} is a suitable explanation for x but
{0,1}" is not a good explanation.

Let x = 01001011 ...010 be a random string of length n i.e. its
Kolmogorov complexity C(x) is equal to n. Then {0,1}" is an
reasonable explanation for x, however {x} is not adequate.
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Randomness deficiency

A set A> x is a good
explanation for x if
e Ais simple, i.e. C(A) =~ 0;
@ x is typical element of A.
By Kolmogorov x is typical in A
if randomness deficiency
d(x|A) := log |A] — C(x|A) is
small. Note that
e d(x|A) Z 0 for every x in A.

@ The fraction of elements x
in A such that d(x|A) > k
is less than 27k,
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Optimality deficiency

@ Can this theory be used in practice?
@ Kolmogorov complexity is uncountable function.

@ We can get an upper bound of C() but we can not prove a
lower bound of it.

@ So, we can argue that A 3 x is simple, but we can not prove
that d(x|A) = log |A] — C(x|A) is small.

Consider another parameter instead of d(x|A): just log |A|.
What can we say about C(A) + log |A| for A > x7

C(A) + log |A| Z C(x).

The difference 6(x, A) := C(A) + log |A| — C(x) is called
optimality deficiency.
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The connection between randomness and optimality
deficiencies

e d(x|A) := log |A| — C(x|A), d(x, A) := C(A) + log |A] — C(x).
e §(x,A) < d(x]A) because C(x) < C(A) + C(x]|A).

@ The difference can be large.

Let x be random string of length n (i.e. C(x) ~ n). Let y another
independent of x random string of length n. Consider
A:={0,1}"\{y}. Then d(x|A) = 0 however d(x,A) ~ n.

However, the following is true.

Theorem (Vereshchagin, Vitanyi)

For every string x and for every A 5 x there exists B 3 x such that
C(B) < C(A) and 6(x, B) < d(x|A).
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Descriptions of Restricted Type

@ So far we considered arbitrary finite sets as models.

@ However, in practice we usually have some a priori information
about the data.

@ Assume that “right” model A belongs to some enumerable
family of sets A. (For example, A is the family of all
Hamming balls.)

It turns out that the previous result holds also for this case.

Theorem (Vereshchagin, Vitanyi)

For every string x and for every A 3 x from any enumerable family
A there exists B € A containing x such that
C(B) < C(A) and 6(x, B) < d(x|A).

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms



Space-bounded algorithmic statistics

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms



Space-bounded algorithmic statistics

@ The notion of Kolmogorov complexity has the following
problem.

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms



Space-bounded algorithmic statistics

@ The notion of Kolmogorov complexity has the following
problem.

@ It ignores time and space needed to produce x from its short
description.

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms



Space-bounded algorithmic statistics

@ The notion of Kolmogorov complexity has the following
problem.

@ It ignores time and space needed to produce x from its short
description.

e We will consider algorithms whose space (not time) is
bounded by a polynomial of the length of a string.

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms



Space-bounded algorithmic statistics

@ The notion of Kolmogorov complexity has the following
problem.

@ It ignores time and space needed to produce x from its short
description.

e We will consider algorithms whose space (not time) is
bounded by a polynomial of the length of a string.

The complexity CD™(A) of a set A with space bound m is defined
as the minimal length of a program p such that

e p(y)=1lify € A
o p(y)=1ify ¢ A
@ p uses at most m space on every input.
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Space-bounded algorithmic statistics

@ The notion of Kolmogorov complexity has the following
problem.

@ It ignores time and space needed to produce x from its short
description.

e We will consider algorithms whose space (not time) is
bounded by a polynomial of the length of a string.

Definition
The complexity CD™(A) of a set A with space bound m is defined
as the minimal length of a program p such that

e p(y)=1lify € A

o p(y)=1ify ¢ A

@ p uses at most m space on every input.

CD™(x) is defined as CD™({x}).
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Definition

A family of sets A is called polynomial-space enumerable if there is
an algorithm that enumerate all subset of {0,1}" from A in space
poly(n).
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Main result

We proof an analogue of theorem of Vereshchagin and Vitany for
polynomial space bound.

Definition

A family of sets A is called polynomial-space enumerable if there is
an algorithm that enumerate all subset of {0,1}" from A in space

poly(n).

Theorem (Informal)

Let x be a string of length n and let A be a polynomial-space
enumerable family of sets. Then for every set A > x from A there
exists a set B > x from A such that CDPM")(B) < CDPOM")(A)
and 6P°Y(")(x, B) < dPoM(n) (x| A).

Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms



Alexey Milovanov On Algorithmic Statistics for space-bounded algorithms



@ Define probability distribution B as follows. Every set from A
of complexity CDPY(")(A) belongs to B with probability
2CDpoly(n)(A|X)_CDpoly(n)(A).
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However this requires exponential space.
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@ Define probability distribution B as follows. Every set from A
of complexity CDPY(")(A) belongs to B with probability

2CDpoly(n)(A|X)_CDp°|y(n)(A).

This family B contains B 5 x with high probability.
If CDPOY(")(BB) is small then B satisfies the theorem.
We can find B by brute force.

However this requires exponential space.

Nisan-Wigderson generator helps to reduce it.

The same idea was used by Daniil Musatov.
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Thank you!
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