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Motivation

Let x be a binary string. Our goal is to find a good explanation for
x among all distribution on binary strings.

Example

Let x be n-natural number which is a square and has not other
features.
Hypothesis µ1: the uniform distribution among all n-bit squares.
Hypothesis µ2: the uniform distribution among all n-bit numbers.

We can refute µ2 since there is the set T of all n-bit squares such
that x ∈ T and µ2(T )� 1.
By the same reason we can refute µ1 considering {x}.
However the property ‘to be equal x ’ is not simple: there is not a
short program that decides a membership in {x} in short time.
(There exists such a program for T .)
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Stochasticity

A probability distribution µ is called an acceptable hypothesis for x
if there is no simple set T 3 x with negligible µ(T ).

Example

For every x the probability distribution µ such that µ(x) = 1 is an
acceptable hypothesis for x .

A string x is called stochastic if it has simple and acceptable
hypothesis.
A rigorous definition of stochasticity requires 5 parameters
(two for the simplicity of µ, two for the simlicity of T and one for
negligibility of µ(T )).

The main question: are there non-stochastic strings with some
reasonable parameters?
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The parameters of stochasticity

Definition

A distribution µ is called t1, α-simple if it can be generated by a
probabilistic program of length less than α in time at most t1.

Definition

A t2, β, ε-acceptable hypothesis for a string x is a distribution µ
such that µ(T ) > ε for all T 3 x recognized by a program of
length less than β in at most t2 steps for all inputs of length |x |.

A distribution µ is a “good” explanation for a string x of length n
if µ is t1, α-simple and t2, β, ε-acceptable for x where

α = O(log n), t1 = poly(n);

β > α, t2 > t1;

ε < 1
poly(n) .
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Majority principle

Let µ be a probability distribution on binary strings.

Let x be a string that was chosen randomly with respect to µ.

Then with high probability x should be acceptable for x .

Proposition

For every probability distribution µ over binary strings of length n
and for all β, ε and t we have
µ{x | µ is not t, β, ε-acceptable for x} < ε2β.
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The main result

NE is the class of languages accepted in time 2O(n) by
non-deterministic Turing machines.

RE is the class of languages recognized in time 2O(n) by
probabilistic Turing machines that err with probability at most
1
2 for all strings in the language and do not err for strings
outside the language.

Theorem

If RE 6= NE then for some constant d for all c for infinitely many
n there is a string of length n that has no nc , c log n-simple,
nd , d , nc -acceptable hypotheses.

Existence of non-stochastic strings for such parameters implies that
P 6= PSPACE.
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An application of non-stochasticity

Non-stochastic objects that were constructed under assumption
RE 6= NE have some interesting properties.
They can be used in proof of some statements of time-bounded
Kolmogorov complexity.

Denote by Ct(x) the minimum length of a program that produce x
in time at most t.
Denote by CDt(x) the minimum length of a program that
distinguish x from other strings in time at most t.

Open problem: what are the relationships
between Cpoly(|x |)(x) and CDpoly(|x |)(x)?

Not-stochastic objects give a particular answer to this question.
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Cpoly(x |y) vs CDpoly(x |y)

Proposition

∀t ∃c ∀x , y CDct log t(x |y) < Ct(x |y) + c .

Theorem (Lance Fortnow, Martin Kummer)

The statement “For every polynomial t there is a polynomial T and
a constant c such that for all x and y : CDT (x |y) < Ct(x |y) + c”
is equivalent to (1SAT ,SAT ) ∈ P.

The last inclusion means that there is a deterministic polynomial
time algorithm which accepts all Boolean formulas with a unique
satisfying assignment, and rejects all Boolean formulas which are
not satisfiable.

What can we say about Cpoly(|x |)(x) vs CDpoly(|x |)(x)?
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Cpoly(|x |)(x) vs CDpoly(|x |)(x)

Theorem (Lance Fortnow, Martin Kummer)

If FewP ∩ SPARSE 6⊆ P then for some constant d for all c
there exist infinitely many strings x such that
CDnd (x) < Cnc (x)− c log n.
Here and further n denotes the length of x .

Theorem

If RE 6= NE then for some constant d for all c
there exist infinitely many strings x such that
CDnd (x |r) < Cnc (x |r)− c log n for 99 % strings r of length nd .

Assume also that there is a set that is decidable by Turing
machines in time 2O(n) but is not decidable by Boolean circuits of
size 2o(n) for almost all n. Then
CDnd (x) < Cnc (x |r)− c log n for 99 % strings r of length nd .
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Thank you!
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