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Normal numbers

.00100111010111 . . .

#0(n) = number of 0 among the first n bits

simply normal: #0(n)/n→ 1/2, #1(n)→ 1/2

#00(n) = number of occurences of 00 in the first n positions

#00(n) + #01(n) + #10(n) + #11(n) = n

normal: #00(n)/n→ 1/4 and the same for all other bit strings

Borel introduced as expected property of random numbers

Another approach: cut the sequence into k-bit blocks and
count the number of blocks of each type (aligned occurrences)
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Basic questions about normal numbers

Do normal number exist? (Yes, almost all numbers are
random)

Examples? e, π,
√

2 normal? (May be yes, nobody knows)

Champernowne number: 0 1 10 11 100 101 110 111 1000 . . .

Does it depend on the base? (Yes)

Do absolutely normal numbers (all bases) exist?
(Yes, almost all)

Are two approaches equivalent? (Yes)

Wall’s theorem: α is normal, n integer ⇒ nα, α/n are normal
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Randomness as incompressibility

Individual random sequences: plausible as outcomes of coin
tossing

(Classical) probability theory: no idea

Kolmogorov, Levin, Chaitin,. . . : randomness =
incompressibility

000 . . . 000 not random: short description: “million zeros”

What is “description”? Different answers possible

Normality = weak randomness

Limited class of descriptions: finite memory
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Compressibility

Binary relation D(p, x) on strings: “p is a description of x”

CD(x) = min{|p| : D(p, x)}
trivial: Λ is a description of everything, CD(x) = 0

D(p, x) : p = x , then CD(x) = |x |
D(p, x): x is p where each bit doubled

then CD(x): |x |/2 for good x (with doubled bits), and +∞
for bad

restriction: D is function: every description describes only one
object

technical: weaker restriction: O(1)-valued function; only O(1)
objects for each description

only finite-memory (automatic) relations allowed as D
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Finite automata

Idea: D(p, x) is automatic if it can be checked reading p and
x bit by bit, with finite memory

our examples (trivial, equality, doubled bits) are all automatic

Formal definition: graph; edges labeled by (u, v), (u, ε),
(ε, u), (ε, ε)

path ⇒ pair of strings

D = the set of all pairs that can be read along paths

multiplication and division by an integer constant are
automatic relations

union of two automatic relations is automatic

composition of two automatic relations is automatic

warning: no initial and final states
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union of two automatic relations is automatic

composition of two automatic relations is automatic

warning: no initial and final states
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Optimal decompressors

Theorem (Becher, Heiber)

A sequence x1x2x3 . . . is normal ⇔

lim inf CD(x1 . . . xn)/n ≥ 1

for every automatic O(1)-valued relation D(p, x)

A counterpart in algorithmic information theory:
A sequence x1x2x3 . . . has effective dimension 1 ⇔

limCD(x1 . . . xn)/n ≥ 1

for every computably enumerable O(1)-valued relation D(p, x)
One can use computable functions as decompressors instead of
O(1)-relations; dimension 1 is weaker than Martin-Löf randomness
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Non-normal sequences are compressible

String over {a1, . . . , ak}, probabilities p1, . . . , pk .

Different probabilities ⇒ more efficient coding

Morse code: frequent letters have shorter codes

Minimal code length: H =
∑

pi log(1/pi ) (Shannon entropy)

log k for equiprobable letters, otherwise smaller

H is a lower bound for decodable codes

H + 1 can be achieved

block codes are needed

block coding uses finite memory

Technical: select a subsequence that has limit frequencies; use
these frequencies for block coding, use convexity of entropy
function
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Normal sequences are not compressible

Normal sequence x1x2 . . .

Some automatic O(1) relation D

Why x1x2 . . . xN is not compressible?

Split it into k-bit blocks X1X2 . . .XM

description p can be also split into corresponding blocks

so CD(xy) ≥ CD(x) + CD(y), the main feature of automatic
compression

all k-bit strings appear equally often among X1,X2, . . . ,XM

most of k-bit strings are incompressible

so the economy is negligible compared to length

almost the same works for non-aligned definition of normality,
since the frequencies of compressible blocks are only k times
bigger
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Hall’s theorem

α is normal, n integer ⇒ nα and α/n are normal

Multiplication and division by a constant are O(1)-valued
automatic relations

Composition of automatic relations is automatic

So if D compresses α, then D ◦ [×N] compresses Nα.

The same for division

. . . or for adding rational numbers

Details: https://arxiv.org/pdf/1701.09060.pdf
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