Algorithms and geometric constructions

Vladimir A. Uspenskij (1930–2018), Alexander Shen

LIRMM CNRS & University of Montpellier

CiE 2018

Vladimir A. Uspenskij (1930–2018), Alexander Shen Algorithms and geometric constructions

Владимир Андреевич Успенский (27.11.1930–27.06.2018)

(1) < (2) < (3) < (3) </p>

Vladimir A. Uspenskij (1930–2018), Alexander Shen Algorithms and geometric constructions

Vladimir A. Uspenskij (1930–2018), Alexander Shen Algorithms and geometric constructions

< □ > < □ > < Ξ > < Ξ > < Ξ >

• a basic notion (like a notion of a set) or a part of the standard (set-theoretic) framework?

(日)

- a basic notion (like a notion of a set) or a part of the standard (set-theoretic) framework?
- Borel, 1912: did not use the word "algorithm" but speak about "the computations that can be really performed" and adds: "I intentionally put aside the question of bigger or smaller practical length of the operation; it is important only that each of the operations can be performed in a finite time by a clear and unambiguous method"

- a basic notion (like a notion of a set) or a part of the standard (set-theoretic) framework?
- Borel, 1912: did not use the word "algorithm" but speak about "the computations that can be really performed" and adds: "I intentionally put aside the question of bigger or smaller practical length of the operation; it is important only that each of the operations can be performed in a finite time by a clear and unambiguous method"
- 1930s: Gödel, Kleene, Church, Turing, Post defined representative classes of algorithms thus making possible the proofs of algorithmic undecidability

Vladimir A. Uspenskij (1930–2018), Alexander Shen Algorithms and geometric constructions

< □ > < □ > < Ξ > < Ξ > < Ξ >

• computable functions = λ -calculable, general recursive functions, Turing/Post machines etc.

A (10) × A (10) × A (10) ×

- computable functions = λ -calculable, general recursive functions, Turing/Post machines etc.
- Post: "Actually the work already done by Church and others carries this identification considerably beyond the working hypothesis stage. But to mask this identification under a definition hides the fact that a fundamental discovery in the limitations of mathematicizing power of Homo Sapiens has been made and blinds us to the need of its continual verification."

- computable functions = λ -calculable, general recursive functions, Turing/Post machines etc.
- Post: "Actually the work already done by Church and others carries this identification considerably beyond the working hypothesis stage. But to mask this identification under a definition hides the fact that a fundamental discovery in the limitations of mathematicizing power of Homo Sapiens has been made and blinds us to the need of its continual verification."
- later: Kolmogorov–Uspensky, Gurevich

- computable functions = λ -calculable, general recursive functions, Turing/Post machines etc.
- Post: "Actually the work already done by Church and others carries this identification considerably beyond the working hypothesis stage. But to mask this identification under a definition hides the fact that a fundamental discovery in the limitations of mathematicizing power of Homo Sapiens has been made and blinds us to the need of its continual verification."
- later: Kolmogorov–Uspensky, Gurevich
- thesis makes sense only for people who understood the intuitive notion of algorithm before learning how to program.

< < p>< < p>< < p>< < p>< < p>< < p</p>

- computable functions = λ -calculable, general recursive functions, Turing/Post machines etc.
- Post: "Actually the work already done by Church and others carries this identification considerably beyond the working hypothesis stage. But to mask this identification under a definition hides the fact that a fundamental discovery in the limitations of mathematicizing power of Homo Sapiens has been made and blinds us to the need of its continual verification."
- later: Kolmogorov–Uspensky, Gurevich
- thesis makes sense only for people who understood the intuitive notion of algorithm before learning how to program.
- our topic: the evolution of a notion of geometric construction (special class of algorithms)

Vladimir A. Uspenskij (1930–2018), Alexander Shen Algorithms and geometric constructions

- < ∃ →

• studied since ancient times (Euclid)

< ∃ >

- studied since ancient times (Euclid)
- classical problems (circling the square, angle trisection, doubling the cube)

・ 同 ト ・ ヨ ト ・ ヨ ト

- studied since ancient times (Euclid)
- classical problems (circling the square, angle trisection, doubling the cube)
- impossibility proven in 19th century

・ 同 ト ・ ヨ ト ・ ヨ

- studied since ancient times (Euclid)
- classical problems (circling the square, angle trisection, doubling the cube)
- impossibility proven in 19th century without a definition of a geometric construction

< 回 > < 三 > < 三

- studied since ancient times (Euclid)
- classical problems (circling the square, angle trisection, doubling the cube)
- impossibility proven in 19th century without a definition of a geometric construction
- proofs reproduced in popular expositions

・ 同 ト ・ ヨ ト ・ ヨ ト

- studied since ancient times (Euclid)
- classical problems (circling the square, angle trisection, doubling the cube)
- impossibility proven in 19th century without a definition of a geometric construction
- proofs reproduced in popular expositions
- but definitions are rare

< 回 > < 三 > < 三

- studied since ancient times (Euclid)
- classical problems (circling the square, angle trisection, doubling the cube)
- impossibility proven in 19th century without a definition of a geometric construction
- proofs reproduced in popular expositions
- but definitions are rare
- and correct definitions are even rarer

< (17) > < (2) > (17)

- studied since ancient times (Euclid)
- classical problems (circling the square, angle trisection, doubling the cube)
- impossibility proven in 19th century without a definition of a geometric construction
- proofs reproduced in popular expositions
- but definitions are rare
- and correct definitions are even rarer
- but what is the problem?

< (□) > (□) >

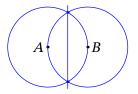
Vladimir A. Uspenskij (1930–2018), Alexander Shen Algorithms and geometric constructions

・ロト ・回ト ・ヨト ・ヨト

• input: objects (points, lines, circles), e.g., two points

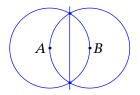
(日)

- input: objects (points, lines, circles), e.g., two points
- output: some other objects, e.g., perpendicular bisector



< ∃ ►

- input: objects (points, lines, circles), e.g., two points
- output: some other objects, e.g., perpendicular bisector



- operations:
 - (ruler) draw a line through two points;
 - given three points *A*, *B*, *C*, draw a circle with center *A* and radius *BC*;

• add the intersection points of existing curves

Tao (2011):

Define a configuration to be a finite collection C of points, lines, and circles in the Euclidean plane. Define a construction step to be one of the following operations to enlarge the collection C:

- (Straightedge) Given two distinct points *A*, *B* in *C*, form the line \overline{AB} that connects *A* and *B*, and add it to *C*.
- (Compass) Given two distinct points *A*, *B* in *C*, and given a third point *O* in *C* (which may or may not equal *A* or *B*), form the circle with centre *O* and radius equal to the length |AB| of the line segment joining *A* and *B*, and add it to *C*.
- (Intersection) Given two distinct curves γ, γ' in C (thus γ is either a line or a circle in C, and similarly for γ'), select a point P that is common to both γ and γ' (there are at most two such points), and add it to C.

We say that a point, line, or circle is constructible by straightedge and compass from a configuration C if it can be obtained from Cafter applying a finite number of construction steps.

Vladimir A. Uspenskij (1930–2018), Alexander Shen Algorithms and geometric constructions

(日) (四) (日) (日) (日)

• problem: given a circle, construct its center

(日)

- problem: given a circle, construct its center
- unsolvable according to this definition

< B

- problem: given a circle, construct its center
- unsolvable according to this definition
- for a trivial reason: no operation to start with

- problem: given a circle, construct its center
- unsolvable according to this definition
- for a trivial reason: no operation to start with
- operation: "choose an arbitrary point"

< □ > < 三 >

- problem: given a circle, construct its center
- unsolvable according to this definition
- for a trivial reason: no operation to start with
- operation: "choose an arbitrary point"
- if adding an arbitrary point is allowed, then all points become constructible

- problem: given a circle, construct its center
- unsolvable according to this definition
- for a trivial reason: no operation to start with
- operation: "choose an arbitrary point"
- if adding an arbitrary point is allowed, then all points become constructible
- problem acknowledged

- problem: given a circle, construct its center
- unsolvable according to this definition
- for a trivial reason: no operation to start with
- operation: "choose an arbitrary point"
- if adding an arbitrary point is allowed, then all points become constructible
- problem acknowledged
- "points for which we do not have affine or metric information" (Bieberbach)

A (1) > A (2) > A

- problem: given a circle, construct its center
- unsolvable according to this definition
- for a trivial reason: no operation to start with
- operation: "choose an arbitrary point"
- if adding an arbitrary point is allowed, then all points become constructible
- problem acknowledged
- "points for which we do not have affine or metric information" (Bieberbach)
- "What we do not include in our analysis are arbitrary elements that are used in some constructions. Their role is not so simple, however, as it is sometimes thought" (Tietze)

Game definition

Vladimir A. Uspenskij (1930–2018), Alexander Shen Algorithms and geometric constructions

(日) (四) (日) (日) (日)

э.

• Alice and Bob play a game with full information

< □ > < □ > < □ > < □ > < □ >

- Alice and Bob play a game with full information
- initial configuration: the set of given points/lines/circles

< 回 > < 三 > < 三

- Alice and Bob play a game with full information
- initial configuration: the set of given points/lines/circles
- at each step Alice sees everything and may ask Bob to add
 - a line that goes through two given points;
 - a circle with center *O* and radius *AB* (if *O*, *A*, *B* are already in the configuration);

< < p>< < p>< < p>< < p>< < p>< < p</p>

- an intersection points of two objects in the configuration;
- an arbitrary point in a given open set

- Alice and Bob play a game with full information
- initial configuration: the set of given points/lines/circles
- at each step Alice sees everything and may ask Bob to add
 - a line that goes through two given points;
 - a circle with center *O* and radius *AB* (if *O*, *A*, *B* are already in the configuration);
 - an intersection points of two objects in the configuration;
 - an arbitrary point in a given open set [the only operation where Bob has a choice]

< < p>< < p>< < p>< < p>< < p>< < p</p>

- Alice and Bob play a game with full information
- initial configuration: the set of given points/lines/circles
- at each step Alice sees everything and may ask Bob to add
 - a line that goes through two given points;
 - a circle with center *O* and radius *AB* (if *O*, *A*, *B* are already in the configuration);
 - an intersection points of two objects in the configuration;
 - an arbitrary point in a given open set [the only operation where Bob has a choice]

< ロ > < 同 > < 回 > < 回 >

• Alice wins when (if) the desired object appear in the current configuration

- Alice and Bob play a game with full information
- initial configuration: the set of given points/lines/circles
- at each step Alice sees everything and may ask Bob to add
 - a line that goes through two given points;
 - a circle with center *O* and radius *AB* (if *O*, *A*, *B* are already in the configuration);
 - an intersection points of two objects in the configuration;
 - an arbitrary point in a given open set [the only operation where Bob has a choice]
- Alice wins when (if) the desired object appear in the current configuration
- definition: a problem (for a given input configuration) is solvable by ruler and compass = Alice has a winning strategy in the corresponding game

Vladimir A. Uspenskij (1930–2018), Alexander Shen Algorithms and geometric constructions

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

• The construction problem (with given input configuration) is *unsolvable*

- The construction problem (with given input configuration) is *unsolvable* if there exists a set \mathcal{L} of geometric objects such that:
 - \mathcal{L} contains all the input objects;
 - \mathcal{L} is closed under three basic operations (line through given points, circle with given center and radius, intersection points)

- the set of points in \mathcal{L} is a dense subset of the plane
- the desired output object is *not* in \mathcal{L} .

- The construction problem (with given input configuration) is *unsolvable* if there exists a set \mathcal{L} of geometric objects such that:
 - \mathcal{L} contains all the input objects;
 - \mathcal{L} is closed under three basic operations (line through given points, circle with given center and radius, intersection points)

- the set of points in \mathcal{L} is a dense subset of the plane
- the desired output object is *not* in \mathcal{L} .
- equivalent definition

- The construction problem (with given input configuration) is *unsolvable* if there exists a set \mathcal{L} of geometric objects such that:
 - \mathcal{L} contains all the input objects;
 - \mathcal{L} is closed under three basic operations (line through given points, circle with given center and radius, intersection points)
 - the set of points in \mathcal{L} is a dense subset of the plane
 - the desired output object is *not* in \mathcal{L} .
- equivalent definition
- one direction obvious: if such a set \mathcal{L} exists, then Bob may use only objects from \mathcal{L} and prevent Alice from winning

- The construction problem (with given input configuration) is *unsolvable* if there exists a set \mathcal{L} of geometric objects such that:
 - \mathcal{L} contains all the input objects;
 - \mathcal{L} is closed under three basic operations (line through given points, circle with given center and radius, intersection points)
 - the set of points in \mathcal{L} is a dense subset of the plane
 - the desired output object is *not* in \mathcal{L} .
- equivalent definition
- one direction obvious: if such a set \mathcal{L} exists, then Bob may use only objects from \mathcal{L} and prevent Alice from winning
- another direction: essentially proven by Akopyan and Fedorov (though they avoid using formal definitions!)

Vladimir A. Uspenskij (1930–2018), Alexander Shen Algorithms and geometric constructions

・ロト ・回ト ・ヨト ・ヨト

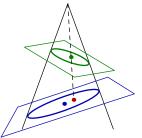
• classical result: one cannot construct the center of a given circle using only a ruler

A (1) > (1) > (1)

< ∃ >

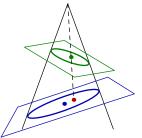
- classical result: one cannot construct the center of a given circle using only a ruler
- proof: construction on the green plane is mapped to a construction on the blue plane and produces a red point, not a true center (blue)

- classical result: one cannot construct the center of a given circle using only a ruler
- proof: construction on the green plane is mapped to a construction on the blue plane and produces a red point, not a true center (blue)

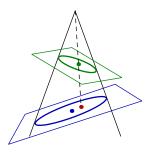


• attributed to David Hilbert by Cauer who proved a stronger "theorem" saying the one cannot construct centres of two disjoint circles

- classical result: one cannot construct the center of a given circle using only a ruler
- proof: construction on the green plane is mapped to a construction on the blue plane and produces a red point, not a true center (blue)



• attributed to David Hilbert by Cauer who proved a stronger "theorem" saying the one cannot construct centres of two disjoint circles ERROR!

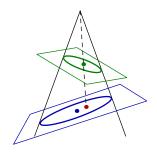


< □ > < □ > < Ξ > < Ξ > < Ξ >

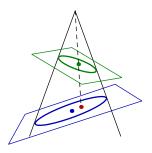
2

Vladimir A. Uspenskij (1930–2018), Alexander Shen Algorithms and geometric constructions

• should the construction specify explicitly the answer point (or it is enough that this point is among the points constructed)?



- should the construction specify explicitly the answer point (or it is enough that this point is among the points constructed)?
- if not, no contradiction (blue point is an image of another green point)



- should the construction specify explicitly the answer point (or it is enough that this point is among the points constructed)?
- if not, no contradiction (blue point is an image of another green point)
- if yes, tests should be allowed (otherwise we cannot construct the incenter of a given triangle without excenters), and the blue tests give not the same results as the green ones

- should the construction specify explicitly the answer point (or it is enough that this point is among the points constructed)?
- if not, no contradiction (blue point is an image of another green point)
- if yes, tests should be allowed (otherwise we cannot construct the incenter of a given triangle without excenters), and the blue tests give not the same results as the green ones
- proof does not work, but the statement is true (for the game definition); it is important that many projective transformations exist

< (1) > < (1) > <

- should the construction specify explicitly the answer point (or it is enough that this point is among the points constructed)?
- if not, no contradiction (blue point is an image of another green point)
- if yes, tests should be allowed (otherwise we cannot construct the incenter of a given triangle without excenters), and the blue tests give not the same results as the green ones
- proof does not work, but the statement is true (for the game definition); it is important that many projective transformations exist
- Cauer's "theorem" is plainly false (Akopyan–Fedorov): for some pairs of disjoint circles one *can* construct the center (but for other pairs one cannot)

Conlusions

Vladimir A. Uspenskij (1930–2018), Alexander Shen Algorithms and geometric constructions

(日) (四) (注) (注) (注)

• formal definitions precede negative results?

イロト イボト イヨト イヨト

- formal definitions precede negative results?
- not the case for geometric constructions

- formal definitions precede negative results?
- not the case for geometric constructions
- not a safe practice

- formal definitions precede negative results?
- not the case for geometric constructions
- not a safe practice

Thanks!

< 同 > < 三 >