Stochasticity in Algorithmic Statistics for Polynomial Time

Alexey Milovanov (The joint work with Nikolay Vereshchagin)

National Research University Higher School of Economics, almas239@gmail.com

3 July 2017, Mysore

Motivation

Alexey Milovanov (The joint work with Nikolay Vereshchagin) Stochasticity in Algorithmic Statistics for Polynomial Time

<ロ> (日) (日) (日) (日) (日)

э

同 ト イ ヨ ト イ ヨ ト

Example

Let x be n-natural number which is a square and has not other features.

Example

Let x be n-natural number which is a square and has not other features.

Hypothesis μ_1 : the uniform distribution among all *n*-bit squares.

Example

Let x be n-natural number which is a square and has not other features.

Hypothesis μ_1 : the uniform distribution among all *n*-bit squares. Hypothesis μ_2 : the uniform distribution among all *n*-bit numbers.

Example

Let x be n-natural number which is a square and has not other features.

Hypothesis μ_1 : the uniform distribution among all *n*-bit squares. Hypothesis μ_2 : the uniform distribution among all *n*-bit numbers.

We can refute μ_2 since there is the set T of all *n*-bit squares such that $x \in T$ and $\mu_2(T) \ll 1$.

Example

Let x be n-natural number which is a square and has not other features.

Hypothesis μ_1 : the uniform distribution among all *n*-bit squares. Hypothesis μ_2 : the uniform distribution among all *n*-bit numbers.

We can refute μ_2 since there is the set T of all *n*-bit squares such that $x \in T$ and $\mu_2(T) \ll 1$.

By the same reason we can refute μ_1 considering $\{x\}$.

Example

Let x be n-natural number which is a square and has not other features.

Hypothesis μ_1 : the uniform distribution among all *n*-bit squares. Hypothesis μ_2 : the uniform distribution among all *n*-bit numbers.

We can refute μ_2 since there is the set T of all *n*-bit squares such that $x \in T$ and $\mu_2(T) \ll 1$.

By the same reason we can refute μ_1 considering $\{x\}$. However the property 'to be equal x' is not *simple*: there is not a short program that decides a membership in $\{x\}$ in short time.

Example

Let x be n-natural number which is a square and has not other features.

Hypothesis μ_1 : the uniform distribution among all *n*-bit squares. Hypothesis μ_2 : the uniform distribution among all *n*-bit numbers.

We can refute μ_2 since there is the set T of all *n*-bit squares such that $x \in T$ and $\mu_2(T) \ll 1$.

By the same reason we can refute μ_1 considering $\{x\}$. However the property 'to be equal x' is not *simple*: there is not a short program that decides a membership in $\{x\}$ in short time. (There exists such a program for T.)

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

For every x the probability distribution μ such that $\mu(x) = 1$ is an acceptable hypothesis for x.

伺 ト イヨト イヨト

Example

For every x the probability distribution μ such that $\mu(x) = 1$ is an acceptable hypothesis for x.

A string x is called *stochastic* if it has simple and acceptable hypothesis.

同 ト イ ヨ ト イ ヨ ト

Example

For every x the probability distribution μ such that $\mu(x) = 1$ is an acceptable hypothesis for x.

A string x is called *stochastic* if it has simple and acceptable hypothesis.

A rigorous definition of stochasticity requires 5 parameters (two for the simplicity of μ , two for the similicity of T and one for negligibility of $\mu(T)$).

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

For every x the probability distribution μ such that $\mu(x) = 1$ is an acceptable hypothesis for x.

A string x is called *stochastic* if it has simple and acceptable hypothesis.

A rigorous definition of stochasticity requires 5 parameters (two for the simplicity of μ , two for the similicity of T and one for negligibility of $\mu(T)$).

The main question: are there non-stochastic strings with some reasonable parameters?

- 4 同 6 4 日 6 4 日 6

The parameters of stochasticity

Alexey Milovanov (The joint work with Nikolay Vereshchagin) Stochasticity in Algorithmic Statistics for Polynomial Time

→ < ∃→

A distribution μ is called t_1, α -simple if it can be generated by a probabilistic program of length less than α in time at most t_1 .

伺 ト イヨト イヨト

A distribution μ is called t_1, α -simple if it can be generated by a probabilistic program of length less than α in time at most t_1 .

Definition

A t_2, β, ε -acceptable hypothesis for a string x is a distribution μ such that $\mu(T) > \varepsilon$ for all $T \ni x$ recognized by a program of length less than β in at most t_2 steps for all inputs of length |x|.

(同) (ヨ) (ヨ)

A distribution μ is called t_1, α -simple if it can be generated by a probabilistic program of length less than α in time at most t_1 .

Definition

A t_2, β, ε -acceptable hypothesis for a string x is a distribution μ such that $\mu(T) > \varepsilon$ for all $T \ni x$ recognized by a program of length less than β in at most t_2 steps for all inputs of length |x|.

A distribution μ is a "good" explanation for a string x of length n if μ is t_1, α -simple and t_2, β, ε -acceptable for x where

A distribution μ is called t_1, α -simple if it can be generated by a probabilistic program of length less than α in time at most t_1 .

Definition

A t_2, β, ε -acceptable hypothesis for a string x is a distribution μ such that $\mu(T) > \varepsilon$ for all $T \ni x$ recognized by a program of length less than β in at most t_2 steps for all inputs of length |x|.

A distribution μ is a "good" explanation for a string x of length n if μ is t_1, α -simple and t_2, β, ε -acceptable for x where

•
$$\alpha = O(\log n), t_1 = \operatorname{poly}(n);$$

A distribution μ is called t_1, α -simple if it can be generated by a probabilistic program of length less than α in time at most t_1 .

Definition

A t_2, β, ε -acceptable hypothesis for a string x is a distribution μ such that $\mu(T) > \varepsilon$ for all $T \ni x$ recognized by a program of length less than β in at most t_2 steps for all inputs of length |x|.

A distribution μ is a "good" explanation for a string x of length n if μ is t_1, α -simple and t_2, β, ε -acceptable for x where

•
$$\alpha = O(\log n), t_1 = \operatorname{poly}(n);$$

•
$$\beta > \alpha$$
, $t_2 > t_1$;

A distribution μ is called t_1, α -simple if it can be generated by a probabilistic program of length less than α in time at most t_1 .

Definition

A t_2, β, ε -acceptable hypothesis for a string x is a distribution μ such that $\mu(T) > \varepsilon$ for all $T \ni x$ recognized by a program of length less than β in at most t_2 steps for all inputs of length |x|.

A distribution μ is a "good" explanation for a string x of length n if μ is t_1, α -simple and t_2, β, ε -acceptable for x where

•
$$\alpha = O(\log n), t_1 = \operatorname{poly}(n);$$

•
$$\beta > \alpha$$
, $t_2 > t_1$;

• $\varepsilon < \frac{1}{\operatorname{poly}(n)}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Majority principle

Alexey Milovanov (The joint work with Nikolay Vereshchagin) Stochasticity in Algorithmic Statistics for Polynomial Time

▲□ ▶ ▲ 臣 ▶ ▲ 臣

• Let μ be a probability distribution on binary strings.

同 ト イ ヨ ト イ ヨ ト

- Let μ be a probability distribution on binary strings.
- Let x be a string that was chosen randomly with respect to μ .

- Let μ be a probability distribution on binary strings.
- Let x be a string that was chosen randomly with respect to μ .
- Then with high probability x should be acceptable for x.

- Let μ be a probability distribution on binary strings.
- Let x be a string that was chosen randomly with respect to μ .
- Then with high probability x should be acceptable for x.

Proposition

For every probability distribution μ over binary strings of length n and for all β , ε and t we have $\mu\{x \mid \mu \text{ is not } t, \beta, \varepsilon\text{-acceptable for } x\} < \varepsilon 2^{\beta}$.

Alexey Milovanov (The joint work with Nikolay Vereshchagin) Stochasticity in Algorithmic Statistics for Polynomial Time

・ロト ・回ト ・モト ・モト

э

• NE is the class of languages accepted in time 2^{O(n)} by non-deterministic Turing machines.

同 ト イ ヨ ト イ ヨ ト

- NE is the class of languages accepted in time 2^{O(n)} by non-deterministic Turing machines.
- RE is the class of languages recognized in time 2^{O(n)} by probabilistic Turing machines that err with probability at most ¹/₂ for all strings in the language and do not err for strings outside the language.

- NE is the class of languages accepted in time 2^{O(n)} by non-deterministic Turing machines.
- RE is the class of languages recognized in time 2^{O(n)} by probabilistic Turing machines that err with probability at most ¹/₂ for all strings in the language and do not err for strings outside the language.

Theorem

If $\text{RE} \neq \text{NE}$ then for some constant *d* for all *c* for infinitely many *n* there is a string of length *n* that has no n^c , $c \log n$ -simple, n^d , d, n^c -acceptable hypotheses.

同 ト イ ヨ ト イ ヨ ト

- NE is the class of languages accepted in time 2^{O(n)} by non-deterministic Turing machines.
- RE is the class of languages recognized in time 2^{O(n)} by probabilistic Turing machines that err with probability at most ¹/₂ for all strings in the language and do not err for strings outside the language.

Theorem

If $\text{RE} \neq \text{NE}$ then for some constant *d* for all *c* for infinitely many *n* there is a string of length *n* that has no n^c , $c \log n$ -simple, n^d , d, n^c -acceptable hypotheses.

Existence of non-stochastic strings for such parameters implies that $\mathrm{P}\neq\mathrm{PSPACE}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

An application of non-stochasticity

Alexey Milovanov (The joint work with Nikolay Vereshchagin) Stochasticity in Algorithmic Statistics for Polynomial Time

/□ ▶ < 글 ▶ < 글

Non-stochastic objects that were constructed under assumption $\rm RE \neq \rm NE$ have some interesting properties.

Non-stochastic objects that were constructed under assumption $RE \neq NE$ have some interesting properties.

They can be used in proof of some statements of time-bounded Kolmogorov complexity.

Non-stochastic objects that were constructed under assumption $RE \neq NE$ have some interesting properties. They can be used in proof of some statements of time-bounded Kolmogorov complexity.

Denote by $C^{t}(x)$ the minimum length of a program that produce x in time at most t.

Non-stochastic objects that were constructed under assumption $RE \neq NE$ have some interesting properties. They can be used in proof of some statements of time-bounded Kolmogorov complexity.

Denote by $C^t(x)$ the minimum length of a program that produce x in time at most t. Denote by $CD^t(x)$ the minimum length of a program that distinguish x from other strings in time at most t. Non-stochastic objects that were constructed under assumption $\rm RE\neq NE$ have some interesting properties. They can be used in proof of some statements of time-bounded

Kolmogorov complexity.

Denote by $C^t(x)$ the minimum length of a program that produce x in time at most t. Denote by $CD^t(x)$ the minimum length of a program that distinguish x from other strings in time at most t.

Open problem: what are the relationships between $C^{\text{poly}(|x|)}(x)$ and $CD^{\text{poly}(|x|)}(x)$?

Not-stochastic objects give a particular answer to this question.

・ 同 ト ・ ヨ ト ・ ヨ ト

$C^{\mathsf{poly}}(x|y)$ vs $CD^{\mathsf{poly}(x|y)}$

Alexey Milovanov (The joint work with Nikolay Vereshchagin) Stochasticity in Algorithmic Statistics for Polynomial Time

イロン イロン イヨン イヨン

3

$\mathrm{C}^{\mathsf{poly}}(x|y)$ vs $\mathrm{CD}^{\mathsf{poly}(x|y)}$

Proposition

$\forall t \exists c \forall x, y \operatorname{CD}^{ct \log t}(x|y) < \operatorname{C}^{t}(x|y) + c.$

Alexey Milovanov (The joint work with Nikolay Vereshchagin) Stochasticity in Algorithmic Statistics for Polynomial Time

《聞》 《臣》 《臣》

3

$C^{\text{poly}}(x|y)$ vs $CD^{\text{poly}(x|y)}$

Proposition

$$\forall t \exists c \ \forall x, y \ \mathrm{CD}^{ct \log t}(x|y) < \mathrm{C}^{t}(x|y) + c.$$

Theorem (Lance Fortnow, Martin Kummer)

The statement "For every polynomial t there is a polynomial T and a constant c such that for all x and y: $CD^{T}(x|y) < C^{t}(x|y) + c^{"}$ is equivalent to $(1SAT, SAT) \in P$.

The last inclusion means that there is a deterministic polynomial time algorithm which accepts all Boolean formulas with a unique satisfying assignment, and rejects all Boolean formulas which are not satisfiable.

伺 ト イヨト イヨト

$\mathrm{C}^{\mathsf{poly}}(x|y)$ vs $\mathrm{CD}^{\mathsf{poly}(x|y)}$

Proposition

$$\forall t \exists c \ \forall x, y \ \mathrm{CD}^{ct \log t}(x|y) < \mathrm{C}^{t}(x|y) + c.$$

Theorem (Lance Fortnow, Martin Kummer)

The statement "For every polynomial t there is a polynomial T and a constant c such that for all x and y: $CD^{T}(x|y) < C^{t}(x|y) + c^{"}$ is equivalent to $(1SAT, SAT) \in P$.

The last inclusion means that there is a deterministic polynomial time algorithm which accepts all Boolean formulas with a unique satisfying assignment, and rejects all Boolean formulas which are not satisfiable.

What can we say about $C^{\text{poly}(|x|)}(x)$ vs $CD^{\text{poly}(|x|)}(x)$?

Alexey Milovanov (The joint work with Nikolay Vereshchagin) Stochasticity in Algorithmic Statistics for Polynomial Time

《口》《聞》《臣》《臣》

3

Theorem (Lance Fortnow, Martin Kummer)

If FewP \cap SPARSE $\not\subseteq$ P then for some constant d for all c there exist infinitely many strings x such that $CD^{n^d}(x) < C^{n^c}(x) - c \log n$. Here and further n denotes the length of x.

Theorem (Lance Fortnow, Martin Kummer)

If FewP \cap SPARSE $\not\subseteq$ P then for some constant d for all c there exist infinitely many strings x such that $CD^{n^d}(x) < C^{n^c}(x) - c \log n$. Here and further n denotes the length of x.

Theorem

If $\operatorname{RE} \neq \operatorname{NE}$ then for some constant d for all c there exist infinitely many strings x such that $\operatorname{CD}^{n^d}(x|r) < \operatorname{C}^{n^c}(x|r) - c \log n$ for 99 % strings r of length n^d .

-

Theorem (Lance Fortnow, Martin Kummer)

If FewP \cap SPARSE $\not\subseteq$ P then for some constant d for all c there exist infinitely many strings x such that $CD^{n^d}(x) < C^{n^c}(x) - c \log n$. Here and further n denotes the length of x.

Theorem

If $\operatorname{RE} \neq \operatorname{NE}$ then for some constant d for all c there exist infinitely many strings x such that $\operatorname{CD}^{n^d}(x|r) < \operatorname{C}^{n^c}(x|r) - c \log n$ for 99 % strings r of length n^d .

Assume also that there is a set that is decidable by Turing machines in time $2^{O(n)}$ but is not decidable by Boolean circuits of size $2^{o(n)}$ for almost all n. Then $CD^{n^d}(x) < C^{n^c}(x|r) - c \log n$ for 99 % strings r of length n^d .

イロン 不同 とくほう イロン

-

Thank you!

Alexey Milovanov (The joint work with Nikolay Vereshchagin) Stochasticity in Algorithmic Statistics for Polynomial Time